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Optimal Bidding in Multi-Unit Discriminatory Auctions: Two Bidders

ABSTRACT

We analyze the two-bidder discriminatory auction with downward slop-
ing marginal valuations and a continuous, variable award. We allow for

a common component in marginal valuations and a±liation. We focus
on problems that admit solutions with strictly downward sloping bidding
schedules. Using the method of characteristics, we reduce the ¯rst order
conditions to a pair of ordinary di®erential equations where we ¯x the
equilibrium quantities that are allocated to the two bidders. These ordi-

nary di®erential equations are extensions of the Milgrom-Weber equation
for the ¯rst price unit auction. A new ordinary di®erential equation that
characterizes the relation between signals yielding the ¯xed quantity allo-
cation is obtained. The equilibrium solution of the discriminatory auction

is given by the solution of an initial value problem for these two coupled
ODEs that generalize the Milgrom-Weber equation. We show the condi-
tions for existence of solutions to this systems of ODEs. Some examples
are analytically and numerically solved using our approach.



1 Introduction

A large theory has developed to explain auctions in which bidders bid only for one unit. The

work of Myerson (1981), Riley and Samuelson (1982) and Milgrom and Weber (1982) provides

a characterization of the bidding strategies and revenue trade-o®s across di®erent auction

formats. This theory has been extended to environments where the seller sells multiple

units of the good but the bidders each only demand one unit (Harris and Raviv (1981),

Weber (1982) and others). Much less is known about share auctions in which bidders bid

for fractions of the good by submitting demand functions. In a classic paper, Wilson (1979)

showed that share auctions have multiple equilibria and uniform price share auctions can

lead to equilibrium outcomes that are inferior to the seller. This insight has been reinforced

in papers by Back and Zender (1994), Engelbrecht-Wiggans and Kahn (1999) and Ausubel

and Cramton (1996). Engelbrecht-Wiggans and Kahn (1999) and Ausubel and Cramton

(1996) show that uniform price auctions will not result in e±cient allocations. Maskin and

Riley (1989) solve for the optimal mechanism with downward sloping valuation curves and

private valuations when the seller is not required to sell all of the good (i.e. reserve prices

exists).

While there has been progress in uniform price auctions and in optimal auctions, very

little is known about the multi-unit discriminatory auction with variable awards. Recently,

Engelbrecht-Wiggans and Kahn (1998) numerically solve a two-unit discriminatory auction

with private values and show that the bidder will bid the same price on both units when his

valuation is high. Tenorio (1999) solves a two-bidder two unit discrete example with private

values. Reny (1999) shows the existence of equilibrium with discrete units, private values

and downward sloping marginal valuations. Jackson and Swienkels (1999) present a di®erent

approach to existence that is related to work by Simon and Zame (1999). In work that is

related to our paper, Viswanathan and Wang (1999) obtain the ¯rst order condition using

a slightly di®erent variational approach and provide an example using the limiting uniform

distribution.

The main focus of this paper is to provide a detailed analysis of the two bidder discrimi-

natory auction with variable awards and continuous units. We consider a model where two
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bidders submit demand functions for continuous quantities up to one unit of the good. We

consider marginal valuation for each bidder that are decreasing in quantity and increasing in

the bidder's signal. We allow the marginal valuation function of one bidder to depend on the

signal observed by the other bidder. Further, we allow the distributions to be a±liated as

in Milgrom and Weber (1982). Given the bidder's demand functions, the seller determines

the stop-out price (the marginal price for the last unit) and the bidders then pay the seller

the marginal prices they bid for each unit of the good (with continuous quantities, this is

the area under the demand curve). Such a procedure is the dominant mechanism used by

governments to raise capital all over the world.1

We present a characterization of the multi-unit discriminatory auction. First, we formu-

late our problem in a way that reduces it to a point by point maximization. This directly

provides a ¯rst order condition and shows that the second order condition (pseudo-concavity)

is satis¯ed when the other bidder uses a strictly downward sloping demand curve. A key

aspect of the ¯rst order conditions is dealing with cut-o® prices that determine when the

other bidder will get zero units.

We focus on symmetric equilibria that involve strategies that are strictly monotone in-

creasing in the signal and strictly monotone decreasing in the price. This is a stronger

requirement that the result in Reny (1999) in his Corollary 5.3 (and Example 5.3) that the

symmetric K unit pay-your-bid auction with private values has a symmetric equilibrium with

non-decreasing bid functions.2 A di®erent approach to existence in discriminatory multi-unit

auctions is the work of Simon and Zame (1999) and Jackson and Swienkels (1999). Both these

papers provide existence arguments that imply the existence of equilibrium with endogenous

tie-breaking rules. In the context of the discriminatory multi-unit ¯rst price auctions, their

results imply that the probability of ties in equilibrium is zero. Thus, taken together, these

three papers imply that the symmetric K unit pay-your-bid auction with private values has a

symmetric equilibrium with non-decreasing bid functions and zero probabilities of ties. How-

ever, this is not enough to guarantee that equilibrium strategies will be strictly monotone

decreasing in price.
1Though, the U.S. Treasury has recently shifted to the uniform-price auction.
2Reny's (1999) result applies to discrete units while we consider continuous quantities. It seems as if a

limiting argument yields an existence result with continuous quantities.
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We show that the existence of such an equilibrium depends on solving a pair of coupled

¯rst order conditions. Further, each of the ¯rst order conditions that is central to our

characterization reduces to an ordinary di®erential equation when we use the method of

characteristics, i.e., we restrict ourselves to the set of prices and signals of one bidder that

yield that bidder a ¯xed quantity in equilibrium. These ordinary di®erential equations are

of the same form as the ordinary di®erential equation that characterizes the unit auction in

Milgrom and Weber (1982). If we knew the equilibrium mapping relating the two signals that

yielded these ¯xed allocations and the appropriate boundary conditions, we could directly

solve for equilibrium. We obtain a new di®erential equation for the unknown equilibrium

mapping between the signals. The solution to this ordinary di®erential equation plus the

Milgrom-Weber type equation plus boundary conditions yield the solution to the equilibrium

mapping.

We analyze the existence of solutions to the system of ordinary di®erential equations and

show that the symmetric equilibrium in strategies that are strictly monotone increasing in

the signal and strictly monotone decreasing in the price is unique (if it exists). We also show

that the restriction that the demand curves be downward sloping imposes a restriction on

the slope of the equilibrium mapping between signals at the lowest signal. Surprisingly, the

restriction requires that this slope be steep enough but not too steep.

Our characterization of the equilibrium in the multi-unit discriminatory auction yields the

following results. First, we show that the solution to the variational problem in the multi-

unit discriminatory auction requires the transversality condition that any signal must get a

zero quantity when playing against the highest signal. A direct implication of this is that the

probability of not getting the good is greater than zero for all signals other than the highest

signal (as in a unit auction). Further, if the signal space is bounded, this transversality

condition forces the highest signal to submit a °at bidding curve even if the highest signal

has a downward sloping marginal valuation. These transversality conditions provide the key

boundary conditions for the optimization problem. Thus, we solve the system of ordinary

di®erential equations given the initial conditions at the highest signal.

Second, we show that on the marginal unit (the unit at the stop-out price), the bidder

with the higher signal often shades his bid less than the bidder with the lower signal. The
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intuition for this results is as follows. When a bidder plays against the lowest signal, the

bidder (here the high signal) must bid her marginal value because the cumulative density

function at the lowest signal is zero. This re°ects the fact that for the high signal this is

the lowest price in equilibrium. In contrast, the lowest signal while bidding against a higher

signal will not bid his marginal value (because the cumulative density of the higher bidder

at the stop-out price is not zero). Again, this is because this is not the lowest price in

equilibrium for the lowest signal (he has to consider the e®ect of his bid on higher quantities

that he obtains against lower signals than the signal he is playing against). Similarly, the

transversality condition implies that when the highest signal plays against a signal arbitrarily

close to the highest signal the highest signal obtains everything. In this case, we can again

show that the highest signal shades his bid less than the signal arbitrarily close to the highest

signal. Further, we provide a su±cient condition for such behavior to occur for all possible

signal pairs. Thus, this shows that in equilibrium we can have the high signal shade his bid

less than the low signal for the marginal unit.

Third, we show that our solution agrees with the Milgrom-Weber unit-auction solution

when we consider the °at marginal valuation function, i.e., the unique symmetric solution

when we consider °at demands and divisible goods is the Milgrom-Weber unit auction solu-

tion. Further we prove convergence to the Milgrom-Weber unit-auction solution as we make

the marginal valuations functions °atter and °atter.

We show by example that equilibrium can involve \°ats", i.e., the requirement that the

equilibrium involve strictly decreasing strategies (in quantity) is too strong. The existence

theorems in Reny (1999) and Jackson and Swienkels (1999) consider non-decreasing bid

functions and thus allow for such \°ats". We point out the di±culties involved in computing

equilibria that involve \°ats".

Our paper is organized as follows. Section 2 presents the basic model while Section 3

provides the ¯rst order conditions and the su±ciency argument. Section 4 provides the re-

duction to ordinary di®erential equations and shows the relationship to Milgrom and Weber's

(1982) work. Section 5 provides a complete solution to the system of ordinary di®erential

equations. Section 6 considers numerical examples using our approach. Section 7 concludes.
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2 The Basic Model

We consider a model with two bidders i and j . Bidder i observes signal si and bidder j

observes signal sj. The conditional distribution of sj given si is a distribution over the

interval [0; s] with the PDF g(sjjsi) and the corresponding CDF denoted G(sjjsi) (here s

may be 1). The valuation of the object to bidder i is given by V (si; sj; q) where q is the

quantity of the good. Notice that we allow for dependence on the other bidder's signal. The

marginal valuation for unit q is de¯ned by

M(si; sj; q) = @V (si; sj; q)
@q

(2.1)

We assume that:

Assumption A1: M(si; sj; q) is strictly decreasing in q, strictly increasing in si and

non-decreasing in sj,

@M
@q

(si; sj; q) < 0; @M
@si

(si; sj; q) > 0; @M
@sj

(si; 0; q) ¸ 0: (2.2)

Assumption A2: si and sj are a±liated. The ratio of their distributions, G(sjjsi)=g(sjjsi)

is decreasing in si (see Milgrom and Weber (1982)),

@
@si

Ã
G(sjjsi)
g(sjjsi)

!
< 0; 0 < s < ¹s: (2.3)

Assumption A3: M (0; 0; 1) > 0.

Assumption A4: (greater dependence of marginal valuation in own signal) M(x; s; 1¡q)-

M (s; x; q) is strictly increasing in x and is decreasing in s.

Assumption A1 is an assumption that implies that the marginal value of a larger quantity

is lower. In the context of Treasury auction, this is consistent with inventory costs that make

bidders (dealers) unwilling to take large positions. The assumption that @M=@sj(s; 0; q) ¸ 0

allows both private values (@M=@sj(s; 0; q) = 0) and a common component in marginal

valuations (@M=@sj(s; 0; q) > 0). Assumption A2 ensures that Lemma 1 in Milgrom and

Weber (1982) is valid. We will use this as in Milgrom and Weber (1982) to prove pseudo-

concavity of ¯rst order conditions (when the other bidder submits a strictly downward sloping

demand curve). Assumption A4 basically implies that a small change in a bidder's signal
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has a greater impact on his own marginal valuation than on the other bidder's valuation. It

is clearly true with private values and is a restriction when there is a common component.

