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Abstract

This paper provides conditions for identification and estimation of the conditional or unconditional
average effect of a binary treatment or policy on a scalar outcome in models where treatment may be
misclassified. Misclassification probabilities and the true probability of treatment are also identified.
Misclassification occurs when treatment is measured with error, that is, some units are reported to

have received treatment when they actually have not, and vice versa. Conditional outcomes, treatment
probabilities, and misclassification probabilities are nonparametric. The identifying assumption is the
existence of a variable that affects the decision to treat and satisfies some conditional independence
assumptions. This variable could be an instrument or a second mismeasure of treatment.
Estimation takes the form of either ordinary GMM or a local GMM that is proposed, which can be

used generally to nonparametrically estimate functions from conditional moment restrictions.
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1 Introduction

This paper provides conditions for nonparametric identification, and associated estimators, of the average
effect (conditioned on covariates) of a binary treatment, program, or policy on a scalar outcome in models
where treatment may be misclassified. Misclassification occurs when treatment is measured with error,
that is, some units are reported to have received treatment when they actually have not, and vice versa.
The assumptions provided also identify misclassification probabilities and the true probability of treatment
(conditional on covariates), in addition to identifying the conditional average treatment effect. The proposed
estimators take the form of ordinary Generalized Method of Moments (GMM) estimation when covariates
are discrete, or when the dependence on covariates can be partly parameterized. To handle continuous
covariates nonparametrically, a new local GMM estimator is proposed. This local GMM can be used
generally to nonparametrically estimate functions that are identified from conditional moment restrictions.
The effects of misclassification are also known as contamination bias. In assessing the impact of a

training program on wages, contamination or misclassification bias arises when some workers who did not
enroll in the program have outside training unknown to the researcher, are thereby erroneously classified as
untreated.
In a medical context, misclassification may arise when some patients fail to follow a therapy regiment

that is assigned to them.
If treatment is schooling, some respondents may either lie or not know if the particular training or

schooling they’ve had counts as higher education. Kane, Rouse, and Staiger (1999) document many dif-
ferent sources of misreported educational attainment. Based on comparisons between different measures
of years of schooling, such as self reporting versus transcripts, they document considerable measurement
errors for those completing less than twelve years of schooling, and provide evidence that both transcripts
and self reports contain significant measurement errors.
In studies of returns to unionization, where treatment is union status and the outcome is wages, misre-

porting of union status is widely recognized. In a current survey of this literature, Hirsch (2003) shows that
the impact of union status misclassification is likely to be large and increasing over time.
In a study of pension plans, Gustman and Steinmeier (2001, table 6c) and Molinari (2002, table 5) found

that 15% of respondents that actually had a defined benefit plan claimed to have a defined contribution
plan, and 26% that actually had a defined contribution plan claimed to have a defined benefit plan. In
this example, an analysis of treatment (plan type) on outcome (e.g., retirement income) would suffer from
substantial misclassification bias if respondent’s data on plan type were used.
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Treatment is defined to be exogeneous or unconfounded if the decision to treat or to enroll in a pro-
gram is independent of potential outcomes conditional on covariates. Assuming unconfoundedness, when
treatment is observed without error the average treatment effect can be estimated by matching, differencing
within subpopulation averages of treated and untreated units, or by propensity score methods. Relevant
models and estimators include Heckman (1974, 1976), Rubin (1974), Heckman and Robb (1985), Rosen-
baum and Rubin (1985), Manski (1990, 1997), Robins, Mark, and Newey (1992), Angrist, Imbens, and
Rubin (1996), Heckman, Ichimura, and Todd (1998), Hahn (1998), Abadie and Imbens (2002), and Hirano,
Imbens, and Ridder (2002). It will be assumed here that the unobserved true treatment satisfies a mean
unconfoundedness condition.
Many structural treatment models, in particular some parametric or semiparametric latent variable selec-

tion models, violate unconfoundedness or selection on observables assumptions. See, e.g., Lewbel (2002),
and more generally Vytlacil (2002) and Heckman and Vytlacil (2001) for relationships between latent vari-
able selection models and treatment effect estimators. Apparent violations of selection on observables or of
other conditions used to identify and estimate treatment effects could be due to misclassification. For exam-
ple, when the true assignment of individuals to either treatment or no treatment is completely determined
by observables, misclassification randomness would produce the mistaken impression of randomness in the
assignments.
In linear outcome models, if observed treatment satisfied classical measurement error, then ordinary two

stage least squares methods could be used. However, binary regressors cannot satisfy classical measurement
error assumptions (see Aigner1973). Alternatives to two stage least squares for linear outcome models with
mismeasured binary regressors include Klepper (1998), Card (1996), Bollinger (1996), and Kane, Rouse,
and Staiger (1999).
Choice or assignment of treatment is an example of a binary choice or binomial response model. Papers

that consider estimation of binomial response models in the presence of misclassification include McFad-
den (1984), Chua and Fuller (1987), Brown and Light (1992), Poterba and Summers (1995), Abrevaya and
Hausman (1999), Hausman, Abrevaya, and Scott-Morton (1998), and Lewbel (2000). In binomial response
models a distinction is made between misclassification that can happen to any unit with some probability,
versus the case where some respondents (which are unknown to the researcher) are always correctly mea-
sured while others provide ”natural responses,” e.g., always claiming to be treated or untreated regardless
of the truth. See, e.g., Finney (1964). For the purposes of the present paper the distinction between these
two types of misclassification is irrelevant; they will be observationally equivalent.
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For treatment effects, misclassification is closely related to the problem of identification in the presence
of imperfect compliance in an otherwise randomized experiment. See, e.g., Angrist, Imbens and Rubin
(1996) and Balke and Pearl (1997). Also related are cases where an instrument used for identification is
imperfect, as in Hotz, Mullin, and Sanders (1997), or when either covariates, treatment, or outcomes are
not observed for some subjects, as in Robins (1997), Horowitz and Manski (2000), and Molinari (2001).
This paper provides sufficient conditions for nonparametric identification of probability of treatment,

misclassification probabilities, and of average treatment effects, conditioned on covariates, in the presence
of misclassification errors. Estimators that employ these identification conditions are provided.
The main identifying condition is the existence of an instrument, i.e., a scalar or vector of variables

that is correlated with the decision to treat, but does not affect conditional misclassification probabilities
or the conditional average treatment effect. An example of such an instument could be the distance to
school and related measures employed by Card (1995) and others in the returns to education literature. A
second mismeasure or proxy for treatment may also serve as an instrument, e.g., self reported educational
attainment could be used as an instrument to deal with errors in transcript reported education level. This
required identification condition is an example of an exclusion restriction, that is, a variable that affects
some relevant functions and not others. Exclusion restrictions are a common method of obtaining semi and
nonparametric identification in econometric models. See, e.g., Powell’s (1994, section 2.5) survey.
Interestingly, even though conditional outcomes and unknown probabilities can be continuously distrib-

uted and potentially have high dimension, nonparametric identification is obtained here even with a discrete
instrument. If the instrument is conditionally independent of outcomes, then the instrument need only take
on two different values. Under the weaker assumption that the instrument is conditionally independent of
the conditional average treament effect (but not necessarily of the outcomes themselves), then an instru-
ment that can take on as few as three different values suffices. Instruments that can take on more than two
or three values provide overidentify restrictions that can be used to test the validity of the instrument. A
related result is Abadie (2003), who considers use of a binary instrument in a correctly classified treatment
effect model.
Identification is obtained by deriving conditional moment restrictions of the form

E[g(q(Z),W ) | Z = z] = 0, (1)

where g is a known vector valued function, W is a vector of observed functions of outcomes and (mis-
classified) treatments, Z is a vector of covariates, and q(Z) is a vector of unknown functions including
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the conditional average treatment effect and correctly classified conditional treatment probabilities. For dis-
cretely distributed Z , or when the functions q(z) can be finitely parameterized, Hansen’s (1982) Generalized
Method of Moments (GMM) estimator can be used. To nonparametrically estimate q(z) with continuously
distributed Z , a local GMM estimator is proposed.
This local GMM is a generic estimator of models in the form of equation (1), and so may have more

general applications. Other, nontreatment examples where local GMM could be used are provided, such
as semiparametric binary choice. Estimators related to local GMM include Gozalo and Linton (2000) and
Newey and Powell (2003).

