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Testing Asset Pricing Models with Coskewness

Abstract

In this paper we investigate portfolio coskewness using a quadratic mar-
ket model as return generating process. It is shown that portfolios of small
(large) ..rms have negative (positive) coskewness with market. An asset pric-
ing model including coskewness is tested through the restrictions it imposes
on the return generating process. We ..nd evidence of an additional compo-
nent in portfolios expected excess returns, which is not explained by neither
covariance nor coskewness with the market. However, this unexplained com-
ponent is constant across portfolios in our sample, and modest in magnitude.
We investigate the implications of erroneously neglecting coskewness for test-
ing asset pricing models, with particular interest for the empirically detected
explanatory power of size.

Key Words: Coskewness, Asset Pricing Models, Factor Models, Statistical
Tests
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Asset pricing models generally express expected returns on ..nancial as-
sets as linear functions of covariances of returns with some systematic risk
factors. Sharpe (1964), Lintner (1965), Black (1972), Merton (1973), Kraus
and Litzenberger (1976), Ross (1976), Breeden (1979), Barone Adesi and Tal-
war (1983), Barone Adesi (1985), Jagannathan and Wang (1996), Harvey and
Siddique (1999,2000), Dittmar (2002) have proposed several formulations of
this general paradigm. However, most of the empirical tests proposed to date
have produced negative or ambiguous results. These ..ndings have spurred
renewed interest in the statistical properties of testing methodologies cur-
rently available. Among recent studies, Shanken (1992) and Kan and Zhang
(1999a,b) provide analyses of the statistical methodologies commonly em-
ployed and highlight the sources of ambiguity that plague their ..ndings.

Although a full speci..cation of the return generating process is not needed
for the formulation of most asset pricing models, it appears that only its
preliminary knowledge may lead to the design of reliable tests. Because this
condition is never met in practice, researchers are forced to make unpalatable
choices between two alternative approaches. On the one hand, powerful tests
can be designed in the context of a (fully) speci..ed return generating process,
but they are misleading in the presence of possible model misspeci..cations.
On the other hand, more tolerant tests may be considered, but they may
lack of power, as noted by Kan and Zhou (1999a,b) and Jagannathan and
Wang (2001). Notice that the ..rst choice may lead not only to the rejection
of correct models, but also to the acceptance of irrelevant factors as sources
of systematic risk, as noted by Kan and Zhang (1999a,b).

To complicate the picture, a number of empirical regularities have been
detected. Among them, Banz (1981) relates expected returns to ..rm size,
Fama and French (1995) link expected returns also to the ratio of book to
market value. Although the persistence of these anomalies over time is still
subject to debate, the evidence suggests that the mean-variance CAPM is
not a satisfactory descritpion of market equilibrium.

Pricing anomalies may be related to the possibility that useless factors
appear to be priced. Of course it is also possible that pricing anomalies
proxy for omitted factors. While statistical tests do not allow us to choose
among these two possible explanations of pricing anomalies, Kan and Zhang
(1999a,b) suggest that perhaps large increase in R? and persistence of sign
and size of coe€cients over time are most likely to be associated with truly
priced factors.

In the light of the considerations above, the main aim of this paper is
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to consider coskewness and its role in testing asset pricing models, using a
data set of monthly returns on 10 stock portfolios. Following Harvey and
Siddique (2000), an asset is de..ned to have ”positive coskewness” with the
market when the residuals of the regression of its returns on a constant and
the market returns are positively correlated with squared market returns.
Therefore, an asset with positive (negative) coskewness decreases (increases)
the risk of the portfolio to large absolute market returns, and should com-
mand a lower (higher) expected return in equilibrium.

Kraus and Litzenberger (1976), Barone-Adesi (1985) and Harvey and
Siddique (2000) have studied non-normal' asset pricing models related to
coskewness. Kraus and Litzenberger (1976) and Harvey and Siddique (2000)
formulate expected returns as function of covariance and coskewness with
the market portfolio. In particular, Harvey and Siddique (2000) assess the
importance of coskewness for explaining assets expected returns by the in-
crease of R? in cross-sectional regressions. More recently, Dittmar (2002)
presents a framework in which agents are also adverse to kurtosis, implying
that asset returns are infuenced by both coskewness and cokurtosis with the
return on aggregate wealth. He tests this extended asset pricing model within
a Generalized Method of Moment (GMM) framework [see Hansen (1982)].
Their formulations are very general, since the speci..cation of an underly-
ing return generating process is not required. However, we are concerned
about the possible lack of power of these methodologies, which is worsened
in this context by the fact that covariance and coskewness with market are
almost perfectly collinear across portfolios. To remedy that, in this paper
we propose a formulation [see also Barone-Adesi (1985)] which assumes the
guadratic market model as the return generating process. The quadratic mar-
ket model is an extension of the traditional market model [Sharpe (1964),
Lintner (1965)], including the square of the market returns as an additional
factor. The coecients of the quadratic factor are the coskewness coe€cients
of the portfolios. Since market returns and the square of the market returns
are almost orthogonal regressors, we obtain a precise test for the signi..cancy
of coskewness coe€cients. In addition, this framework allows us to test an
asset pricing model with coskewness by testing the restrictions which it im-
poses on the coe¢cients of the quadratic market model 2. The speci..cation
of a return generating process provides tests of superior power as con..rmed
in a series of Monte Carlo simulations (see Section V).