Examples include:

Example 1:

V (si; sj; q) = v + (si + ³sj)q ¡ ½
2

q2 (2.4)

where ³ < 1. Here

M (si; sj; q) = v + (si + ³sj) ¡ ½q (2.5)

This is a reasonable representation of a model where Treasury dealers have di®erent

inventories and di®erent information and thus there is both a private value and a common

value component. We will work with Example 1 when the signal space is unbounded.

Example 2:

V (si; q) = (v + si)q ¡ 1
2
(k ¡ si)½q2 (2.6)

where v is a constant. Here

M (si; q) = (v + si) ¡ (k ¡ si)½q (2.7)

where the underlying distribution is over [0; s] where s < k. This is a model where dealers

have heterogeneous beliefs and heterogeneous willingness to take positions in the auction. It

is generally believed that some dealers in Treasury auctions can take bigger positions than

others. Here one aspect of the underlying unknown variable is the ability to take this kind

of position risk. This is the proto-typical example that we will work with numerically to

illustrate our approach.

There is one unit of the object being auctioned. Each bidder submits a demand curve

xi(p; si) that is downward sloping. Let the inverse demand function be given as x¡1
i (q; si),i.e.,

this is the marginal price bid by si for quantity q. The total payment made by bidder i is

given by

TP (p; si) =
Z xi(p;si)

0
x¡1(q; si)dq (2.8)
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under the discriminatory auction. Since demand has to be equal to supply

xi(p; si) + xi(p; sj) = 1: (2.9)

Given a demand curve x(p; si) and a stop-price p, the \utility" to bidder si is given by:

V (si; sj; x(p; si)) ¡ TPi(p; si) (2.10)

The separability of valuation and payment seems critical to our analysis.

3 The First-Order Conditions and Their Su±ciency

The discriminatory auction involves a variational problem as the price that one bids for

quantity q a®ects the payment at all quantities greater than q. In formulating the control

problem from the perspective of bidder i, the underlying independent-variable space is bidder

j's signal, sj. In the discriminatory auction, bidder i takes bidder j 's bidding curve xj(p; sj)

as given. Hence, the quantity he receives at price p(sj) is given by

h(p(sj); sj) = 1 ¡ xj(p; sj) (3.1)

Hence we are viewing p(sj) as the control variable. We can do so because the market clearing

constraint implies that bidder i only gets the residual amount. Hence choosing a demand

curve is the same as choosing a price.3

Rather than considering the total payment made by bidder i directly, we consider it as

the di®erence between the total payment made by all bidders, A(sj) de¯ned next, and the

payment made by bidder j, B(p(sj)) de¯ned below. This substitution allows for a simpler

formulation of the problem that can be integrated to obtain point by point maximization.

This approach eliminates the derivative of the price with respect to sj and makes checking

the su±cient conditions easy.

We de¯ne the total payment from all bidders

A(sj) =
Z xj(p;sj)

0
x¡1

j (q; sj) dq +
Z h(p(sj );sj )

0
x¡1

i (q; si)dq (3.2)
3This is subject to the assumption that both i and j submit strictly downward sloping demand curves.

We will see that this is intimately tied to the su±ciency of the ¯rst order conditions.
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The total derivative of this function with respect to sj is

dA(sj)
dsj

= p(sj)
"
p0(sj)

@xj(p; sj)
@p

+ @xj(p; sj)
@sj

#
+ p(sj)

dh(p; sj)
dsj

¡
Z xj(p;sj)

0

Ã
@xj(x¡1

j (q; sj); sj)
@sj

Á@xj(x¡1
j (q; sj); sj)

@p

!
dq (3.3)

Since

dh(p; sj)
dsj

= ¡
"
p0(sj)

@xj(p; sj)
@p

+
@xj(p; sj)

@sj

#
(3.4)

we obtain that

dA(sj)
dsj

= ¡
Z xj (p;sj)

0

Ã
@xj(x¡1

j (q;sj); sj)
@sj

Á@xj(x¡1
j (q; sj); sj)

@p

!
dq (3.5)

The ratio of the partial derivatives under the integral is obtained by recognizing that

d[x¡1(q; sj)]=dsj is the derivative of the price with respect to the signal sj when the quantity

q submitted by j is ¯xed, i.e., along a iso-contour line. This implies that

@xj(x¡1
j (q; sj); sj)

@p
d[x¡1(q; si)]

dsj
+

@xj(x¡1
j (q; sj); sj)

@sj
= 0 (3.6)

leading to the ratio of partial derivatives.

We also de¯ne:

B(p(sj); sj) =
Z xj(p;sj )

0
x¡1(q; sj) dq (3.7)

This is correct as bidder i takes the bidding curve of the other bidder as given and thus,

when he knows p(sj), j 's total payment is determined. Note that

dB(p(sj); sj)
dp

= ¡p(sj)
@h(p(sj); sj)

@p
(3.8)

With this, we formulate the problem for the bidder i as follows:

max
p(¢)

Z s

0

"
V (si; sj; h(p(sj); sj)) ¡

Z h(p(sj);sj)

0
x¡1

i (q;si)dq
#

g(sjjsi) dsj

= max
p(¢)

Z s

0
[V (si; sj; h(p(sj); sj)) ¡ A(sj) + B(p(sj); sj)] g(sjjsi) dsj (3.9)

subject to the constraint that

h(p(sj); sj) ¸ 0 (3.10)
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Note that the bidder j's bidding curve may have a region where xj(p; sj) = 0. In the ¯rst

order condition, we will have to pay special attention to this region even though it does not

impose a direct constraint. Further, we assume that xj(p; sj) is strictly monotone increasing

in sj and strictly decreasing in p. This implies that the region with xj(p; sj) = 0 is of the

form [0; sl
j(si)].

An integration by parts calculation shows that
Z s

0
A(sj)g(sjjsi) dsj = A(sj)G(sjjsi)

¯̄
¯̄
s

0
¡

Z s

0
G(sjjsi)

dA(sj)
dsj

dsj

= A(s) ¡
Z s

0
G(sjjsi)

dA(sj)
dsj

dsj (3.11)

Hence, we can rewrite the problem for bidder i as:

max
p(¢)

Z s

0

"
V (si; sj; h(p(sj); sj)) +

G(sjjsi)
g(sjjsi)

dA(sj)
dsj

+ B(p(sj); sj)
#

g(sjjsi) dsj ¡ A(s) (3.12)

subject to the constraint that h(p(sj); sj) ¸ 0. Here dA(sj)=dsj is given by Equation (3.5)

above.4 Since we have reduced our problem to point by point maximization, we can use

Luenberger Theorem 1 page 249 and maximize

max
p(¢)

Z s

0

"
V (si; sj; h(p(sj); sj)) + G(sjjsi)

g(sjjsi)
dA(sj)

dsj
+ B(p(sj); sj)

#
g(sjjsi) dsj

¡
Z s

0
´1(sj)h(p(sj); sj)dsj ¡ A(s) (3.13)

The ¯rst order conditions with respect to p(sj) are that

M (si; sj; h(p(sj); sj))
@h(p; sj)

@p
¡ G(sjjsi)

g(sjjsi)

@xj(p;sj )
@sj

@xj(p;sj )
@p

@xj(p; sj)
@p

¡ p(sj)
@h(p; sj)

@p
¡ ´1(sj)

@h(p; sj)
@p

= 0 (3.14)

A(s) ¡ B(p(s); s) = 0 (transversality condition)

´1(sj)h(p(sj); sj) = 0
4We ignore the constraints imposed by the fact that the equilibrium bidding curve obtained by solving

the optimization problem has to be non-decreasing in q. If the equilibrium bidding curves we obtain are
strictly downward sloping in q, we are justi¯ed in ignoring this constraint. However, it may be the case that
there is no strictly decreasing bidding curve (in q) that solves the above ¯rst order conditions. Then, the
optimization would have to consider these additional constraints.
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We note that solving the maximization problem requires A(s) to be minimized. Since,

A(s) is bounded below by B(p(s); s), we obtain the above condition. Directly, we can show:

Lemma 1 The minimum value for A(s) is attained when xj(p(s); s) = 1 and A(s) =

B(p(s); s).

Proof: Suppose not. If xi(p(s); s) > 0, then we must have bidder i paying xi(p; s)p where

p is the price against the highest signal s while bidder j pays

B(p; s) =
Z xj(p;s)

0
x¡1(q; s) dq (3.15)

If we allocate the whole quantity to bidder j , we lower the price to p0 and obtain

A(s) = B(p0; s)

=
Z xj(p0 ;s)

0
x¡1(q; s) dq

=
Z xj(p;s)

0
x¡1(q; s) dq +

Z xj (p0;s)

xj(p;s)
x¡1(q; s) dq

<
Z xj(p;s)

0
x¡1(q; s) dq + xi(p; s)p

because we go down bidder j's demand curve, which contradicts the assumption that we are

at minimum value for A(s). Thus we must have that the total payment from bidder i is zero

and the total quantity allocated to bidder i is zero when he is bidding against the highest

signal.

We further specialize Lemma 1 for problems with bounded signal space.

Lemma 2 With bounded signal space, [0; s], the highest signal s must submit a °at bidding

curve in equilibrium. All other signals s will submit bidding curves below the °at bidding

curve submitted by the highest signal.

Proof: With any downward sloping curve, the argument in Lemma 1 implies that the

probability of the highest signal s winning the good is 1. Therefore, signal s will submit a

°at bidding curve. With a °at bidding curve for s, the argument in Lemma 1 is not valid

for signal s < s. But if any signal s submits a bidding curve that is °at at the same price

as s, then by monotonicity in the signal, there is an interval of signals that is °at at this

price. But this is inconsistent with equilibrium as any signal can now deviate by raising the

highest price by a very small amount (the probability of ties in equilibrium is zero). Thus,
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the highest signal must submit a °at demand curve and all other signals s < s must submit

a bidding curve strictly less than this °at demand curve.

The transversality condition implies that there is a strictly positive probability that bidder

i will not receive the good in equilibrium. This is obviously true in an unit auction. In a

multi-unit auction with downward sloping marginal valuations this is more surprising. In

problems with bounded support, this implies that the highest signal must submit a °at

bidding schedule (even though the highest signal may have a downward sloping marginal

valuation).5 This transversality condition provides the critical end-point condition that

allows us to solve the ¯rst order conditions.6

Rearranging the ¯rst order condition and focusing on the region where ´1(sj) = 0 and

xj(p; sj) > 0 we obtain:

[M (si; sj; h(p(sj); sj)) ¡ p(sj)]
@h(p; sj)

@p
¡ G(sjjsi)

g(sjjsi)
@xj(p; sj)

@sj
= 0 (3.16)

or substituting for @h(p; sj)=@p,

p(sj) = M (si; sj; h(p(sj); sj)) + G(sjjsi)
g(sjjsi)

@xj(p;sj)
@sj

@x(p;sj)
@p

: (3.17)

To understand what happens when the constraint h(p(sj); s)j) ¸ 0 is binding, consider the

critical value of the other bidder's signal su
j (si) where the constraint does not bind and

h(p(sj); sj) = 0. At su
j (si), the value of the objective is zero and the payment by bidder i is

zero, i.e, A(p(sj); sj)¡ B(p(sj) = 0. If the objective is pseudo-concave in p, we would obtain

that the derivative with respect to p is zero at su
j (si) and negative at p for sj > su

j (si), then

the optimal solution given the constraint is binding is to set h(p(sj); sj) = 0. In a moment,

we will write down the condition for pseudo-concavity in p.