2 Identification

Sufficient conditions for identification are provided here under three different scenarios. First is the simple
case of identification when misclassification probabilities are known from some outside source, such as
aggregate data or a validation sample. Second is the case where identification is obtained by an instrument
that is conditionally independent of the treatment effect and can take on at least three values. Third is
identification using an instrument that is conditionally independent of outcomes but need only take on two
values. In this third case the instrument could be a second mismeasure of treatment.

2.1 Identification by Known Misclassification Probabilities

Let Y be an observed outcome, T ∗ index the actual, unobserved treatment, and T index the reported treat-
ment. Let t = 1 denote receiving treatment or enrolling in a program, and t = 0 denote no treatment. Let
Y (t) denote the outcome from treatment T ∗ = t , and X be a vector of observable covariates. The goal is
estimation of the conditional average treatment effect E[Y (1)− Y (0) | X = x]. Define

τ∗(x) = E(Y | X = x, T ∗ = 1)− E(Y | X = x, T ∗ = 0) (2)

ASSUMPTION A1: E[Y (t) | T ∗, X] = E[Y (t) | X]

Assumption A1 is a weak version of the standard unconfoundedness assumption, which is with respect
to the true treatment T ∗. Heckman, Ichimura, and Todd (1998) show that this version of unconfoundedness

5



implies that the conditional average treatment effect satisfies

E[Y (1)− Y (0) | X = x] = τ∗(x)

If T ∗ were observed without error, then equation (2) would provide an estimator for τ∗(x), by replacing
expectations with nonparametric regressions. Other estimators, e.g. those based on matching or propensity
score methods could be used instead given unconfoundedness.

ASSUMPTION A2: E(Y | X, T ∗, T ) = E(Y | X, T ∗).

Assumption A2 says that, conditional on X and on the actual treatment T ∗, the measurement of treat-
ment does not affect the expected outcome. This is analogous to the classical measurement error assumption
that actual outcomes be independent of measurement errors made by the researcher. This could be a sub-
stantive assumption if the misclassification is due to misperception or deceit on the part of the subject, for
example, if T indicates the treatment that the subject thinks he or she had, then Assumption A2 would
rule out placebo effects. This assumption could also be violated if an individual’s propensity to lie about
treatment is related to outcomes, e.g., individuals who erroneously claim to have a college degree might
also be more aggressive job or wage seekers in general.
Make the following definitions.

r∗(x) = E(T ∗ | X = x)
bt(x) = E[I (T = 1− t) | X = x, T ∗ = t] = Pr(T = 1− t | X = x, T ∗ = t)

Conditioning on X = x , the function r∗(x) is the probability of receiving treatment, while b1(x) is the
probability of misclassifying the treated and b0(x) is the probability of misclassifying the untreated.

ASSUMPTION A3: b0(x) + b1(x) < 1, E(T ∗ | X = x, T = 1] /= E(T ∗ | X = x, T = 0], and
0 < r∗(x) < 1 for all x ∈ supp(X).

Assumption A3 says first that the sum of misclassification probabilities is less than one, meaning that,
on average, observations of T are more accurate than pure guesses. In a binomial response model with mis-
classification, this assumption is what Hausman, Abrevaya, and Scott-Morton (1998) call the monotonicity
condition. Given failure to observe T ∗, without an assumption like this, by symmetry one could never tell if
the roles of t = 0 and t = 1 were reversed, and so for example one could not distinguish whether any esti-
mate of τ ∗(x) corresponded to the treatment effect or the negative of the treatment effect. This assumption
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can be relaxed to b0(x)+ b1(x) /= 1 if we only wish to identify the magnitude but not the sign of treatment
effects, which may be useful in applications where the sign of treatment effects are not in doubt and large
misclassification probabilities cannot be ruled out.
The second condition of Assumption A3 says that T provides some information beyond what x contains

regarding the probability of treatment. Assumption A3 also requires that for any x we may condition on,
there is a nonzero probability of treatment and a nonzero probability of nontreatment, which is needed
because a conditional treatment effect cannot be identified if everyone is treated or if no one is treated.

Define the following functions.
r(x) = E(T | X = x)

τ(x) = E(Y | X = x, T = 1)− E(Y | X = x, T = 0)

ASSUMPTION A4: Assume r(x) and τ(x) are identified.

The functions r(x) and τ(x) are conditional expectations of observable data, so Assumption A4 will
hold given any data set that permits consistent estimation of these conditional expectations. If X is discretely
distributed, then only consistency of sample averages is required.
Note that r(x) and τ(x) are the same as r∗(x) and τ∗(x), except defined in terms of the observed

treatment T instead of the true treatment T ∗, so if treatment were observed without error, then r(x)would be
the conditional probability of treatment and, by Assumption A1, τ(x) would equal the conditional average
treatment effect.
Define the function m by

m(b0, b1, r) = 1
1− b1 − b0 1− (1− b1)b0

r
− (1− b0)b1

1− r . (3)

THEOREM 1: Let Assumptions A1, A2, A3, and A4 hold. Then

r∗(x) = r(x)− b0(x)
1− b0(x)− b1(x), (4)

τ∗(x) = τ(x)/m[b0(x), b1(x), r(x)] (5)
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and if b0(x) and b1(x) are identified, the probability of treatment r∗(x) and conditional average treatment
effect E[Y (1)− Y (0) | X = x] are also identified.

Theorem 1 shows that if the misclassification probabilities bt(x) are known to the researcher or can be
identified (for example from a validation sample or from known aggregate population proportions), then
the true conditional average treatment effect τ∗(x) and the true probability of treatment r∗(x) are directly
identified using equations (4) and (5). Results similar to those of Theorem 1 have been used to construct
bounds on treatment effects. See, e.g., Hotz, Mullin, and Sanders (1997).
One immediate implication of Theorem 1 is that τ∗(x) = 0 if and only if τ(x) = 0. Therefore, if

we wish to test whether true treatment effects are nonzero, it suffices to test if the mismeasured treatment
effects τ(x) are nonzero. Given Assumptions A1 to A4, if we only want to test whether treatment effects
are nonzero, the presence of misclassification can be ignored.
If b0(x)+b1(x) equals one, then identification breaks down because equation (4) then reduces to r(x) =

b0(x), so in that case r(x) provides no information regarding the true selection probability r∗(x).

2.2 Identification by a Three Valued Instrument

Now consider identification without external knowledge of the misclassification probabilities bt(x). Parti-
tion X into two subvectors V and Z , so X = (V, Z).