In addition to evaluate asset pricing models which include coskewness,
it is also important to investigate the consequences on asset pricing tests
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when coskewness is erroneously neglected. We consider the possibility that
portfolio characteristics such as size are empirically found to explain expected
excess returns since a truly priced factor (coskewness) is omitted. To explain
this, let us assume that coskewness is truly priced, but it is omitted in as asset
pricing model. Then, if market coskewness is correlated with a variable such
as size, this variable will have spurious explanatory power for the cross-section
of expected returns, since it proxies for omitted coskewness. In our empirical
application (see Section I11) we actually ..nd that coskewness and size are
correlated. This suggests that a possible explanation for the empirically
observed relation between size and assets excess returns is the omission of a
systematic risk factor, namely market coskewness 3 4.

The remaining of the paper is organized as follows. Section | introduces
the quadratic market model. An asset pricing model including coskewness
is derived from it using arbitrage pricing, and various testing methodologies
are discussed. Section Il reports estimators and test statistics used in the
empirical part of the paper. Section Il describes the data, and reports em-
pirical results. Section IV provides Monte Carlo simulations for investigating
the ..nite sample properties of the test statistics, and Section V concludes.

I Asset Pricing Models with Coskewness.

In this section we introduce the econometric formulations which are consid-
ered in this paper. In turn, we describe the return generating process (1.A),
we derive the corresponding restricted equilibrium models (1.B), and ..nally
compare our approach with a GMM framework (1.C).

I.LA  The Quadratic Market Model

Factor models are amongst the most widely used return generating processes
in ..nancial econometrics. They explain comovements in asset returns as
arising from the common egect of a (small) number of underlying variables,
called factors [see e.g. Campbell, Lo, MacKinlay (1987) and Gourieroux,
Jasiak (2001)]. In this paper, a linear two-factor model, called quadratic
market model, is used as return generating process. Market returns and the
square of the market returns are its two factors. Speci..cally, let us denote
by R, the N x 1 vector of returns in period ¢ of NV portfolios, and by R, the
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return of the market. If R, is the return in period ¢ of a (conditionally) risk
free asset, excess returns are de..ned as: r, = R, — Rpyt, e = Ryt — Ry,
aMmt = R%“ — Rpy, where ¢ is a NV x 1 vector of ones. The quadratic market
model is then speci..ed by:

re=o+ Brye +yque e t=1,...,T, (1)
HF Y 7§ 0

where a isa NV x 1 vector of intercepts, 5 and - are N x 1 vectors of sensitivities
and ¢, is an N x 1 vector of errors satisfying®:

E e | Ruy, Rt = 0.

The quadratic market model is a direct extension of the well-known mar-
ket model [Sharpe (1964), Lintner (1965)], which corresponds to the restric-
tion vy =0in (1):

Ty = Qo+ 6TM,t + &4, t= ]_7 ....,T, (2)
Hyp: v=0in(1).

The motivation for including the square of the market returns is to fully
account for coskewness with the market portfolio. In fact, deviations from
the linear relation between asset returns and market returns implied by (2)
are empirically observed. Indeed, for some classes of assets, residuals from
the regression of returns on a constant and market returns tend to be pos-
itively (negatively) correlated with squared market returns. These assets
show therefore a tendency to have relatively higher (lower) returns when
the market experiences high absolute returns, and are said to have positive
(negative) coskewness with the market. This is exactly what we ..nd in our
empirical investigations (see Section IIl), when in accordance with the re-
sults of Harvey and Siddique (2000) we ..nd that portfolios formed by assets
of small ..rms tend to have a negative coskewness with the market, whereas
portfolios formed by assets of large ..rms have positive market coskewness.
In addition to classical beta, market coskewness is therefore another very
important risk characteristic: an asset that has positive coskewness with the
market diminishes the risk of the portfolio with respect to large absolute
market returns, and, everything else being equal, investors should prefer as-
sets with positive market coskewness to those with negative coskewness. The



quadratic market model (1) is a speci..cation which provides us with a very
simple way to take into account market coskewness. Indeed, we have:

v = Tl cov [et, R?VLJ , 3
where ¢, (e,.) are the residuals from a theoretical regression of portfolio
returns R; (market square returns R?W) on a constant and market returns
Rare . We use the estimate of v in model (1) to investigate the properties
of the coskewness coeCcients of the N portfolios. The statistical (joint)
signi..cancy of coskewness ~ is assessed by testing the null hypothesis H;
against the alternative Hp.