The region where xj(p(sj); sj) = 0 is of the form [0; sl
j(si)]. We are assuming that bidder

j's demand function is strictly monotone increasing in sj and strictly monotone decreasing in

p. Hence, given sj such that sj < sl
j(si), we know that that x(p+²; sj) = 0 and x(p; sj +²) = 0

5Thus the highest signal submits a °at bidding curve while every other signal submits a strictly downward
sloping bidding curve. We will refer to this a symmetric equilibrium with strictly downward sloping strategies
in q even though this is not true at s.

6In Engelbrecht-Wiggans and Kahn (1998) the transversality condition is satis¯ed because the highest
signal bids the same bid on both of the units being sold.

13



for p < p(sl
j(si)) where ² is a small positive or negative number. This implies that the ¯rst

order condition reduces to

[M (si; sj; h(p(sj); sj)) ¡ p(sj)]0 ¡ 0 = 0 (3.18)

and hence imposes no restriction on the price in this region. Therefore we can set the price

in this region as the end-point price p(sl
j(si) to ensure continuity at sl

j(si).

Thus when both bidders i and j get allocated positive quantities, the price inverts bidder

j's signal and hence we condition via the price on bidder j's signal. However, when bidder

i gets 1 unit and bidder j gets zero units, the total payment does not vary with signal j for

sj < sl
j(si) (this is similar to a unit auction). The total payment is that determined when

bidder i bids against bidder sl
j(si). In a unit auction, the critical sl

j(si) is just si and hence

the payment by bidder i in the unit auction does not vary with bidder j for sj < si.

To complete the equilibrium we need an extension of the prices below p(sl
j(si)) if sl

j(si)

is well de¯ned. For low values of si, it may be the case that in equilibrium the maximum

quantity is less that one unit. For such si, we take sl
j(si) = 0. Hence the o®-equilibrium

extension with this added restriction is that the inverse demand curve is °at at the price

p(sl
j(si)), i.e. bidder si will take in¯nite quantities at the price p(sl

j(si)).

We prove the required pseudo-concavity of the maximand in p as follows. Consider si's

optimization against sj where sj receives an interior allocation between 0 and 1. Pseudo-

concavity requires that for p0 < p(sj) that

@h(p0; sj)
@p

0
B@[M (si; sj; h(p0; sj)) ¡ p0] ¡ G(sjjsi)

g(sjjsi)

@xj(p0 ;sj)
@sj

@xj(p0 ;sj)
@p

1
CA > 0 (3.19)

and vice versa for p0 > p(sj). We note that @h(p0; sj)=@p is positive if xj(p0; sj) is an interior

allocation. Since p0 < p, we need only consider p0 such that p0 corresponds to a point on

j0 demand curve. If the solution to the ¯rst order conditions in Equation (3.17) is strictly

downward sloping in q and strictly increasing in s, than against j a price p0 corresponds to

an equilibrium price only if there exists a s0
i such s0

i < si and

@h(p0; sj)
@p

0
B@[M (s0

i; sj; h(p0; sj)) ¡ p0] ¡ G(sjjs0
i)

g(sjjs0
i)

@xj(p0 ;sj)
@sj

@xj(p0 ;sj)
@p

1
CA = 0 (3.20)
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Since M (si; sj; q) is monotone increasing in si and by Lemma 1 in Milgrom and Weber (1982),

a±liation implies that G(sjjz)=g(sjjz) is decreasing in z, see (2.3), and the conjectured

monotonicity on xj(p; sj) the second order condition follows.

For p0 less than p(sj), the second order condition holds for all prices until we reach

p(sl
i0(sj)). Here si0 is the signal who receives zero allocation against sj (if such a si0 exists,

otherwise we set sl
i0(sj)=0). If xj(p(sl

i0(sj)); sl
i0) = 0, then V (si; sj; h(p0; sj)) = 0 for p0 <

p(sl
i0(sj)) and we are done. If sl

i0(sj) = 0, then for p0 < p(sl
i0(sj)), xi(p0; sj) = 0 as j 0s demand

curve is °at at this price.

For prices such that p0 > p(sj), an argument similar to that in the prior paragraph holds

if p0 corresponds to a price where xj(p; sj) > 0. Let su
i0(sj) be such that for p0 > p(su

i0(sj)) we

have xj(p; sj) = 0. At this price p(su
i0(sj)) we know that the ¯rst order condition is negative

for si and is zero for higher prices p0 from which pseudo-concavity follows. In problems where

the signal has bounded support, for p0 higher than the price that corresponds to s0
i = s we

note that si is worse o® at such prices than at the price that corresponds to the highest

equilibrium price as he receives the same quantity (one unit) but pays a higher price (we are

using the transversality condition here).

Now consider a si who receives one unit against sj, i.e. sj < sl
j(si) and si > su

i0 (sj). If

bidder i were to consider price p0 < p(su
i0(sj)) the ¯rst order condition is positive. For any

price p0 > p(su
i0(sj)) the ¯rst order condition is zero. Since the quantity is not changed in this

region and the total payment is not changed, the objective does not change as we change

the price in this region. Since the highest possible signal in a bounded support problem, s,

receives 1 unit against all sj, this argument holds to show optimality for sj.

Finally consider a si who receives 0 units against sj, i.e., si < sl
i0(sj) and sj > su

j (si).

At p(sl
i0 (sj)), signal sl

i0(sj)'s ¯rst order condition is zero. By monotonicity in signal and

a±liation, signal si ¯rst order condition at this price is negative. At any price lower than

this price signal si's gets zero quantity and thus in indi®erent across all such prices. Thus

again pseudo-concavity holds.
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4 The Optimal Bidding Problem and Its Relation to the Milgrom-
Weber Unit Auction Solution

We next show how to solve the pair of ¯rst order conditions for the two bidders (3.17) above

to obtain an optimal solution x(p; si). In doing so, we relate our results to the seminal work

due to Milgrom and Weber (1982) on unit auctions.

In Milgrom and Weber (1982), it is shown that the equilibrium in a single-unit discrimi-

natory auction solves the di®erential equation that:
db
dsi

= [v(si; si) ¡ b(si)]
g(sijsi)
G(sijsi)

; (4.1)

which is an ordinary di®erential equation. Milgrom and Weber provide a solution to this

ordinary di®erential equation, which is

b(si) =
Z si

0
v(®; ®)dL(®jsi) (4.2)

L(®jsi) = exp
Ã

¡
Z si

®

g(tjt)
G(tjt) dt

!
=

G(®j®)
G(sijsi)

(4.3)

where the end-point condition is that b(0) = v(0; 0)

In the two bidder case, we obtain the ¯rst order condition that

p(sj) = M (si; sj; h(p(sj); sj)) +
G(sjjsi)
g(sjjsi)

@xj(p;sj)
@sj

@xj(p;sj)
@p

: (4.4)

We use the method of characteristics to convert the ¯rst order condition to an ODE. Suppose

xj(p; sj) = q. Along the isocontour-line

@xj(p; sj)
@p

dp(sj)
dsj

+ @xj(p; sj)
@sj

= 0 (4.5)

Substituting this back to the ¯rst order condition and rearranging implies
dp(sj)

dsj

¯̄
¯̄
x(p;sj)=q

= [M (si; sj; 1 ¡ q) ¡ p(sj)]
g(sjjsi)
G(sjjsi)

(4.6)

which is very similar to the ODE in Milgrom and Weber (1982) except that we have both si

and sj in the equation.

The above suggests the following approach to solving the pair of ¯rst order conditions for

si and sj (and the demand clearing condition). Fix q and de¯ne

si = H(sj; q) (4.7)
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as the endogenous mapping that maps all sj to si such that xj(p; sj) = q, where q < 1=2.

We solve for the mapping H(q; sj) as follows. Fix q < 1=2. The two ¯rst order conditions

can be rewritten as
dp
ds

(sj; q) = [M(H (sj; q); sj; 1 ¡ q) ¡ p(sj; q)]
g(sjjH (sj; q))
G(sjjH (sj; q))

(4.8)

dp
ds

(si; 1 ¡ q) = [M(H ¡1(si; q); si; q) ¡ p(si; 1 ¡ q)]
g(sijH¡1(si; q))
G(sijH¡1(si; q)

(4.9)

If we knew this mapping and the price bid by the lowest signal that receives allocation q

(we denote this by s¤(q) and the corresponding price by p(s¤(q))=M(H (s¤(q); q); s¤(q); 1¡q)),

we could directly solve for Equation (4.8) for the price by a variation of the Milgrom-Weber

solution:7

p(sj) =
Z sj

s¤(q)
M(H (®; q); ®; 1 ¡ q) dL1(®jsj) + p(s¤(q))L1(s¤(q)jsj)) (4.10)

where L1(®jsj) is de¯ned as

L1(®jsj) = exp
Ã

¡
Z sj

®

g(tjH(t; q))
G(tjH(t; q))

dt
!

: (4.11)

We obtain the di®erential equation for the mapping H(s; q) by noting that

p(s; q) = p(H(s; q); 1 ¡ q) (4.12)

and by total di®erentiation of this equation we obtain

dp(s; q)
ds

=
dp(H(s; q); 1 ¡ q)

ds
dH(s; q)

ds
(4.13)

which leads to (using (4.8) and (4.9))

dH(s; q)
ds

=
[M (H(s; q); s; 1 ¡ q) ¡ p(s; q)] g(sjH(s;q))

G(sjH(s;q))

[M(s; H(s; q); q) ¡ p(s; q)] g(H(s;q)js)
G(H(s;q)js)

(4.14)

7If we had s¤(q)= 0, then the fact that L1(0jsj) = 0 would simplify the solution further as in Milgrom and Weber (1982).
We note we can similarly solve the other equation as

p(H(sj; q)) =
Z H(sj;q)

H(s¤(q);q)

M(H¡1( ;̄ q); ¯; q)dL2(¯jH(sj; q)) + M(H(s¤(q); q); s¤(q); 1 ¡ q)L2(H(s¤(q); q)jH(sj; q))

where L2(¯jsi ) is de¯ned as

L2(¯jsi) = exp

µ
¡

Z si

¯

g(tjH ¡1(t; q))
G(tjH¡1(t; q))

dt

¶
:
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If marginal valuations and densities are Lipschitz, the system of ordinary di®erential equa-

tions given by equations (4.8) and (4.14) has a unique solution given the boundary conditions.

However if s¤(q) = 0, then at 0, the left hand side of equation (4.14) above has both its numer-

ator and denominator equal to zero (because G(0jsj) = 0 and p(0; q) = M (H(q; 0); 0; 1¡ q))

(see section 5.1). This singularity is also present in the price equation (equation (4.8)) which

is similar to the Milgrom-Weber equation (this is well known from the unit auction liter-

ature). Unfortunately, the singularity in the dH=ds equation implies that we need more

information to pin down the derivative. Further, we do not know for the given q the lowest

signal s¤(q) that receives that allocation.