ASSUMPTION A5: For some set P ⊂ supp(V ), for all v ∈ P, v0 ∈ P, and z ∈ supp(Z), we have
bt(v, z) = bt(v0, z), τ∗(v, z) = τ∗(v0, z), and r∗(v, z) /= r∗(v0, z).

In a small abuse of notation, let bt(z) and τ∗(z) denote bt(v, z) and τ ∗(v, z), respectively, for v ∈
P. The distribution of V can be discrete, e.g., V could be a scalar that only takes on a few different
values. Assumption A5 says that there exists a variable V that affects r∗, and hence the true treatment
probabilities, but after conditioning on other covariates Z does not affect either the measurement errors bt
or the conditional average treatment effect τ∗ (at least for some values that V might take on).
Having a V that doesn’t affect misclassification probabilities is sometimes used for identification in

binomial response models with misclassification. See, e.g., Hausman, Abrevaya, and Scott-Morton (1998),
Abrevaya and Hausman (1999), and Lewbel (2000). A typical assumption in misclassified binomial re-
sponse is that b0 and b1 are constants, which would imply that any elements of X could serve as V for that
part of Assumption A5.
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Having V affect r∗ but not τ ∗ is a weaker version of the type of exclusion of assumption that is com-
monly used in the identification of selection models. See e.g., Heckman (1990) for a discussion. Variants of
this assumption are used by Manski (1990) to sharpen bounds on unidentified treatment effects, and by Im-
bens and Angrist (1994) to identify local average treatment effects. For a job training program, an example
of V might be nonwage related income or benefits, or more generally any variable that, after conditioning
on other covariates, does not affect the average effectiveness of the program but is correlated with eligibility
or selection, such as distance to schools as employed by Card (1995) and others.

ASSUMPTION A6: There exists three elements vk ∈ P, k = 0, 1, 2, such that
τ(v0, z)
r(v1, z)

− τ(v1, z)
r(v0, z)

τ(v0, z)
1− r(v2, z) −

τ(v2, z)
1− r(v0, z) /= τ(v0, z)

r(v2, z)
− τ(v2, z)
r(v0, z)

τ(v0, z)
1− r(v1, z) −

τ(v1, z)
1− r(v0, z)

The main content of Assumption A6 is that V can take on at least three values. Given Assumption
A5, the required inequality in Assumption A6 will only fail to hold if τ(v0, z) = 0 or if a complicated
equality relationship holds amongst the three conditional outcomes and conditional treatment probabilities,
which would require a perfect coincidence between probabilities and outcomes. Assumption A6 can be
empirically tested, because these τ(vk, z) and r(vk, z) functions are conditional expectations of observable
data, and so can be directly estimated (they are identified by Assumption A4). Finally, note that if V can
take on more than three values, then Assumption A6 will hold as long as there exists any one triplet of V
values that satisfies the necessary inequality.

THEOREM 2: Let Assumptions A1, A2, A3, A4, A5, and A6 hold. Then the conditional misclassi-
fication probabilities b0(x) and b1(x), the conditional probability of treatment r∗(x), and the conditional
average treatment effect E[Y (1) − Y (0) | X = x] are all identified. Also, if the condition in Assumption
A3 that b0(x)+ b1(x) < 1 is replaced by b0(x)+ b1(x) /= 1, then the conditional average treatment effect
is identified up to sign.

A key component of Theorem 2 is that data on outcomes helps to identify misclassification probabilities.
In particular, it follows fromTheorem 1 that τ(vk, z)m[b0(z), b1(z), r(v0, z)] = τ(v0, z)m[b0(z), b1(z), r(vk, z)].
Substituting equation (3) into this expression yields an equation that, for each value of z, depends only on
the identified functions τ and r and on the two unknowns b0 and b1. Evaluating this expression for k = 1
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and k = 2 gives two equations in the two unknowns. These equations are nonlinear, but the proof of Theo-
rem 2 shows that these equations still uniquely define and thereby identify b0 and b1. Identification of true
treatment effects and probabilities then follows from Theorem 1.
Each value that V can take on provides another equation that b0 and b1 must satisfy, so in general the

larger is the set P of values that V can take on (which satisfy Assumption A5), the greater will be the
number of overidentifying restrictions determining b0(z) and b1(z).

2.3 Identification by a Two Valued Instrument or a Second Treatment Measure

Identification based on Theorem 2 requires V to take on at least three different values. It is shown below
that only a binary V is needed when some assumptions are strengthened. An example of a binary V is a
second mismeasure of T ∗. Kane, Rouse, and Staiger (1999) show that, in a linear model, treatment effects
and treatment probabilities can be identified given two different mismeasures of T ∗, and provide a number
of returns to schooling examples where two such measures are available. Theorem 3 below generalizes their
result by showing nonparametric identification given any binary instrument.
Define the functions

h∗t (x) = E(Y | X = x, T ∗ = t)
ht(x) = E(Y | X = x, T = t)

for t = 0, 1. Note that τ∗(x) = h∗1(x)− h∗0(x) and τ(x) = h1(x)− h0(x).

ASSUMPTION B4: Assume r(x), h0(x) and h1(x) are identified.

Assumption B4 is a slight strengthening of Assumption A4. The functions r(x), h0(x) and h1(x) are
conditional expectations of observable data, so Assumption A4 will hold given any data set that permits
consistent estimation of these conditional expectations.

ASSUMPTION B5: For some set P ⊂ supp(V ), for all v ∈ P, v0 ∈ P, and z ∈ supp(Z), we have
bt(v, z) = bt(v0, z), h∗t (v, z) = h∗t (v0, z), and r∗(v, z) /= r∗(v0, z).

Once again let bt(z) and τ∗(z) denote bt(v, z) and τ∗(v, z), respectively, for v ∈ P, and now also
let h∗t (z) denote h∗t (v0, z) for t = 0, 1. Assumption B5 differs from Assumption A5 only in that it re-
quires h∗0(v, z) and h∗1(v, z) to not depend on v for all v ∈ P, instead of only requiring that the difference
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τ∗(v, z) = h∗1(v, z) − h∗0(v, z) not depend on v . Assumption B5 requires that the outcome Y itself be
conditionally independent of V , while Assumption A5 only required that the conditional average treatment
effect be independent of V .
Assumption B5 is particularly plausible when V is a second mismeasure of T ∗. In that case a sensible

extension of Assumption A2 that treats T and V equivalently is E(Y | Z, T ∗, T, V ) = E(Y | Z , T ∗),
which if true would suffice to make Assumption A2 and h∗t (v, z) = h∗t (v0, z) hold. Also, when V is
a second mismeasure then the assumption that bt(v, z) = bt(v0, z) is comparable to the Kane, Staiger
and Rouse (1999) assumption that the two mismeasures of T ∗ be conditionally independent of each other,
conditioning on T ∗ and Z .

ASSUMPTION B6: There exists two elements v0 ∈ P and v1 ∈ P such that
h0(v1, z)− h0(v0, z)

[1− r(v1, z)]−1 − [1− r(v0, z)]−1
τ(v0, z)

1− r(v1, z) −
τ(v1, z)

1− r(v0, z) /=

h1(v1, z)− h1(v0, z)
[r(v1, z)]−1 − [r(v0, z)]−1

τ(vk, z)
r(v0, z)

− τ(v0, z)
r(vk, z)

The main content of Assumption B6 is that V can take on two different values. Analogous to Assump-
tion A6, the required inequality will only fail to hold given a perfect coincidence between magnitudes of
probabilities and of outcomes. Assumption B6 is testable because its component functions are identified
by Assumption B4. If V can take on more than two values, then Assumption B6 will hold as long as there
exists any pair of V values that satisfy the inequality.