The transversality condition provides the additional information that allows us to solve

the system of ordinary di®erential equations. We use that fact that in a bounded problem

the transversality condition implies that the highest signal submits a °at bidding curve

and that every signal receives zero units against the highest signal. With our smoothness

assumptions on the bidding schedule, this implies that we must have H(s) = s. Further we

will prove that H(s; q) > s (this is implied by the monotonicity of the bidding schedule in

s and our transversality condition). Finally, we will show that whenever the lowest signal

obtains quantity q (i.e. s¤(q) = 0), we must have p(0; q) = M (H(q; 0); 0; 1 ¡ q) to ensure

that prices are positive.8

Further restrictions are imposed by the requirement that the bidding curves have to be

strictly downward sloping. In particular, the bidding curve for the lowest signal is restricted

in the following way. Suppose 1=2 > q0 > q where q0 and q are allocation that the lowest

signal receives in equilibrium. Then we need H(0; q0) < H(0; q) and M (H(0; q0); 0; 1 ¡ q 0) <

M (H(0; q); 0; 1 ¡ q), i.e., the reduction in the signal has to more than compensate for the

increase in marginal valuation due to the lower quantity that is obtained by equilibrium by

the signal H (0; q) so that the price falls. Hence the monotone mapping H(0; q) is restricted.
8If the lowest signal obtains quantity q and we have M(H (q; 0); 0; 1 ¡ q) > p(0; q), the prices that we

obtain from solving the di®erential equation will go to ¡1. The constraint that prices be positive creates
°at demands at 0 and thus the possibility of rationing when the price is 0. This is ruled out since we know
from Jackson and Swienkels (1999) that ties are a zero probability event.
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5 Solution of the optimal bidding problem

The solution of the optimal bidding problem, for 0 < s < ¹s and 0 < q < 1=2, is given by the

demand curve p(s; q) obtained from the equations

dp(s; q)
ds

= [M (H(s; q); s; 1 ¡ q) ¡ p(s; q)]
g(sjH (s; q))
G(sjH(s; q))

(5.1)

dH(s; q)
ds

=
[M(H (s; q); s; 1 ¡ q) ¡ p(s; q)] g(sjH(s;q))

G(sjH(s;q))

[M (s; H (s; q); q) ¡ p(s; q)] g(H(s;q)js)
G(H(s;q)js)

(5.2)

subject to the endpoint condition on H (s; q) that

H(¹s; q) = ¹s: (5.3)

Equation (5.3) will imply the transversality condition that H (s; 0) < s.

For 1 ¸ q > 1=2, p(s; q) is de¯ned by the relation

p(s; q) = p(H¡1(s; 1 ¡ q); 1 ¡ q); (5.4)

where H¡1(s; q) is the inverse function of H(s; q), that is

H(H¡1(s; q); q) = s: (5.5)

In this section we describe how to solve this model to obtain the demand curve p(s; q). We

will establish necessary conditions for the equilibrium solution p(s; q) to be strictly increasing

in s, and strictly decreasing in q,

@p
@q

(s; q) < 0 for 0 < q < 1: (5.6)

We begin by establishing some results on the properties of the solutions of the governing

equations (5.1, 5.2).

Theorem 1 (H-solution for q = 1=2) H(s; 1=2) = s is the exact solution of (5.2) for q =

1=2.

Direct substitution of H = s into the right-hand side of (5.2) yields

dH
ds

=
[M(s; s; 1

2) ¡ p] g(sjs)
G(sjs)

[M(s; s; 1
2) ¡ p] g(sjs)

G(sjs)
= 1; (5.7)
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consistent with H being linear in s with slope one. Since (5.2) satis¯es a Lipschitz condition

at s = ¹s, we can conclude that H(s; 1=2) = s is the unique solution satisfying boundary

condition (5.3).

Theorem 2 (p-solution for q = 1=2) For q = 1=2 there is a unique smooth, bounded positive

solution p(s; 1=2). This solution is given by the integral (5.9).

Using theorem 1, we may substitute H = s into equation (5.1) to obtain a ¯rst-order linear

di®erential equation for p(s; 1=2),
dp(s; 1=2)

ds
= [M (s; s; 1=2) ¡ p(s; 1=2)]

g(sjs)
G(sjs) : (5.8)

This equation has the same form as the Milgrom-Weber problem (4.1) and the solution is

given by

p(s; 1
2) =

Z s

0

g(s0js0)
G(s0js0)

M (s0; s0; 1
2)e

R s0
s g(tjt)=G(tjt)dt ds0; (5.9)

where the constant of integration was selected to eliminate any potential singularities as

s ! 0. As will be discussed later, the limit of (5.9) as s ! 0 is p(0; 1=2) = M (0; 0; 1=2).

Equation (5.9) gives the unique smooth bounded solution of (5.1) on 0 < s < ¹s for q = 1=2.

We de¯ne ¹P to be the value of the demand curve determined from (5.9), ¹P = p(¹s; 1=2),

¹P =
Z ¹s

0

g(s0js0)
G(s0js0)

M (s0; s0; 1
2 )e

R s0

s
g(tjt)=G(tjt) dt ds0: (5.10)

For the case of una±liated distributions, we can use the relation between the PDF and the

CDF, g(s) = G0(s), to simplify (5.9) to obtain

p(s; 1
2 ) =

1
G(s)

Z s

0
M (s0; s0; 1

2)g(s0) ds0; (5.11)

and similarly from (5.10), ¹P = p(¹s; 1=2) is given by,

¹P =
Z ¹s

0
M (s0; s0; 1

2 )g(s0) ds0: (5.12)

We will show that this value of the end-point condition p(¹s; q) = ¹P determines the unique

solution (if it exists) de¯ned on the whole interval 0 < s < ¹s for 0 < q < 1=2.

Theorem 3 (Boundary condition for p(s; q)) To satisfy the monotonicity requirement (5.6),

at s = ¹s, p(s; q) must be a constant independent of q, for 0 < q < 1,

p(¹s; q) = ¹P: (5.13)
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Since H satis¯es (5.3) at s = ¹s, from (5.5), we have H¡1(¹s; q) = ¹s also. Therefore, (5.4)

yields

p(¹s; q) = p(¹s; 1 ¡ q): (5.14)

Hence p(¹s; q) is symmetric about q = 1=2, and upon di®erentiation with respect to q,

@p
@q

(¹s; q) = ¡@p
@q

(¹s; 1 ¡ q): (5.15)

Condition (5.6) can be satis¯ed on 0 < q < 1 only if p(¹s; q) is independent of q. From (5.10)

we know the value of p(¹s; q) = ¹P at q = 1=2, and therefore it must be equal to ¹P for all

values of q, (5.13).

Theorem 4 (Uniqueness) The bounded positive equilibrium solution of the optimal bidding

problem, if it exists, is unique.

Given the assumption that equations (5.1, 5.2) satisfy a local Lipschitz condition at s = ¹s

for 0 < q < 1=2, then equations (5.1, 5.2) along with conditions (5.3, 5.13) de¯ne a well-

posed initial value problem in s, starting at s = ¹s, with a unique solution for p(s; q) and

H(s; q) at each ¯xed value of q. This formulation of the optimal bidding problem as an initial

value problem can also be applied to unbounded intervals, where the initial conditions are

applied in the limit s ! ¹s = 1. The properties of the solution for this case are discussed in

Appendix A.

Theorem 5 (Relation to the Milgrom-Weber model) If the marginal valuation function M(si; sj)

is independent of q, then (5.1, 5.2) reduce to the Milgrom-Weber equation. Further, in the

limit that jj@M=@qjj1 ! 0, the Milgrom-Weber solution is the limiting behavior of p(s; q).

If M (si; sj) is independent of q, then it follows from theorem 1 that H(s) = s is the solution

of (5.2) for all q. Consequently, equation (5.1) reduces to the Milgrom-Weber equation (4.1),

written in the form
dp
ds = [M (s; s) ¡ p(s)]

g(sjs)
G(sjs): (5.16)

Further, the end-point condition is that p(0; q)= M (0; 0; q) for all q. This follows from the

fact that M(0; 0; q) is independent of q and for q = 1=2 the end-point condition holds. This

observation shows that equations (5.1, 5.2) generalize the original Milgrom-Weber model
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and can recover the previous results in the case that @M=@q ´ 0. Theorem 4 represents a

modest generalization of Milgrom and Weber (1982) in that it shows that with °at marginal

valuations and the ability to divide the good; the Milgrom-Weber solution is still the unique

symmetric equilibrium in strategies that strictly increase in s.

More generally, the theorem on continuous dependence of solutions of di®erential equa-

tions (Walter (1998)) can be applied to show that for problems where the marginal valuation

depends weakly on q, the Milgrom-Weber solution is the limiting behavior of p(s; q). We

write the marginal valuation in the form M (si; sj; q) = M0(si; sj) + ²M1(si; sj; q), to explic-

itly separate out the q-dependence, with @M=@q = ²@M1=@q. If ² is a small perturbation

parameter, and ²jjM1jj1 ¿ jjM0jj1, then the in°uence of q in (5.1, 5.2) enters as a regular

perturbation to the q-independent Milgrom-Weber solution for ² = 0. Consequently the

solution can be expressed as p(s; q) = p0(s) + ²p1(s; q) + ¢ ¢ ¢ as ² ! 0, where p0(s) is the

solution of the Milgrom-Weber equation.

Having established local uniqueness of the solution by expressing the optimal bidding

problem as a backward initial value problem in s, we now must show that the solution exists

and is well-de¯ned on the whole interval 0 < s < ¹s. We will derive lower and upper bounds

on the set of possible solution, to assist in the construction of the argument for the existence

of the solution. Later we will go on to consider the local structure of solutions at s = 0,

where the equations do not satisfy a Lipschitz condition.

Theorem 6 (Lower bounds for H) Lower bounds are given by H(s; q) > s for 0 < s < ¹s

and 0 < q < 1=2.

We prove that H(s; q) > s for 0 < s < ¹s and q < 1=2 by contradiction. Let D(s) =

H(s; q) ¡ s. Assume that s0 and s are successive points where H(s; q) crosses the line H = s

and hence D(s0) = D(s) = 0. From assumption A1, for q < 1=2, M(s; s; q) > M(s; s; 1 ¡ q),

therefore at a crossing point s0, we have
dH
ds

¯̄
¯̄
s=s0

=
[M (s0; s0; 1 ¡ q) ¡ p(s0; q)]

[M (s0; s0; q) ¡ p(s0; q)]
< 1; (5.17)

and therefore D0(s0) < 0 and D 0(s) < 0. Then D(s) is locally decreasing at each crossing

point. In a positive neighborhood of s0, D is negative, D(s0+²) < 0, while in a neighborhood

below s, D is positive, D(s¡²) > 0. By the intermediate value theorem, D must have another
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zero between s0 and s, but this contradicts our assumption that s0 and s are successive

crossings. Therefore,

H(s; q) > s; 0 < s < s; q < 1=2: (5.18)

Theorem 7 (Upper bounds for monotonicity in s) In private values problems, H(s; q) and

p(s; q) are monotone increasing functions of s on 0 < s < ¹s if they lie below the upper bounds

given by H¤(s; q), p¤(s; q).