THEOREM 3: Let Assumptions A1, A2, A3, B4, B5, and B6 hold. Then the conditional misclassi-
fication probabilities b0(x) and b1(x), the conditional probability of treatment r∗(x), and the conditional
average treatment effect E[Y (1) − Y (0) | X = x] are all identified. Also, if the condition in Assumption
A3 that b0(x)+ b1(x) < 1 is replaced by b0(x)+ b1(x) /= 1, then the conditional average treatment effect
is identified up to sign.

The identification in Theorem 3 comes from expressing the observable ht(v, z) as a function of the
observable r(v, z) and the four unknown functions h∗0(z), h∗1(z), b0(z), b1(z). For each value of z, observ-
ing this relationship for t = 0, 1 and for v = v0, v1 gives four equations in these four unknowns. These
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equations are nonlinear, but the proof of Theorem 3 shows that they uniquely define and thereby identify
b0(z) and b1(z), and so then by Theorem 1 the true selection probabilities and treatment effects are identi-
fied. Each value that V can take on provides more equations that the unknown functions must satisfy, so in
general the larger is the set P, the greater will be the number of overidentifying restrictions.

3 Conditional Moments

To construct estimators, the previous identification conditions will now be expressed in the form of con-
ditional moments. Assume the distribution of V is discrete, define P = supp(V ) = {v0, ..., vK } and let
r∗k (z) = r∗(vk, z). Let W = (Y, T, V ).
Define the vector valued function q0(z) as the vector of K + 4 elements

q0(z) = b0(z), b1(z), r∗0 (z), ...r∗K (z), τ∗(z) (6)

and define g as the vector valued function g[q0(z),w] consisting of the following 2K + 2 elements

[b0(z)+ (1− b0(z)− b1(z))r∗k (z)− T ]I (V = vk), k = 0, ..., K (7)

τ∗(z)I (V = vk)+ YT − (1− b1(z))r
∗
k (z)τ

∗(z)I (V = vk)
b0(z)+ (1− b0(z)− b1(z))r∗k (z)

− Y (1− T )+ (1− b0(z))(1− r
∗
k (z))τ

∗(z)I (V = vk)
1− [b0(z)+ (1− b0(z)− b1(z))r∗k (z)]

, k = 0, ..., K (8)

COROLLARY 1: Define the function q0 by equation (6) and the function g as the vector of functions
(7) and (8). For any value of z in its support, if Assumptions A1, A2, A3, A4, A5, and A6 hold then the only
function q(z) that satisfies E[g(q(Z),W ) | Z = z)] = 0 and has first two elements that are nonnegative
and sum to less than one, is q(z) = q0(z).

Note in Corollary 1 that the first two elements of q0(z) are b0(z) and b1(z), and so are restricting these
functions to be positive and sum to less than one.
The objects we wish to estimate are elements of q0(z). Corollary 1 shows that the identification based

on Theorem 2 can be espressed as the statement that the unknown functions q0(z) are the solutions to the
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vector of conditional moments E[g(q(Z),W ) | Z = z)] = 0 (with the added inequality constraints on b0
and b1) Note that this requires V to take on at least three different values, so K ≥ 2.
The identification based on Theorem 3 can also be expressed as conditional moment restrictions, as

follows. Redefine q0(z) to be the vector valued function consisting of the K + 5 elements

q0(z) = b0(z), b1(z), r∗0 (z), ...r∗K (z), τ∗(z), h∗0(z)
) (9)

where h∗0(z) = h∗(v0, z). Redefine g[q0(z),W ] to be the vector of 3K + 3 functions consisting of the same
2K + 2 functions (7) and (8) as before, but also including the K + 1 additional functions

YT − (1− b1(z))r∗k (z)τ∗(z)− (b0(z)+ (1− b0(z)− b1(z))r∗k (z))h∗0(z) I (V = vk), k = 0, ..., K
(10)

COROLLARY 2: Define the function q0 by equation (9) and the function g as the vector of functions
(7), (8), and (10). For any value of z in its support, if Assumptions A1, A2, A3, B4, B5, and B6 hold then
the only function q(z) that satisfies the equation E[g(q(Z),W ) | Z = z)] = 0 and has first two elements
that are nonnegative and sum to less than one, is q(z) = q0(z).

Corollary 2 is based on Theorem 3. This was the case where the instrument V is assumed to be con-
ditionally independent of the outcome Y . This only required V to take on as few as two different values,
Corollary 2 only requires K ≥ 1 and V could be, like T , another proxy for T ∗.
For testing purposes, it may be of interest to estimate the misclassified treatment effect τ k(z) = τ(vk, z)

and misclassified treatment parameters rk(z) = r(vk, z). To do so, redefine q0(z) as the K + 1 vector

q0(z) = (r0(z), ...rK (z), τ(z)) (11)

and define g[q0(z),w] as the vector valued function consisting of the 2K + 2 elements

[rk(z)− T ]I (V = vk), k = 0, ..., K (12)

YT
rk(z)

− Y (1− T )
1− rk(z) − τ(z) I (V = vk), k = 0, ..., K (13)
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COROLLARY 3: Define the function q0 by equation (11) and the function g as the vector of functions
(12) and (13). For any value of z in its support, if Assumptions A1 and A4 hold then the only function q(z)
that satisfies the equations E[g(q(Z),W ) | Z = z)] = 0 is q(z) = q0(z).

As defined for Corollaries 1 and 2, the vector q0(z) contains the treatment effects, true treatment proba-
bilities, and misclassification probabilities, while in Corollary 3 the vector q0(z) contains the misclassified
treatment effects and probabilities. In each case a corresponding function g is provided such that q0(z)
uniquely satisfies the conditional moment restriction E[g(q0(Z),W ) | Z = z)] = 0.

4 Estimation

This section describes estimators for q0(z) given the conditional moment restriction E[g(q0(Z),W ) | Z =
z)] = 0. While the application here will be to treatment effects as described in the previous section,
other econometric models can also be cast in this conditional moment restriction form, and so could be
estimated using the estimators described here. For example, consider the nonparametric probit: model
W = I [q0(z) + e ≥ 0], where q0(z) is an unknown function and e is a standard normal independent of
Z , or has some other known distribution. Then g(q0(Z),W ) = W − Fe[q0(z)] where Fe is the CDF of
−e. Nonparametric censored or truncated regression would have a similar form. Another class of examples
could be Euler equations, which are mean zero conditional on information in a given time period, and could
have parameters q0(z) (such as preference parameters) that are unknown functions of observables.
Three estimators are provided. The first estimator and is for use when q0(z) can be finitely parameter-

ized. The second and third are, respectively, for nonparametric estimation of q0(z) when Z is discretely
or continuously distributed. For these estimators it is assumed that we have data consisting of Zi ,Wi for
i = 1, ..., n. Limiting distributions are provided assuming these observations are independent and identi-
cally distributed.