In private values problems, where the marginal valuation function is independent of sj,

M = M (si; q), and (5.1, 5.2) reduce to

dp
ds

= [M (H; 1 ¡ q) ¡ p]
g(sjH )
G(sjH)

; (5.19)

dH
ds

=
[M (H; 1 ¡ q) ¡ p] g(sjH)

G(sjH)

[M (s; q) ¡ p] g(Hjs)
G(Hjs)

: (5.20)

If p = M (H; 1 ¡ q) and M(s; q) 6= M (H; 1 ¡ q) then dp=ds = dH=ds = 0, and only trivial

constant solutions are possible. Nontrivial solutions with dp=ds = 0 at some s are possible

only if M (s; q) = M (H; 1 ¡ q). These considerations de¯ne the p-nullcline curve, given by

the equations,

p¤(s; q) = M (H¤(s; q); 1 ¡ q); M(H ¤(s; q); 1 ¡ q) = M (s; q): (5.21)

If both marginal valuations, M (H; 1¡q) and M (s; q), are greater than the price p(s; q), then

from equation (5.19, 5.20) both p(s) and H (s) have positive slopes. If either function is to

be non-monotone at some point, then there must be a value of s where its derivative is zero.

If the solutions do not intersect the p-nullcline, they must be monotone functions. Therefore

solutions that lie below the p-nullcline,

p(s; q) < p¤(s; q) (5.22)

are monotone increasing functions,
dp
ds

> 0;
dH
ds

> 0: (5.23)

To ensure that dp(¹s)=ds > 0 we must require that M and g satisfy

M (¹s; 1 ¡ q) > ¹P =
Z ¹s

0

g(s0js0)
G(s0js0)

M (s0; 1
2)e

R s0
s g(tjt)=G(tjt)dt ds0: (5.24)
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For the more general problem of marginal valuations with common values, M (si; sj; q),

parts of the above argument change somewhat. The factor [M (H; s; 1 ¡ q) ¡ p] appearing

in the numerators of (5.1, 5.2) now has an explicit s-dependence and therefore nontrivial

solutions can occur with dp=ds = dH=ds = 0 at points apart from the p-nullcline, which is

now de¯ned as

p¤(s; q) = M (H¤(s; q); s; 1 ¡ q); M (H¤(s; q); s; 1 ¡ q) = M (s; H¤(s; q); q): (5.25)

The p-nullcline still serves as an upper bound (5.22) on the set of monotone increasing

solutions. However, in common values problems, it is also possible to ¯nd non-monotone

solutions below the nullcline. In general, the p-nullcline bound (5.22) is a necessary but not

a su±cient condition to establish monotone increasing behavior in s. In Appendix C we will

derive necessary conditions for local increasing behavior at s = 0. The local conditions for

the solution to be increasing at ¹s generalize directly, in particular, we must require that

M (¹s; ¹s; 1 ¡ q) > ¹P =
Z ¹s

0

g(s0js0)
G(s0js0)

M (s0; s0; 1
2)e

R s0
s g(tjt)=G(tjt)dt ds0: (5.26)

Note that from the de¯nition (5.21) and Assumption A4, it can be shown that p¤(s; q) and

H¤(s; q) are increasing functions of s. This condition, along with assumption A1 on the

monotone decreasing dependence of M on q leads to the necessary condition

M(¹s; ¹s; 1) > ¹P: (5.27)

We next explore the nature of bid-shading on the marginal unit in equilibrium using

Theorem 7. In particular, we ask whether

M (H(s; q); 1 ¡ q) ¡ p(s; q) <; >; = M (s; q) ¡ p(s; q): (5.28)

In an unit auction there is no distinction between the marginal and the average bid and

thus the higher signal must shade his bid more. However, in a multi-unit discriminatory

auction, we show that on the marginal bid, the high signal may shade his bid less than the

low signal.

Corollary to Theorem 7 (Bid shading on the marginal unit) On the marginal unit, the

higher signal shades his bid less than the lower signal when the low signal is s = 0 or s = s.
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Further in the private values case if

Ms(s; q)G(sjH¤)
g(sjH¤)

< Ms(H¤(s); 1 ¡ q)G(H¤js)
g(H¤js) (5.29)

the higher signal shades his bid less than the lower signal for arbitrary values of the low

signal.

At s = 0, the corollary follows directly from from considering Equation (3.17) and using

the fact the CDF is zero at s = 0. At s = s the corollary follows from the fact that for any

q, H (s; q) = s and M (s; 1 ¡ q) < M (s; q). Note that at s and q = 1=2, H ¤(¹s; 1=2) = ¹s and

from A4, H¤(s; q) increases as q decreases. Suppose that H and H¤ intersection at ŝ < ¹s,

i.e., H (ŝ; q) = H¤(ŝ; q) but p(ŝ; q) < p¤(ŝ; q). Then at ŝ

dH¤(ŝ; q)
ds

=
Ms(ŝ; q)

Ms(H ¤(ŝ; q); 1 ¡ q)
<

dH(ŝ; q)
ds

=
g(ŝjH¤(ŝ;q))
G(ŝjH ¤(ŝ;q))
g(H¤(ŝ;q)jŝ)
G(H¤(ŝ;q)jŝ)

(5.30)

where we have used the fact that M(H¤(ŝ; q); 1 ¡ q) = M (ŝ; q) > p(ŝ; q) and our earlier

assumption. Condition (5.30) implies that at ¹s, H¤(¹s; q) < H(¹s; q), but this contradicts our

earlier results. Therefore, it must be the case that H(s; q) < H¤(s; q) if p(s; q) < p¤(s; q)

(i.e. we are below the p-nullcline). From this, we obtain

M (H(s; q); 1 ¡ q) ¡ p(s; q) < M(H ¤(s; q); 1 ¡ q) ¡ p(s; q) = M (s; q) ¡ p(s; q) (5.31)

which implies that the high signal shades his bid less than the low signal on the marginal

unit. Later, we will show that our numerical example satis¯es the hypothesis of the corollary.

For common values problem, the su±cient condition in the corollary has to be changed to

account for the dependence of one bidder's marginal valuation on the other bidders.

Theorem 8 (The condition for p(s; q) to be monotone-in-q) The upper and lower bounds

on @p=@q needed for the demand curve p(s; q) to be monotone decreasing for all q, 0 < q < 1,

are given by equation (5.35).

For 0 < q < 1=2, the condition for p to be decreasing in q is simply that @p=@q < 0.

For q > 1=2, p(s; q) is de¯ned by (5.4) in terms of the inverse of H(s; q) de¯ned by (5.5).

Di®erentiating (5.4) with respect to q yields

@p
@q

(s; q) = ¡@p
@s

(H¡1; 1 ¡ q)
@H¡1

@q
(s; 1 ¡ q) ¡ @p

@q
(H¡1; 1 ¡ q) < 0: (5.32)
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Figure 1: Illustration of the set of trial solutions and bounds on p(s) used in the existence argument. The
range of bounded solutions that exists on the whole interval, 0 < s < ¹s are plotted with solid curves.

Figure 2: The corresponding plot of H(s) solutions for the existence argument.
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Di®erentiating (5.5) with respect to q, we obtain

@H¡1

@q
= ¡@H

@q

Á @H
@s

: (5.33)

Substituting this into (5.32) yields the condition to yield the condition

@p
@s

(H¡1; 1 ¡ q)
@H
@q (H¡1; 1 ¡ q)
@H
@s (H¡1; 1 ¡ q)

< @p
@q

(H¡1; 1 ¡ q): (5.34)

Using the de¯nition of the inverse, (5.5), we can map (H¡1; 1 ¡ q) ! (s; q) back to obtain

the overall bounds

@p
@s

(s; q)
@H
@q (s; q)
@H
@s (s; q)

<
@p
@q

(s; q) < 0 at each point in f(s; q)j 0 < s < ¹s; 0 < q < 1=2g. (5.35)

Theorem 9 (Monotone structure of the solution p(s; q)) A monotone increasing solution of

the optimal bidding problem exists on the interval 0 < s < ¹s corresponding to su±ciently low

end-point values of the price, ¹P < P¤(q).

The Peano theorem of existence for solutions of initial value problems, see Walter (1998)

for example, ensures the existence of a solution within the domain in (s; H; p) where the

di®erential equations are not degenerate. For the optimal bidding problem, equation (5.2)

becomes degenerate at the p-nullcline. Therefore, if the solution p(s; q), H(s; q) does not

intersect the nullcline at any point within the range 0 < s < ¹s, then the existence of the

strong solution on 0 < s < ¹s is guaranteed.

Consider solving the initial value problem for (5.1, 5.2) starting from H(¹s; q) = ¹s and an

arbitrary value for p(¹s; q) = P (q). For p(s) to be monotone increasing, P (q) must lie below

the nullcline,

P (q) < p¤(¹s; q) = M(¹s; ¹s; 1 ¡ q): (5.36)

In Appendix B we demonstrate that a comparison theorem shows that if two solutions p(s; q)

and ~p(s; q) start from initial conditions, P and ~P respectively, with P < ~P , then the solutions

do not intersect,

p(s; q) < ~p(s; q): (5.37)

There can exist a range of values P < M (¹s; ¹s; 1 ¡ q), for which the trial solution intersects

the p-nullcline at a point s¤, p = p¤(s¤; q). From the results of the comparison theorem,
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(5.37), and the fact that p¤(s; q) is an increasing function, as P decreases, the value of the

intersection point s¤ also decreases. There exists a value P¤(q) such that its corresponding

solution p¤(s; q) intersects the nullcline at s¤ = 0. All solutions starting with initial conditions

satisfying P < P¤(q) are bounded away from the nullcline and are covered by the Peano

existence theorem. The value of P¤(q) must be calculated using numerical quadrature, but

once this has been determined, the condition for existence of the solution of the optimal

bidding problem is
Z ¹s

0
M (s0; s0; 1

2)g(s0js0) ds0 < P¤(q) 0 < q < 1
2: (5.38)

Note that this condition involves both the marginal valuation function M and the conditional

distribution g. While the above condition ensures the existence of a solution of the backward

initial value problem, the solution may not be bounded, p ! ¡1 as s ! 0, with H ! 0

as s ! 0. In the following section we examine the structure of the solution at the singular

end-point s = 0.