4.1 Parameterized Estimation

Suppose we can write q0(z) = s(z, β0) where s is a known function and β0 is finite vector of unknown
parameters. Only the dependence of probabilities and of treatment effects on z is parameterized here;.the
dependence of probabilities and treatment effects on v and on unobservables is still left unspecified. In this
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case the conditional moments E[g(q(Z),W ) | Z = z)] = 0 imply unconditional moments
E[η j(Z)g(s(Z , β0),W )] = 0, j = 1, ..., J (14)

for any J bounded functions η j (Z) chosen by the econometrician. Given the unconditional moments of
equation (14) for j = 1, ..., J , we may apply Hansen’s (1982) Generalized Method of Moments (GMM)
to obtain a consistent asymptotically normal estimate of β0. Identification of β0 will depend on the spec-
ification of the function s and η j (Z), but Corollaries 1 and 2 imply that as long as β0 is identified from
q0(z) = s(z, β0), it should be possible to choose η j (Z) functions to identify β0. Identification requires that
the dimension of s (either 2K + 2 using Corollary 1 or 3K + 3 using Corollary 2) times J be greater or
equal to the dimension of β0.
Let G(β,W, Z) be the vector consisting of all the elements of η j(Z)g(s(Z , β),W ) for j = 1, ..., J .

Given n independently, identically distributed draws Wi , Zi , the standard GMM estimator is

β = argmin
β

n

i=1
G(β,Wi , Zi ))Pn

n

i=1
G(β,Wi , Zi)

for some sequence of positive definitePn. IfPn is a consistent estimator of E G(β0,W, Z)G(β0,W, Z)) ,
then efficient GMM has
√
n(β − β0)→d N 0, E

∂G(β0,W, Z)
∂β )

E G(β0,W, Z)G(β0,W, Z))
−1 E

∂G(β0,W, Z)
∂β )

)

4.2 Estimation With Discrete Covariates

Now assume we do not have a parameterization for q0(z), but Z is discretely distributed, or more specifi-
cally, that Z has one or more mass points and we only wish to estimate q0(z) at those points.
Let θ z0 = q0(z). If the distribution of Z has a mass point with positive probability at z, then

E[g(θ z,W ) | Z = z] = E[g(θ z,W )I (Z = z)]
E[I (Z = z)]

so E[g(q0(z),W ) | Z = z] = 0 if and only if E[g(θ z0,W )I (Z = z)] = 0. It therefore follows from
Corollaries 1 and 2 that θ z0 is identified from these moment conditions, and we may estimate parameters
θ z0 by the ordinary GMM estimator

θ z = argmin
θ z

n

i=1
g(θ z,Wi)) I (Zi = z)Pn

n

i=1
g(θ z,Wi)) I (Zi = z) (15)
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for some sequence of positive definite Pn. If Pn is a consistent estimator of E[g(θ z0,W )g(θ z0,W )) I (Z =
z)], then efficient GMM gives

√
n(θ z−θ z0)→d N 0, E

∂g(θ z0,W )I (Z = z)
∂θ z )

E g(θ z0,W )g(θ z0,W )) I (Z = z) −1 E ∂g(θ z0,W )I (Z = z)
∂θ z )

)

If K > 3 using Corollary 2 or if K > 2 using Corollary 3 then then θ z0 is overidentified and standard tests
of moment validity may be applied.
GMM assumes parameters have compact support. This could be imposed, consistent with Assumptions

A3 and A6 by assuming that δ ≤ r∗k (z) ≤ 1− δ, 0 ≤ bt(z), b0(z)+ b1(z) ≤ 1− δ, and δ ≤ |τ∗(z)| ≤ 1/δ
for some small δ > 0.
Let τ∗z denote the element of θ z that corresponds to the conditional average treatment effect. This τ∗z is

a consistent estimator of the treatment effect τ∗(z) provided that this effect is nonzero. However, τ∗(z) = 0
violates Assumption A6, so one cannot use an ordinary Wald t-statistic to test for a zero treatment effect
(the ordinary t statistic will be valid for testing other values, such as whether τ∗(z) equals a given small,
nonzero value). By Theorem 1, τ∗(z) = 0 if and only if τ(vk, z) = 0, so if the existence of a nonzero
treatment effect is in doubt, one may test for it by estimating the treatment effect in the usual way as if T
equaled T ∗. In short, mismeasurement in T can be ignored for testing τ∗(z) = 0. Specifically, we may
estimate τ(vk, z) by applying the above GMM estimator with q and g defined by Corollary 3, and then
apply an ordinary Wald test of the hypothesis that τ k(z) is zero for k = 0, ..., K .
More generally, the moments in Corollary 3 may be estimated either separately, or (if τ∗(z) is nonzero)

together with those of Corollary 1 or 2 to test differences between true and misclassified treatment proba-
bilities or effects.
Additional moments for estimating θ z may be constructed given more information about the misclas-

sification probabilities b0(z) and b1(z). For example, in some applications it may be known that one or
the other of these probabilities is zero, or that these probabilities are equal to each other. Given either of
these constraints, only a binary V would be required for identification and estimation based on Theorem 2
without the added assumptions required for Theorem 3.
GMM based on Corollary 1 or 2 provides estimates conditional on a given z ∈ supp(Z). To estimate

an unconditional average treatment effect, observe that this effect is

E(Y | T ∗ = 1)− E(Y | T ∗ = 0) =
z∈supp(Z)

τ∗z E[I (Z = z)]
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which would be estimated by the sample average n
i=1 z∈supp(Z) τ∗z I (Zi = z)/n. Note that cov(τ∗z , τ∗z ) =

0 for z /= z because τ∗z and τ∗z are estimated using different subsets of data.
If constraints are known to exist on the parameters across values of z, then the GMM estimates for each

z can be stacked into one large GMM to improve efficiency. For example, if misclassification probabilities
bt are known to be constant, or more generally independent of some elements of z, then that restriction
could be imposed in the collection of moments E[g(θ z0,W )I (Z = z)] = 0 for all z ∈ supp(Z).
If the Corollary 2 definitions are being used and if V is, like T , a mismeasure of T ∗, one could switch the

roles of T and V to obtain additional moment conditions for estimating τ∗. Alternatively, it may preferable
to use whichever measure is likely to be the more accurate one as T , to ensure that assumption A3 is
satisfied.

4.3 Local GMM Estimation For Continuous Covariates

Continue to assume that E[g(q0(Z),W ) | Z = z] = 0, where g is known, q0 is unknown and not parame-
terized, and now Z is continuously distributed. A local GMM estimator is proposed. The idea is to apply
equation (15) to the case of continuous Z by replacing averaging over just observations Zi = z with local
averaging over observations Zi in the neighborhood of z.

Assumption C1. Let Zi ,Wi , i = 1, ..., n, be an iid random sample of observations of random vectors Z ,
W . The d vector Z is continuously distributed with density function f (Z). For given point z in the interior
of supp(Z) having f (z) > 0, a compact set �(z), and a given vector valued function g(q, w) where
g(q(z),w) is twice differentiable in the vector q(z) for all q(z) ∈ �(z), there exists a unique q0(z) ∈ �(z)
such that E[g(q0(Z),W ) | Z = z] = 0. The dimension of the vector g(q, w) is greater than or equal to the
dimension of the vector q(z). Let Pn be a finite positive definite matrix for all n, as is P0 = plimn→∞Pn.