5.1 Local existence at s = 0

Complete characterization of the solutions of (5.1, 5.2) requires an analysis of their local

structure near the end-point s = 0, which is a regular singular point where the existence

theorems fail (see Ince (1956) for example). We now establish the necessary conditions at

s = 0 for the existence of locally smooth, bounded solutions of (5.1, 5.2). We will show that

there exists a ¯nite range of values for H = H0(q) at s = 0 possible for any solutions of the

optimal bidding problem. One condition follows from the upper bound (5.21); at s = 0, the

upper bound H¤(s; q) imposes the constraint that

H0(q) < H¤(0; q): (5.39)

To describe the local structure of the solutions at s = 0, we assume that the ratio of the

CDF/PDF (which is also the inverse of the hazard ratio) can be written as

K(sjH ) =
G(sjH )
g(sjH)

= sJ(sjH); J(0jH ) > 0; (5.40)
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this is a valid assumption for any regular distribution on 0 < s < ¹s. Then equation (5.1)

takes the form
dp
ds

=
[M (H; s; 1 ¡ q) ¡ p]

sJ(sjH)
(5.41)

We require p(s; q) to be bounded and di®erentiable on 0 < s < s. In order that the derivative

dp=ds be ¯nite at s = 0, (5.41) must be degenerate, 0=0, at the singular point s = 0. This

condition forces the relation,

p0(q) = p(0; q) = M (H0(q); 0; 1 ¡ q) > 0; (5.42)

where we have assumed that H0(q) > 0. It can be shown that the case H(0; q) = 0 forces

p(s ! 0; q) ! 1. Due to the singularity at s = 0, equations (5.1, 5.2) do not satisfy a

Lipschitz condition at s = 0. In addition to the nontrivial smooth solutions that we seek,

the equations also admit trivial constant solutions, p(s; q) = p0(q), H (s; q) = H0(q). We

summarize our results as

Theorem 10 (Local existence at s = 0) Any bounded solution of the optimal bidding prob-

lem must satisfy the following initial conditions at s = 0,

p(0; q) = p0(q) = M (H0(q); 0; 1 ¡ q) > 0 (5.43)

where

H(0; q) = H0(q); for some H0(q) in 0 < H0(q) < H¤(0; q): (5.44)

For q = 1=2, the solution satisfying these conditions is the strong solution, with the endpoint

condition p(¹s; 1=2) = ¹p given by (5.10).

Further, if the marginal valuation function depends on private values, M = M (si; q), then

an improved lower bound on H0(q) can be obtained. For common value problems, there is an

improved upper bound on H0(q).

We leave the details of the algebra supporting these results to the Appendix C. We note

that unbounded solutions of the form

p(s) » ¡Cs¡° ! ¡1; H(s) » Ds; s ! 0; (5.45)

with ° > 0, exist when the condition for bounded solutions (5.43) is not satis¯ed.
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Theorem 11 (Conditions for monotone behavior of p(0; q)) The requirement of monotone

decreasing behavior of p(s; q) for s = 0, yields additional bounds on the possible values for

H0(q),

H¡
0 (q) < H0(q) < H+

0 (q) (5.46)

From (5.42), the requirement that p0(q) is a decreasing function of q sets the following

condition on H0(q),

dH0

dq
<

@M
@q

(H0; 0; 1 ¡ q)
Á@M

@si
(H0; 0; 1 ¡ q): (5.47)

From assumption A1, @M=@q < 0 and @M=@si > 0, therefore H0(q) must be a strictly

decreasing function of q, dH0=dq < 0. Similar comments have to be applied for q > 1=2.

For q > 1=2, p(s; q) is de¯ned by (5.4) in terms of the inverse of H(s; q) de¯ned by (5.5).

Recalling equation (5.34), let q = 1 ¡ q < 1=2 and evaluate this equation at s = H0(q), so

that H¡1(s; q) = 0, and H(0; q) = H0(q) then

@p
@s(0; q)

@H
@q (0; q)
@H
@s (0; q)

<
@p
@q (0; q) (5.48)

expanding each term,

[M(0; H0; q) ¡ M(H0; 0; 1 ¡ q)]
g(H0j0)
G(H0j0)

dH0

dq
<

@M
@si

(H0; 0; 1 ¡ q)
dH0

dq
¡ @M

@q
(H0; 0; 1 ¡ q):

(5.49)

And ¯nally, we conclude that for each 0 < q < 1=2,

dH0

dq
>

@M
@q (H0; 0; 1 ¡ q)

@M
@si

(H0; 0; 1 ¡ q) + [M (H0; 0; 1 ¡ q) ¡ M(0; H0; q)]
g(H0j0)
G(H0j0)

: (5.50)

Equation (5.50) always gives a well-de¯ned lower bound to sandwich the derivative of H0(q),

(5.50) <
dH0

dq
< (5.47) < 0; (5.51)

in particular we note that since the derivative is absolutely bounded, H0(q) must be a

continuous, di®erentiable function. From theorem 1, we know that every H0(q) must satisfy

H0(1=2) = 0 at q = 1=2, therefore, we can use this initial condition to integrate ¯rst order

di®erential equations for an upper bound H+
0 (q), from (5.47), and a lower bound H ¡

0 (q),
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from (5.50), for the set of allowable end-point functions H0(q). In fact H+
0 (q) is a tighter

upper bound than our previous estimate, H¤(0; q), equation (5.39), (see Figure 5).

Equation (5.51) is a necessary local condition at s = 0 to ensure that p(s; q) is monotone

decreasing in q. This condition can serve to verify or disprove the acceptability of a proposed

solution p(s; q). A condition for the global monotone property of p(s; q) is described in

Appendix A.

6 Examples

In this section we apply our work to several fundamental examples to illustrate our approach.

Due to the complexity of equations (5.1, 5.2), in general, numerical methods are necessary

to obtain solutions. To establish the reliability of these calculations, computations were

performed with two independent schemes; ¯rst, using a standard explicit fourth-order Runge-

Kutta method, and also with an implicit second-order trapezoidal method (Press et al 1992).

The latter method is particularly well-suited for sti® di®erential equations, such as the

behavior of equations (5.1, 5.2) near the singular point s = 0. Our case studies of the

examples will also draw upon comparisons of the numerical results with the analytic theory

given above.

6.1 A private values problem

We consider a simple una±liated private values example with

M (s; q) = v + s ¡ (k ¡ s)½q (6.1)

where s is uniformly distributed over [0; s], i.e., g(s) = 1=¹s, and G(s) = s=¹s. Here k;v; s; ½

are ¯xed positive parameters where s < k. In this case the ¯rst order conditions are

dp(s; q)
ds

= [v + H ¡ (k ¡ H)½(1 ¡ q) ¡ p]1
s

; (6.2)

dH(s; q)
ds

= [v + H ¡ (k ¡ H)½(1 ¡ q) ¡ p]
[v + s ¡ (k ¡ s)½q ¡ p]

H
s

with the boundary condition that

H(¹s; q) = ¹s; (6.3)
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and from (5.10) we obtain

p(¹s; q) = ¹P = v + 1
2¹s ¡ 1

2 ½(k ¡ 1
2¹s): (6.4)

The upper bounds on the set of monotone increasing feasible trial solutions are given by the

p-nullcline,

H¤(s; q) =
(1 + ½q)s + k½(1 ¡ 2q)

1 + ½(1 ¡ q)
; p¤(s; q) = (1 + ½q)s + (v ¡ ½qk) (6.5)

We verify that the assumptions for the Corollary to Theorem 7 holds, i.e.,

[1 + ½q]s < [1 + ½(1 ¡ q)]H¤(s; q) (6.6)

which is true. Thus in this example, on the marginal unit, the higher signal shades his bid

less than the lower signal in equilibrium, as described by the Corollary to Theorem 7.

In this example the restrictions (C.13, C.14) on the initial values of H(0; q) are that

1
2

k½(1 ¡ 2q)
1 + ½(1 ¡ q)

< H0(q) < k½(1 ¡ 2q)
1 + ½(1 ¡ q)

(6.7)

and the derivative restriction (5.51) on dH(0; q)=dq is that

¡ ½(k ¡ H0)H0

2(1 + ½(1 ¡ q))H0 ¡ k½(1 ¡ 2q) <
dH0

dq < ¡ ½(k ¡ H0)
1 + ½(1 ¡ q) (6.8)

As described in Appendix C, for a private values problem, at any ¯xed value of q, there is

only a discrete set of H0 values, corresponding to ® = 1; 2; 3; :: in (C.11), that yield analytic

solutions for H(s) near s = 0. All other values produce solutions that can be represented in

terms of Frobenius series (see Ince (1956)). The bounds, H0(q) < H0(q) < ¹H0(q), given by

(6.7) correspond to the bounds 0 < ® < 1. The bounds, H¡
0 (q) < H0(q) < H+

0 (q), derived

from the derivative bounds (6.8) are independent conditions. As was described in (C.13),

the upper bound ¹H0(q) is given by ¹H0(q) = H¤(0; q). In this private values example, since M

has a linear dependence on s, we ¯nd that both lower bounds are identical, H¡
0 (q) = H0(q).

However, the upper bound H+
0 (q) given by the nonlinear lower bound on dH0=dq gives a

tighter lower bound than ¹H0(q) (see Figure 5).

We consider numerical solutions of this example with the parameter values

¹s = 1; k = 1:2; v = 3; ½ = 1:
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Figure 3: (Left) 3-d view of the surface p(s; q) for the private values example. (Right) p(s; q) for the private
values example as a function of q with s held ¯xed at several values.

We ¯rst consider the case where the equilibrium where the lowest signal receives a maximum

of 1=2 in equilibrium. Thus s¤(1=2) = 0. In Figures 3, 4, and 5 we show the unique

equilibrium solution for this optimal bidding problem. Figure 3 shows a 3-d view the function

p(s; q). The calculated price is an increasing function of s and a decreasing function of q.

For low s values, s < H¡1
0 (1 ¡ q) it is unde¯ned for high values of q > 1=2. For example, at

s = 0, we will not see a value of the equilibrium for q > 1=2. In Figure 5, we show that the

calculated constraint H(s; q) at s = 0 indeed lies within the predicted bounds (5.51).

We note that the transversality condition forces the highest signal to submit a °at bidding

curve even though his marginal valuation is downward sloping. Equation (5.24) ensures

that the °at bidding curve lies below the highest signal's marginal valuation curve. The

transversality condition is satis¯ed here because H(s; q) < 1 (this occurs by construction).

Because H(s; q) is monotone decreasing in q, that is su±cient. Figure 3 shows p(s; q) as

function of q for various values of s (s starts at 0 and increases in increments of 0:1). It

is clear that lower signals submit more downward sloping bidding curves. Figure 4 shows

constant contours p(s; q) = p in the (s; q) plane. These contours have to be upward sloping

in s and q to be a valid equilibrium, as they are. Finally, Figure 5 shows that H(s; q) is

increasing in s and decreasing in q as required.
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Figure 4: Contours of constant price, p(s; q) = p, in the (s; q) plane for the private values example.

Figure 5: Cross-sections of the mapping function H(s; q); (left) H(s; q) as a function of s for several ¯xed
values of q, 0 < q < 1=2 for the private values example, (right) veri¯cation of the optimal bidding solution:
demonstration that the computed constraint curve H0(q) = H(0; q) lies with the upper and lower bounds
(the shaded region) that ensure that p(s;q) is decreasing in q locally for s = 0.
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6.2 Non-existence of strictly decreasing in p equilibria for a private values prob-
lem

In our approach, we look for symmetric equilibria that involve strategies that are strictly

monotone increasing in the signal and strictly monotone decreasing in the price. As we have

already stated in the introduction, the work of Reny (1999), Simon and Zame (1999) and

Jackson and Swienkels (1999) collectively imply that the symmetric K-unit pay-your-bid

auction with private values has a symmetric equilibrium with non-decreasing bid functions

and zero probabilities of ties.9 Thus equilibrium strategies can have \°ats", i.e., prices where

the quantity jumps. However, a strictly positive measure of types cannot have such \°ats"

any given price.

We show next via example that \°ats" may be a necessary part of equilibrium strategies,

i.e., for some problems there exist no equilibrium with strategies that are strictly monotone

decreasing in the price. While our approach guarantees a solution to the pair of ordinary

di®erential equations (5.1) and (5.2) we cannot guarantee that the solutions will be strictly

decreasing in the price for every problem.

We consider the example where

M (s; q) = v + s ¡ ½q (6.9)

where s is uniformly distributed over [0; ¹s], then the ¯rst order conditions yield the ODEs,

dp(s; q)
ds

= [v + H ¡ ½(1 ¡ q) ¡ p]1
s

; (6.10)

dH (s; q)
ds

= [v + H ¡ ½(1 ¡ q) ¡ p]
[v + s ¡ ½q ¡ p]

H
s

with the boundary condition that

H(¹s; q) = ¹s; (6.11)

and from (5.10) we obtain

p(¹s; q) = ¹P = v + 1
2¹s ¡ 1

2½: (6.12)
9Again, to be accurate, these papers deal with discrete quantities while ours considers continuous quanti-

ties.
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Figure 6: Non-existence of a strictly decreasing p(s; q) equilibria solution for a private values values example.
Contours of constant price, p(s; q) = p, in the (s; q) plane showing non-monotone behavior.

Proceeding numerically, as was done in the prior example, we compute the solution of this

system for the values of the parameters given by,

¹s = 1; v = 3; ½ = 1=2: (6.13)

Figure 6 shows the constant price contours, p(s; q) = p, in the (s; q) plane. For an equilibrium

p(s; q) that is strictly increasing in s and strictly decreasing in q, all of these contours must

have positive slope for changes of q with respect to s at constant p (see Figure 4 for example).

As is clear from Figure 6, here the contours are non-monotone as they bend backward for

low s and high q. This implies that type s receives allocation either q1 or q2, q1 < q2 at

the same price. Thus it seems as if the equilibrium strategies must involve \°ats" for low

signals.10

6.3 An A±liated common values example

We now consider an a±liated common values example. The marginal valuation function is

given by

M(si; sj; q) = v + si + µsj ¡ (k ¡ si)½q (6.14)
10Our approach can be amended to obtain ¯rst order conditions when there are °ats. However, we need to

be able to conjecture where °ats occurs. The approach we use in this paper cannot deal with such problems
as we need to be able to conjecture where the °ats will occur and recursively solve the problem (the strategies
of the high signal bidders will change)
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where si is distributed over [0; k]. We make si and sj a±liated as follows. The distribution

of si and sj conditional on the parameter w be independent with distribution,

¹G(sjw) = sw ¹g(sjw) = wsw¡1 (6.15)

over [0; 1] for any w > 0. Since G(0jw) = 0 and G(1jw) = 1 and the g(sjw) is positive, this

is a density. Then we let w 2 f 1
2; 1g with probability ¯ that w = 1=2. Note that ¹g(s2; s1jw)

= ¹g(s2jw)¹g(s1jw). The conditional density and conditional distribution function of s2 given

s1 is given by

g(s2js1) =
(1 ¡ ¯)¹g(s2; s1jw1) + ¯¹g(s2; s1jw2)

(1 ¡ ¯)¹g(s1jw1) + ¯¹g(s1jw2)

G(s2js1) =
Z s2

0
g(tjs1)dt (6.16)

Note that G(0js1) = 0 and G(1js1) = 1 as is the case for a distribution. A±liation requires

that (see footnote 16 in Milgrom and Weber) for s0 > s and x0 > x

g(xjs)g(x0js0) ¸ g(xjs0)g(x0js) (6.17)

which is true. Hence these are a±liated distributions.

Our two di®erential equations are now given by

dp
ds

= [v + H + µs ¡ (k ¡ H)½(1 ¡ q) ¡ p] 1
K(sjH)

dH
ds

= [v + H + µs ¡ (k ¡ H)½(1 ¡ q) ¡ p]
[v + s + µH ¡ (k ¡ s)½q ¡ p]

K(Hjs)
K(sjH)

(6.18)

where the inverse hazard ratio is now

K(s2js1) =
G(s2js1)
g(s2js1)

(6.19)

with boundary conditions

H(k; q) = k; p(k; q) = ¹P (6.20)

where ¹P = p(k; 1=2) is given by the solution of the initial value problem

dp
ds

= [v + s + µs ¡ 1
2½(k ¡ s) ¡ p]

1
K(sjs)

p(0; 1
2) = M (0; 0; 1

2): (6.21)

We consider the example where

k = 1; v = 2; ½ = 1; µ = 0:1; ¯ = 0:2 (6.22)
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Figure 7: (Left) 3-d view of the surface p(s; q) for the a±liated common values example. (Right) p(s; q) for
the a±liated common values example as a function of q with s held ¯xed at several values.

w1 = 1; w2 = 1
2 (6.23)

Figures 7 and 8 show the numerical solution for the a±liated distribution common values

example where the °at bid by the highest signal is given by P (see Equation (5.10)). One

question of interest for this problem is whether the linkage principle holds in this example.

Our numerical calculations indicate that if the auctioneer were to reveal that the distribution

was drawn from w = 1 or w = 1=2, then the revenue is improved, i.e., the linkage principle

holds at least in this example.

7 Conclusions and Extensions

Our paper provides a characterization theorem for the two-bidder multiple bidder auction

with variable awards. We show that if a symmetric equilibrium with bidding strategies that

are strictly monotone increasing in the signal and strictly monotone decreasing in the price

exists, then such an equilibrium is characterized by the solution to two ordinary di®erential

equations for each quantity between zero and a half. The ¯rst of these equations is very

close to the celebrated Milgrom-Weber solution to the ¯rst price auction while the second

characterizes the mapping between the two signals that yields ¯xed quantity. Since the

transversality condition requires that the any signal must lose for sure against the highest

signal, we use the transversality condition to solve the two ordinary di®erential equation

given the end-point conditions at the highest signal. Using this approach, we solve a variety
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Figure 8: Contours of constant price, p(s; q) = p, in the (s; q) plane for the a±liated common values example.

of di®erent problems numerically and analytically and explore the nature of equilibrium in

multi-unit discriminatory auctions. Further, we show convergence to the Milgrom-Weber

unit auction solution as the marginal valuations become °atter. Lastly, we relate our work

to the existence theorems of Reny (1999), Simon and Zame (1999) and Jackson and Swienkels

(1999) and show that in some problems no strictly decreasing in price symmetric equilibrium

exists.

Our focus in this paper has been exclusively on two bidder problems with one-dimensional

private information. While the approach in this paper can be used to provide ¯rst order

conditions for the 3 bidder problem, it is di±cult to provide a solution method.11 In the

2 bidder problem, when one bidder receives one unit, the other bidder receives zero units.

This is no longer true with 3 bidders. Bidder 1 can receive zero units and bidders 2 and 3

can be in the interior, i.e. at half a unit each. Further, it seems more likely that problems

with multi-dimensional information and multiple bidders are more likely to have °ats in the

equilibrium bidding schedule.

11An earlier version of this paper provided the ¯rst order conditions for problems with multi-dimensional
information and multiple bidders.
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A Uniqueness for unbounded problems

Uniqueness of the solution of the optimal bidding problems on unbounded domains, 0 <
s < 1, can be established by determining the asymptotic boundary conditions satis¯ed by
p(s; q) and H(s; q) as s ! 1. In this discussion we present results for the marginal valuation
function M(si; sj; q) = v + ´si + µsj ¡ ½q, of the form (2.5), these results also generalize
for other classes of M functions. For problems on unbounded intervals with una±liated
distributions, we can classify the forms of the solutions in terms of the asymptotic properties
of the hazard ratio, K(s) = G(s)=g(s) as s ! 1. Consider

K(s) » ®s¯ ; s ! 1; (A.1)

For example, if G(s) = s2=(1 + s2) for 0 < s < 1, then K(s) = s(1 + s2)=2 » s3=2. The
behavior of the price for s ! 1 breaks down to four cases:

1. If ¯ = 1, then p(s) approaches a linear function of s as s ! 1.

2. If 1 < ¯ < 2, then p(s) grows like O(s°) as s ! 1 with 0 < ° < 1 | slower than
linearly.

3. If ¯ = 2, then p(s) grows logarithmically p = O(ln(s)) as s ! 1.

4. If ¯ > 2, then p(s; q) is ¯nite and bounded as s ! 1, p(s; q) < ¹P < 1.

In the ¯rst three cases given above, ¹P from (5.10) is in¯nite. However, asymptotic analysis
of the di®erential equations can be used to derive asymptotic boundary conditions on p(s; q).
In particular, for (A.1), we ¯nd that the asymptotic behavior of H(s; q) for ¯ > 1 is

H(s; q) » s +
½(1 ¡ 2q)

´(¯ + 1) + µ(¯ ¡ 1)
; s ! 1; (A.2)

note that we recover the exact solution H = s for q = 1=2. Asymptotic boundary conditions
of form (A.2) can be used in numerical computations, on large but ¯nite domains, to obtain
the solution on the unbounded domain as a regular limit for ¹s ! 1. Similarly, it can
be shown that as s ! 1, p(s ! 1; q) ! p(s ! 1; 1=2) for all values of q. Therefore,
uniqueness of the solution can also be established for problems on unbounded domains, with
distributions that satisfy (A.1).
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B Comparison theorems

We will demonstrate that comparison theorems for second order ordinary di®erential equa-
tions can be applied to equations (5.1, 5.2) to help describe solutions of the optimal bid-
ding problem. Here, for simplicity, we consider una±liated problems and de¯ne K(s) =
G(s)=g(s). Since M (s; q) is strictly monotone in s, we can invert (5.1) to obtain

H (s; q) = M¡1
Ã

K(s)dp
ds

+ p(s); 1 ¡ q
!

: (B.1)

Di®erentiating this result with respect to s, and using the inverse function theorem we obtain

dH
ds

=
K(s)

d2p
ds2 + (1 + K0(s))

dp
ds

@M
@s

(K(s)p0(s) + p(s); 1 ¡ q)
(B.2)

Equating this expression for dH=ds with (5.2) we can eliminate H to obtain a second order
ordinary di®erential equation for p(s),

d2p
ds2

=
p0

K(s)

0
BB@

@M
@s

(K(s)p0 + p; 1 ¡ q)

M (s; q) ¡ p
K(M¡1(K(s)p0 + p; 1 ¡ q)) ¡ 1 ¡ K 0(s)

1
CCA ; (B.3)

where p0 = dp=ds. We can also use (5.1) to write two end-point conditions for p(s) at s in
terms of the shooting parameter P ,

p(s) = P;
dp
ds

¯̄
¯̄
s=s

=
M (s; 1 ¡ q)

K(s)
¡ 1

K(s)
P (B.4)

In this form, we have reformulated our problem for p(s); H(s), as a backward initial value
problem for the second order equation (B.3), with initial conditions (B.4).