Assumption C1 provides the required moment condition structure of the model, and Assumption C2
below provides conditions for local averaging. Define ε[q(z),W ] and V [q(z)] by

ε[q(z),W ] = g(q(z),W ) f (z)− E[g(q(z),W ) f (z) | Z = z]
V [q(z)] = E ε(q(z),W )ε(q(z),W )T | Z = z
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Assumption C2. Let η be some constant greater than 2. Let K be a nonnegative symmetric kernel
function satisfying K (u)du = 1 and ||K (u)||ηdu is finite. For all q(z) ∈ �(z), E[||g(q(z),W ) f (z)||η |
Z = z], V [q(z)], E[[∂g(q(z),W )/∂q(z)] f (z) | Z = z], and Var[[∂g(q(z),W )/∂q(z)] f (z) | Z = z] are
finite and continuous at z and E[g(q(z),W ) f (z) | Z = z] is finite and twice continuously differentiable in
z.

Define
R(z) = E ∂g[q(Z),W ]

∂q(Z)T
f (Z) | Z = z

Sn(q(z)) = 1
nbd

n

i=1
g[q(z),Wi ]K

z − Zi
b

where b = b(n) is a bandwidth parameter. The proposed local GMM estimator is

q(z) = arg inf
q(z)∈�(z) Sn(q(z))

TPnSn(q(z))

THEOREM 4: Given Assumptions C1 and C2, if the bandwidth b satisfies nbd+4→ 0 and nbd →∞,
then q(z) is a consistent estimator of q0(z) with limiting distribution

(nb)1/2[q(z)−q0(z)]→d N 0, (R(z)TPR(z))−1R(z)TPV (q0(Z))PR(z)(R(z)TPR(z))−1 K (u)2du]

Theorem 4 assumes a bandwidth rate that makes bias shrink faster variance, and so is not mean square
optimal. One could instead choose the mean square optimal rate where nbd+4 goes to a constant, but
the resulting bias term would have a complicated form that depends on, among other terms, the kernel
regression biases in both Sn(q0(z)) and S)n(q0(z)).

5 Monte Carlo

For estimation based on Corollary 1, the first simulation design has Z empty and P = {0, 1, 2}. For each
observation, a V is drawn with prob(V = vk) = 1/3. Next a T ∗ is drawn from {0, 1} with prob(T ∗ =
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1 | V = vk) = r∗(vk) with r∗(0) = 3/4, r∗(1) = 1/2, and r∗(2) = 1/4. Next an outcome Y is drawn
from from a normal N(T ∗, 1) distribution, which makes the average treatment effect be τ∗ = 1, and finally
T is randomly drawn from {0, 1} with prob(T = T ∗) = .8, so the misclassification probabilities are
b0 = b1 = .2. This model is exactly identified using Theorem 2 and Corollary 1, so the GMM weighting
matrix W is taken to be the identity matrix. The sample size is n = 1000 and the number of simulations is
10, 000.
This design makes τ(0) = τ(2) = .4945 and τ(1) = .6 so the limiting value of the estimated average

treatment that would be obtained if one did not correct for misclassification error is E[τ(V )] = .530, that
is, a bias of almost 47% of the true effect τ∗ = 1.
Estimation was done using constrained GMM, with the constraints being that the estimated probabilities

of treatment r∗ lie between .01 and .99, and that the misclassification probabilities b0 and b1 be nonnegative
with b0 + b1 ≤ .99. These constraints were imposed on estimation using the CML estimation procedure in
GAUSS.
For evaluating estimation based on Corollary 2, the simulation design has Z empty. For each observa-

tion, a V is drawn from P = {0, 1} with prob(V = vk) = 1/2, T ∗ is drawn from {0, 1} with probabilities
r∗(0) = 3/4 and r∗(1) = 1/4, and then Y and T are drawn the same as before. Estimation is again based
on constrained GMM. This design is again exactly identified, and implemented with n = 1000 and 10, 000
simulations.
The third simulation design uses the local GMM estimator, with a normal kernel, bandwidth given by

Silverman’s rule, and the g function defined in Corollary 2. This simulation design has each observation Z
drawn from a uniform on the interval [−.2, .2] and V drawn from P = {0, 1} with prob(V = vk) = 1/2.
Next, each T ∗ is drawn from {0, 1}with probabilities r∗(V, Z) defined by r∗(0, z) = 3/4−z and r∗(1, z) =
1/4 + z. Then each outcome Y is drawn from from a normal N((1 + Z)T ∗, 1) distribution, which makes
the conditional average treatment effect be τ∗(z) = 1+ z, and finally T is randomly drawn from {0, 1} with
prob(T = T ∗) = .8 as before. This design is constructed to have treatment probabilities treatment effects
that vary with Z , but are the same as the second design at Z = 0 . The local GMM estimator is applied
local to Z = 0, and so provides estimates of the probabilities and treatment effects at (that is, conditional
upon) Z = 0.
Table 1 reports the results. Estimation based on GMM with the two valued instrument is especially

precise, with unbiased mean and median for τ∗, root mean squared error of .10 and median absolue error of
.07. Estimation of the treatment effect τ ∗ based on the three valued instrument shows a 5% mean bias and
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1% median bias, compared to the 47% bias that would result from failure to account for misclassification.
The estimates of treatment and misclassification probabilities display similar levels of accuracy. The local
GMM estimator also performs quite well, with only modest biases. The local GMM of course has larger
errors (approximately double those of the second simulation), because it only makes significant use of the
fraction of observations that are in the neighborhood of Z = 0, while the second simulation is equivalent to
having Z = 0 for all observations.

6 Conclusions

This paper provides conditions for identification of treatment probabilities, misclassification probabilities,
and average treatment effects when treatment may be mismeasured. Estimators that employ these identifica-
tion conditions are provided, based on direct estimation of relevant conditional expections. It would useful
to explore how other treatment effect estimators such as matching and propensity score based methods
might be adapted to the present application where treatment is mismeasured.
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7 Appendix

PROOF OF THEOREM 1: Recall r∗(x) = E(T ∗ | X = x).
By the definition of r(x),

r(x) = Pr(T = 1 | X = x, T ∗ = 1)Pr(T ∗ = 1 | X = x)+ Pr(T = 1 | X = x, T ∗ = 0)Pr(T ∗ = 0 | X = x)
= [1− b1(x)]r∗(x)+ b0(x)[1− r∗(x)]

So r∗(x) = [r(x)− b0(x)]/[1− b0(x)− b1(x)].
Next, define

pt(x) = E[I (T ∗ = t) | X = x, T = t]
r∗t (x) = E[I (T ∗ = t) | X = x]

so r∗1 (x) = r∗(x) and r∗0 (x) = 1− r∗(x). By Bayes rule

pt(x) = Pr(T = t | X = x, T ∗ = t)Pr(T ∗ = t | X = x)
Pr(T = t | X = x)

= Pr(T = t | X = x, T ∗ = t)Pr(T ∗ = t | X = x)
Pr(T = t | X = x, T ∗ = t)Pr(T ∗ = t | X = x)+ Pr(T = t | X = x, T ∗ = 1− t)Pr(T ∗ = 1− t | X = x)

= [1− bt(x)]r∗t (x)
[1− bt(x)]r∗t (x)+ b1−t(x)[1− r∗t (x)]

= [1− bt(x)]r∗t (x)
[1− bt(x)− b1−t(x)]r∗t (x)+ b1−t(x)

So
p1(x) = [1− b1(x)]r∗(x)