In Walter (1998), a comparison theorem for the initial value problem is proved,

d2p
ds2

= F (s; p; u); dp
ds

= u (B.5)

p(0) = p0; p0(0) = u0 (B.6)

If F (s; p; u) is quasi-monotone increasing in p, that is if

@F (s; p; u)
@p

> 0; (B.7)
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over the set of allowable solutions, then two solutions on ¡a < s < 0, p1(s); p2(s) with the
initial conditions,

p1(0) < p2(0); p0
1(0) ¸ p0

2(0); (B.8)

satisfy the inequalities for ¡a < s < 0,

p1(s) < p2(s); p0
1(s) ¸ p0

2(s) (B.9)

Therefore, if F (s; p; u) for equation (B.3) satis¯es condition (B.7), then for values of the
parameter with P1 < P2, initial conditions (B.4) satisfy conditions (B.8, B.9) and we can
conclude that p1(s) < p2(s) for 0 < s < s. Graphically, the implications of this comparison
theorem are that the trial solutions can not intersect each other in the interior of the domain,
0 < s < ¹s (see Figures 1, 2). This means that the solutions are ordered by the parameter P ,
and in particular the value of the solution at s = 0, p(0), is a monotone decreasing function of
P . Therefore, for some value of P , there is a unique solution of the boundary value problem
satisfying p(0) = p0(q) at a given value of q.

B.1 A private values example

We now apply these comparison theorem results to the private values problem described by
equations (6.2),

dp(s; q)
ds

= [v + H ¡ (k ¡ H)½(1 ¡ q) ¡ p]
1
s

;

dH(s; q)
ds

=
[v + H ¡ (k ¡ H)½(1 ¡ q) ¡ p]

[v + s ¡ (k ¡ s)½q ¡ p]
H
s

This example has

@M
@s

(s; 1 ¡ q) = 1 + ½(1 ¡ q) > 0 (B.10)

which is independent of s and K(s) = G(s)=g(s) = s is increasing in s. We observe that the
comparison theorem from Appendix B applies to this example. For this problem, equation
(B.1) takes the form

H(s) =
sp0(s) + k½(1 ¡ q) + p(s) ¡ v

1 + ½(1 ¡ q)
; (B.11)

and the second-order di®erential equation for p(s) is

d2p
ds

=
p0

s

Ã
sp0 + k½(1 + q) ¡ 2(1 + ½q)s ¡ 3(v ¡ p)

v + s ¡ (k ¡ s)½q ¡ p

!
: (B.12)
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The test of quasi-monotone behavior, (B.7), then reduces to

@F
@p

=
1
s

dp
ds

(sp0 + k½(1 ¡ 2q) + ½qs)
(v + s ¡ (k ¡ s)½q ¡ p)2

> 0 (B.13)

and hence none of the potential solutions for p(s) at ¯xed q can intersect each other, as
shown in Figure 1. This result was used in our argument for the existence of the solution in
Theorem 7.

Similarly, we can examine the common values example given by (6.14), though for sim-
plicity, we will neglect the a±liation in the distributions. As in the private values example,
we have

@M
@si

(s; 0; 1 ¡ q) = 1 + ½(1 ¡ q) (B.14)

which is independent of s and K(s) = G(s)=g(s) = s is increasing in s. For this problem,
equation (B.1) takes the form

H(s) =
sp0(s) + k½(1 ¡ q) + p(s) ¡ v ¡ µs

1 + ½(1 ¡ q)
(B.15)

Substituting this expression for H(s) into equation (6.18) yields the second order di®erential
equation for p(s). For µ = 0, this equation has many more terms than the corresponding
equation for the private values case (B.12) and we will not present the details. It is also
much more analytically challenging to show that Walter's comparison principle applies, so
we will defer to the numerical solutions of the speci¯c examples shown earlier to illustrate
the form of the equilibrium.

B.2 Conditions for p(s; q) to be decreasing in q

Another consequence of Walter's comparison theorem is the ability to characterize the q-
dependence of the solution p(s; q) using di®erential inequalities. Walter shows that if ~p(s)
satis¯es

d2~p
ds2 ¸ F (s; ~p; ~u);

d~p
ds

= ~u (B.16)

~p(0) ¸ p0; ~p0(0) < u0 (B.17)

then the following inequalities hold in comparison to the solution of (B.5, B.6), on ¡a < s <
0,

~p(s) ¸ p(s); ~p0(s) < p0(s): (B.18)
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We now restore the explicit dependence of the solution on q, let p = p(s; q) and let ~q be
a value near, but less than q, ~q < q. Let ~p = p(s; ~q) be a solution of (B.3, B.4) with
F = F (s; p; u; ~q). In the limit that ~q ! q, we can expand F as a Taylor series in (~q ¡ q),

d2~p
ds2

= F (s; ~p; ~u; ~q) » F (s; ~p; ~u; q) ¡ (q ¡ ~q)
@F
@q

(s; ~p; ~u; q): (B.19)

Equation (B.19) satis¯es the hypothesis of the comparison theorem, (B.16), if F is a decreas-
ing function of q,

@F (s; p; u; q)
@q

< 0; (B.20)

then (B.18) states that p(s; q) is a monotone decreasing function of q,

p(s; q) ¸ p(s; ~q) for q < ~q: (B.21)

We note that it is not necessary for condition (B.20) to hold for all possible trial shooting so-
lutions, in general, it will not. However, through careful estimates, including the dependence
of the end-point conditions on q, H0(q), if it can be shown to hold on the solution of the
boundary value problem for p(s; q), for F = F (s; p(s; q); @sp(s; q); q), then the comparison
theorem proves that p(s; q) is a valid equilibrium. Equation (5.51) is a necessary condition
on H0(q) for p(s; q) to be decreasing in q locally at s = 0. From the class of solutions
that satisfy that constraint, a smaller subset will also satisfy condition (B.20) that yields
the global conditions for an equilibrium. Showing this is non-trivial, even for the simplest
private values problem.

C Details of the local structure of solutions at s = 0

Further details of the local analysis are di®erent for problems involving a common component
or pure private values and hence we separate these cases.

C.1 Common component problems

Assuming condition (5.42) holds, we can apply L'Hopital's rule to obtain an equation for
the value of dp=ds at s = 0,

dp
ds

¯̄
¯̄
s=0

=
1

1 + J(0jH0)

Ã
@M
@si

(H0; 0; 1 ¡ q)
dH
ds

¯̄
¯̄
s=0

+
@M
@sj

(H0; 0; 1 ¡ q)
!

(C.1)
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This derivative is given in terms of the derivative dH=ds at s = 0, which can be obtained
similarly from

dH
ds =

[M(H; s; 1 ¡ q) ¡ p]
[M (s; H; q) ¡ p]

HJ(Hjs)
sJ(sjH) (C.2)

using L'Hopital's rule,

dH
ds

¯̄
¯̄
s=0

=

Ã
@M
@sj

(H0; 0; 1 ¡ q) ¡ dp
ds

¯̄
¯̄
s=0

!
G(H0j0)
g(H0j0)

J(0jH0)[M(0; H0(q); q) ¡ p0(q)]
g(H0j0)
G(H0j0)

¡ @M
@si

(H0; 0; 1 ¡ q)
: (C.3)

Following some algebraic manipulations, explicit nontrivial values for the local derivatives
can be obtained if; (i)

@M
@sj

(H0(q); 0; 1 ¡ q) 6= 0; (C.4)

hence the private values problem must be treated separately, and (ii)

(1 + J(0jH0))[M (0; H0; q) ¡ M (H0; 0; 1 ¡ q)] >
@M
@si

(H0(q); 0; 1 ¡ q)
G(H0j0)
g(H0j0) : (C.5)

where we remind the reader that J (0jH) = lims!0 G(sjH )=sg(sjH). The latter condition
is necessary to ensure that dp=ds > 0 at s = 0. It yields an upper bound on the allowable
values for H0(q). This analysis can be extended to obtain all of the higher order derivatives
of p(s; q) and H (s; q) at s = 0 to construct the Taylor series expansions for these solutions
in terms of any allowable value of the end-point condition H(0; q) = H0(q). This establishes
the local existence and regularity of the nontrivial, smooth solutions.

C.2 Pure private values problems

We now consider problems for pure private values, described by @M (si; sj; q)=@sj ´ 0, but
we still allow for a±liation. In the literature, this is termed correlated private values. This
case violates the second condition in (C.5), and the solutions exhibit a more complicated
structure. To examine this, we use the change of variables,

z = s®; ® > 0; (C.6)

then equations (5.1, 5.2) take the form

dp
dz

=
[M(H; 1 ¡ q) ¡ p]

®zJ(z1=®jH)
; (C.7)

dH
dz

=
[M(H; 1 ¡ q) ¡ p]
[M (z1=®; q) ¡ p]

HJ(Hjz1=®)
®zJ (z1=®jH)

: (C.8)
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Applying L'Hopital's rule to this system at s = 0, we obtain the coupled equations

dp
dz

¯̄
¯̄
z=0

=
1

®J(0jH0)

Ã
@M
@s

(H0(q); 1 ¡ q)
dH
dz

¯̄
¯̄
z=0

¡ dp
dz

¯̄
¯̄
z=0

!
; (C.9)

dH
dz

¯̄
¯̄
z=0

=

Ã
@M
@s

(H0(q); 1 ¡ q)
dH
dz

¯̄
¯̄
z=0

¡ dp
dz

¯̄
¯̄
z=0

!
G(H0j0)
g(H0j0)

®J(0jH0)[M (0; q) ¡ M (H0; 1 ¡ q)]
: (C.10)

This linear homogeneous system of two equations has a nontrivial solution for p0(0); H 0(0) > 0
only if it is a singular system. This condition determines the exponent, called the indicial
exponent (see Ince (1956)), in the change of variables (C.6) to be

® = ¡
@M
@s

(H0; 1 ¡ q) + [M(H0; 1 ¡ q) ¡ M (0; q)]
g(H0j0)
G(H0j0)

J(0jH0)[M(H0; 1 ¡ q) ¡ M (0; q)]
g(H0j0)
G(H0j0)

(C.11)

and yields the solution
dp
dz

¯̄
¯̄
z=0

= H1[M(H0(q); 1 ¡ q) ¡ M(0; q)] g(H0j0)
G(H0j0)

> 0; dH
dz

¯̄
¯̄
z=0

= H1 > 0 (C.12)

where H1 > 0 is a positive free-parameter that characterizes the set of local solutions ac-
cording to their slope.

The allowable range of values for ® is 0 < ® < 1. Since ® is given in terms of H0, if
(C.11) is inverted, then it determines the allowable range of H0 values. The limit ® ! 1
determines an upper bound for H0,

M (H0; 1 ¡ q) = M (0; q); (C.13)

this is a special case of the result given by the p-nullcline, (5.21, 5.22). A new lower bound
on H0 is given by the limit ® = 0,

@M
@s

(H0; 1 ¡ q) + [M(H0; 1 ¡ q) ¡ M (0; q)]
g(H0j0)
G(H0j0)

= 0: (C.14)

If the left side of (C.14) is a monotone function of H0, then can obtain a unique positive
lower bound H (0; q) > H0(q) > 0. We note that this equation is the denominator of equation
(5.50) that determines the derivative bound.

If ® = 1; 2; 3; ::: any positive integer, then p(s); H(s) have Taylor series expansions; this

occurs at special values of H0(q) determined by (C.11). If ® is not an integer, then p(s); H (s)

have Frobenius series expansions containing rational powers of s, with the form s® times a

Taylor series in powers of s.
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