[1− b1(x)− b0(x)]r∗(x)+ b0(x)
= [1− b1(x)][r(x)− b0(x)]
[1− b1(x)− b0(x)]r(x) (16)

p0(x) = [1− b0(x)][1− r∗(x)]
[1− b0(x)− b1(x)][1− r∗(x)]+ b1(x)
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= [1− b0(x)][1− r(x)− b1(x)]
[1− b1(x)− b0(x)][1− r(x)] (17)

Now define h∗t (x) = E(Y | X = x, T ∗ = t). By Assumption A2, h∗t (x) = E(Y | X = x, T ∗ = t, T )
and so

E(Y | X = x, T = t) = �1j=0E(Y | X = x, T = t, T ∗ = j)Pr(T ∗ = t | X = x, T = j)

= h∗t (x)pt(x)+ h∗1−t(x)[1− pt(x)] (18)

Substituting this expression into the definition of τ(x) gives

τ(x) = h∗1(x)p1(x)+ h∗0(x)(1− p1(x))− [h∗0(x)p0(x)+ h∗1(x)(1− p0(x))]
= [h∗1(x)− h∗0(x)][p1(x)+ p0(x)− 1]
= τ∗(x)[p1(x)+ p0(x)− 1]

so τ(x) = τ∗(x)m[b0(x), b1(x), r(x)] where
m[b0(x), b1(x), r(x)] = [p1(x)+ p0(x)− 1]

= [1− b1(x)][r(x)− b0(x)]
[1− b1(x)− b0(x)]r(x) +

[1− b0(x)][1− r(x)− b1(x)]
[1− b1(x)− b0(x)][1− r(x)] − 1

= 1
1− b1(x)− b0(x) 1− [1− b1(x)]b0(x)

r(x)
− [1− b0(x)]b1(x)

1− r(x) .

For identification, E[Y (1)−Y (0) | X = x] = τ∗(x) byAssumption A1, and τ ∗(x) = τ(x)/m[b0(x), b1(x), r(x)],
where m[b0(x), b1(x), r(x)] is identified by identification of b0(x), b1(x), and r(x). Assumption A3 en-
sures that m[b0(x), b1(x), r(x)] is finite and nonzero.

PROOF OF THEOREM 2: For a given z, we have for all v ∈ P, using Theorem 1,
τ(v, z)
τ(v0, z)

= m[b0(z), b1(z), r(v, z)]
m[b0(z), b1(z), r(v0, z)]

To ease notation further, drop z. Then m[b0, b1, r(v)]τ(v0)− m[b0, b1, r(v0)]τ(v) = 0 and substituting in
for m gives

0 = 1+ (b1 − 1)b0
r(v)

+ (b0 − 1)b1
1− r(v) τ(v0)− 1+ (b1 − 1)b0

r(v0)
+ (b0 − 1)b1
1− r(v0) τ (v) (19)
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0 = (1− b1)b0 τ(v0)

r(v)
− τ(v)

r(v0)
+ (1− b0)b1 τ(v0)

1− r(v) −
τ(v)

1− r(v0) + τ(v)− τ(v0) (20)

Evaluate this equation at v = vk , and rewrite it as

0 = B0w0k + B1w1k +w2k
where Bt = (1−b1−t)bt and eachw jk is a function of r(v0), r(vk), τ(v0), and τ(vk). Given thatP contains
three elements v0, v1, and v2, we have two equations 0 = B0w0k + B1w1k + w2k for k = 1, 2 that are
linear in the two unknowns B0 and B1, and so can be uniquely solved as long as the matrix of elementsw jk ,
j = 0, 1, k = 1, 2, is nonsingular. The inequality in Assumption A6 makes the determinant of this matrix
nonzero, as required.
Now let s = 1−b1−b0. It follows from Bt = (1−b1−t)bt that (s+b0)b0 = B0 and 2b0 = B0−B1+1−s.

Substituting the second of these equations into the first and solving for s gives

1− b1 − b0 = s = ± (B0 − B1 + 1)2 − 4B0
1/2

if the assumption regarding s is s /= 0, then we have that s is identified up to sign. By Theorem 1 τ∗ =
τ(v)/m[b0, b1, r(v)] and

m[b0, b1, r(v)] = 1
s

1− B0
r(v)

− B1
1− r(v)

so it follows that τ∗(x) is identified up to sign. Making the stronger assumption that s > 0, we have s is
identified, so b0 and b1 are now identified by b0 = (B0 − B1 + 1− s)/2 and b1 = −(B0 − B1 + 1+ s)/2,
and by Theorem 1, identification of these misclassification probabilities means that r∗(x) and τ ∗(x) are also
identified.

PROOF OF THEOREM 3: Assumption B4 implies Assumption A4, so Theorem 1 holds. By equations
(17), (16), (18), and Assumption B5,

h1(v, z) = h∗0(z)+ [h∗1(z)− h∗0(z)]
[1− b1(z)][r(v, z)− b0(z)]
[1− b1(z)− b0(z)]r(v, z) (21)

h0(v, z) = h∗1(z)+ [h∗0(z)− h∗1(z)]
[1− b0(z)][1− r(v, z)− b1(z)]
[1− b1(z)− b0(z)][1− r(v, z)] (22)
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Dropping z again to ease notation,

h1(v)− h1(v0) = (h
∗
1 − h∗0)(1− b1)b0
1− b1 − b0

1
r(v)

− 1
r(v0)

h0(v)− h0(v0) = −(h
∗
1 − h∗0)(1− b0)b1
1− b1 − b0

1
1− r(v) −

1
1− r(v0)

0 = h1(v)− h1(v0)
[r(v1)]−1 − [r(v0)]−1 (1− b0)b1 + h0(v)− h0(v0)

[1− r(v1)]−1 − [1− r(v0)]−1 (1− b0)b1
Evaluate this equation and equation (20) at v = v1, and rewrite the pair as

0 = B0u0s + B1u1s + u2s
where Bt = (1− b1−t)bt and each u js is a function of h1(vk), h0(vk), r(vk), and τ(vk) for k = 0, 1. Given
thatP contains three elements v0 and v1, we have two equations 0 = B0u0s + B1u1s + u2s for s = 1, 2 that
are linear in the two unknowns B0 and B1, and so can be uniquely solved as long as the matrix of elements
u js , j = 0, 1, s = 1, 2, is nonsingular. The inequality in Assumption B6 makes the determinant of this
matrix nonzero, as required. Given identification of B0 and B1, the remainder of the proof is then identical
to last part of the proof of Theorem 2.

PROOF OF COROLLARY 1: To ease notation, drop the argument z everywhere and let all expectations
below be conditional on Z = z. Let Ik = I (V = vk). Having the mean of equation (7) equal zero makes
b0 + (1− b0 − b1)r∗k = E(IkT )/E(Ik), which equals the true rk .by definition of rk . Solving the resulting
equation b0 + (1− b0 − b1)r∗k = rk for r∗k and substituting the result into equation (8) gives

YT
rk
− (1− b1)τ

∗

rk
rk − b0

(1− b0 − b1) −
Y (1− T )
1− rk − (1− b0)τ

∗

1− rk
1− b1 − rk
(1− b0 − b1) + τ

∗ Ik

Setting the mean of this result to zero and dividing by E(Ik) gives

E(YT Ik)
rk E(Ik)

− (1− b1)τ
∗

rk
rk − b0

(1− b0 − b1) −
E[Y (1− T )Ik]
(1− rk)E(Ik) −

(1− b0)τ∗
1− rk

1− b1 − rk
(1− b0 − b1) + τ

∗ = 0

which, using rk = E(T Ik)/E(Ik) simplifies to
E(YT Ik)
E(T Ik)

− (1− b1)τ
∗

rk
rk − b0

(1− b0 − b1) −
E[Y (1− T )Ik]
E[(1− T )Ik] −

(1− b0)τ∗
1− rk

1− b1 − rk
(1− b0 − b1) + τ

∗ = 0.
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which, after rearranging terms and using E(T Ik) = prob(T = 1, V = vk) gives

E(Y | T = 1, V = vk)− E(Y | T = 0, V = vk)
= (1− b1)

rk
rk − b0

(1− b0 − b1) +
(1− b0)
1− rk

1− b1 − rk
(1− b0 − b1) − 1 τ ∗

which, by the definitions of the function τ and m reduces to τ(vk) = m(b0, b1, rk). It has now been
shown that the conditional mean of g equalling zero equivalent to r(vk) = b0 + (1 − b0 − b1)r∗k and
τ(vk) = m[b0, b1, r(vk)]τ ∗ with the true functions r(vk) and τ(vk), and by Theorem 2 the only solutions
to these equations for k = 0, ..., K that also satisfy b0 ≥ 0, b1 ≥ 0, and b0 + b1 < 1 are the true values of
r∗0 , ..., r∗K , b0, b1, and τ∗.

PROOF OF COROLLARY 2: Again drop z as in the proof of Corollary 1. By that proof 1 we have
that the conditional mean of g equalling zero is equivalent to r(vk) = b0 + (1 − b0 − b1)r∗k , τ(vk) =
m[b0, b1, r(vk)]τ∗, and the mean of equation (10) equaling zero, using the true functions r(vk) and τ(vk).
Setting the mean of (10) equal to zero and dividing the result by E(Ik)[b0 + (1 − b0 − b1)r∗k ] = E(Ik)rk
gives

E(YT Ik)
rk E(Ik)

− (1− b1)r∗k
(1− b1 − b0)r∗k + b0

τ∗ − h∗0 = 0

which is equivalent to equation (21). This can be subtracted from τ(vk)−m[b0, b1, r(vk)]τ ∗ = 0 to obtain
(22), and by the proof of Theorem 3, equations (22), (21) and r(vk) = b0 + (1 − b0 − b1)r∗k along with
b0 ≥ 0, b1 ≥ 0, and b0 + b1 < 1 uniquely identify the true values of r∗0 , ..., r∗K , b0, b1, and τ∗.

PROOF OF COROLLARY 3: Setting the conditional mean of equation (12) equal to zero and solving
for rk(z) yields the definition of rk(z), and setting the conditional mean of equation (13) equal to zero and
solving for τ k(z) yields the definition of τ k(z).

PROOF OF THEOREM 4: Define

S)n(q(z)) = ∂Sn(q(z))
∂q(z)T

= 1
nbd

n

i=1

∂g[q(z),Wi ]
∂q(z)T

K
z − Zi
b

Qn(q(z)) = Sn(q(z))TPnSn(q(z))
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Let S0(q(z)) = plimn→∞Sn(q(z)) and similarly for S)n and Qn. Assumptions C1 and C2 give sufficient
conditions for consistency of these kernel estimators, so these probability limits exist and

S0(q(z)) = E[g(q(z),W ) f (z) | Z = z]
Q0(q(z)) = S0(q(z))TP0S0(q(z)).

Now consider consistency. We have pointwise convergence of Sn(q(z)) to S0(q(z))and compactness
of �(z). It is also the case that |S)n(q(z))| = Op(1), since |S)n(q(z))| is a kernel estimator, and standard
conditions have been provided for its consistency, that is, plim|S)n(q(z))| = E[|∂g(W, q(z))/∂q(z)| f (z) |
Z = z]. This suffices for stochastic equicontinuity, and therefore we have the uniform convergence

plim sup
q(z)∈�(z)

|Sn(q(z))− S0(q(z))| = 0.

It follows that Qn(q(z)) also converges uniformly to Q0(q(z)). The assumptions provide compactness of
�(z) and imply continuity of Q0(q). The quadratic form of Q0 is uniquely maximized at S0(q0(z)) = 0
and hence at q(z) = q0(z), so the standard conditions for consistency plimq(z) = q0(z).are satisfied.
For the limiting distribution, Taylor expanding the first order conditions as in standard GMM gives

S)n(q(z))TPn Sn(q0(z))+ S)n(q(z))(q(z)− q0(z)) = 0

where q(z) lies between q(z) and q0(z). By consistency of q, the uniform convergence of Sn, and using
R(z) = S)0(q0(z)), this simplifies to

R(z)TP Sn(q0(z))+ R(z)(q(z)− q0(z)) = op(1)

Solving for q(z)− q0(z) and multiplying by (nb)1/2 gives

(nb)1/2(q(z)− q0(z)) = (R(z)TPR(z))−1R(z)TP(nb)1/2Sn(q0(z))+ op((nb)1/2).

Now S0(q0(z)) = 0 and standard kernel regression limiting distribution theory gives

(nb)1/2Sn(q0(z))→d N [0, V (q0(z)) K (u)2du]

and the theorem follows.
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Table 1. Simulation Results

Three Valued Instrument GMM

TRUE MEAN SD LQ MED UQ RMSE MAE MDAE
r∗(0) .750 .722 .105 .662 .734 .797 .109 .083 .067
r∗(1) .500 .481 .100 .414 .484 .553 .102 .083 .071
r∗(2) .250 .243 .115 .157 .231 .323 .115 .095 .085
b0 .200 .193 .097 .133 .213 .268 .097 .077 .068
b1 .200 .180 .074 .124 .190 .237 .076 .061 .053
τ∗ 1.00 1.05 .298 .825 1.01 1.24 .302 .239 .203

Two Valued Instrument GMM

TRUE MEAN SD LQ MED UQ RMSE MAE MDAE
r∗(0) .750 .749 .061 .710 .751 .790 .061 .048 .040
r∗(1) .250 .251 .061 .208 .248 .289 .061 .048 .040
b0 .200 .197 .045 .170 .200 .228 .045 .035 .029
b1 .200 .197 .045 .169 .199 .228 .045 .035 .030
τ∗ 1.00 1.00 .101 .937 1.00 1.07 .101 .081 .068

Two Valued Instrument Local GMM

TRUE MEAN SD LQ MED UQ RMSE MAE MDAE
r∗(0) .750 .745 .113 .672 .753 .826 .113 .091 .077
r∗(1) .250 .253 .114 .171 .245 .326 .114 .091 .078
b0 .200 .189 .088 .134 .197 .252 .088 .070 .058
b1 .200 .192 .083 .137 .196 .250 .083 .067 .056
τ∗ 1.00 1.03 .199 .890 1.02 1.16 .201 .159 .133

Notes: The reported statistics are as follows. TRUE is the true value of the parameter, MEAN and SD are
the mean and standard deviation of the estimates across the simulations. LQ, MED, and UQ are the 25%
(lower) 50% (median) and 75% (upper) quartiles. RMSE, MAE, and MDAE are the root mean squared
error, mean absolute error and median absolute error of the estimates.
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