I.B Restricted equilibrium models

From the point of view of ..nancial economics, a linear factor model is only
a return generating process, which is not necessarily consistent with notions
of economic equilibrium. Constraints on its coe€cients are imposed e.g. by
arbitrage pricing [Ross (1976), and Chamberlain and Rothschild (1983)]. The
arbitrage pricing theory (APT) implies that expected excess returns of assets
following the factor model (1) satisfy the restriction” [Barone-Adesi (1985)]:

E(ry) = B + 7, 4)

where \; and )\, are expected excess returns on portfolios whose excess re-
turns are perfectly correlated with 5., and g, respectively. Equation (4)
is in the form of a typical linear asset pricing model, which relates expected
excess returns to covariances and coskewnesses to market. In this paper we
test the asset pricing model with coskewness (4) through the restrictions it
imposes on the coedcients of the return generating process (1). Let us derive
these restrictions. Since the excess market return r,,, satis..es (4), it must
be that

)\1 = E(TMﬂg). (5)

A similar restriction doesn’t hold for the second factor since it is not a traded
asset. However, we expect )\, < 0, since assets with positive coskewness de-
crease the risk of a portfolio with respect to large absolute market returns,
and therefore should command a lower risk premium in an arbitrage equilib-
rium. By taking expectations on both sides of (1), and substituting (4) and
(5), we deduce that the asset pricing model (4) implies the cross-equation
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restriction a = ¥y, where 9 is the scalar parameter ¥ = Ay — E(qar:). Thus
arbitrage pricing is consistent with the following restricted model:

re = Brve +yque + 70 +e, t=1,..,T, ©)
Hi: F:a=9yin ().
Therefore, the asset pricing model with coskewness (4) is tested by testing
‘H, against Hp.

If (4) turns out not to be supported by the data, this implies the existence
of an additional component «, a N x 1 vector, in expected excess returns,
other than those related to market risk and coskewness risk: E(r;) = G\ +
vAy + a. In this case, the intercepts o of model (1) satis..es the restriction:
a = Yy+a. Itiscrucial to investigate how the additional component « varies
across assets. Indeed, if this component arises from an omitted factor, it will
provide us with information about the sensitivities of portfolios to this factor.
Furthermore, variables representing portfolio characteristics, which turn out
to be correlated with o across portfolios, will have spurious explanatory
power for expected excess returns, since they proxy for the sensitivities of
the omitted factor. A case of particular interest arises when « is homogeneous
across assets: a = A\g¢, Where )\ is a scalar, that is:

E(Tt) = L)\O + ﬂ)\l + ’}/)\2, (7)
corresponding to the following speci...cation:

re = Brae +yqus Y0+ Aot +en t =1, T, (®)
Hy: d)A:a= 19")/ + Aot In (1)

Speci..cation (8) corresponds to the case where the factor omitted in model
(4) has homogeneous sensitivities across portfolios. From (7), Ay may be
interpreted as the expected excess returns of a portfolios with zero covariance
and coskewness with the market. Such a portfolio may correspond to the
analogous of the zero-beta portfolio in the Black version of the Capital Asset
Pricing Model (CAPM) [Black (1972)]. Alternatively, \g > 0 (A\¢ < 0) may
be due to the use of a risk-free rate lower (higher) than the actual rate
investors face. With reference to the observed empirical regularities and
model misspeci..cations, the importance of model (8) is that, if hypothesis
H, is not rejected against Hp, we expect portfolio characteristics such as
size not to have additional explanatory power for expected excess returns,
once that coskewness is taken into account. In addition, a more powerful
evaluation of the validity of the asset pricing model (4) should be provided
by a test of H; against the alternative H-.
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I.C The GMM framework

Asset pricing models of the type (4) are considered in Kraus and Litzen-
berger (1976) and Harvey and Siddique (2000). Harvey and Siddique (2000)
introduce their speci..cation as a model where the stochastic discount factor
is quadratic in market returns. Speci..cally, in our notation, equation (4) is
equivalent to the orthogonality condition:

E[rymy (0)] =0, (©))

where the stochastic discount factor m, (6) is given by: m; (6) =1 —r,,+61 —
Gm,t02, aNd 6 = (61, 02) is a two-dimensional parameter. A quadratic stochas-
tic discount factor m, (6) can be justi..ed as a (formal) second order Taylor
expansion of a stochastic discount factor, which is nonlinear in the market
returns. Thus, in this approach, the derivation and the testing of (9) do
not require a prior speci..cation of a data generating process. More recently,
in a similar conditional GMM framework, Dittmar (2002) uses a stochas-
tic discount factor model embodying both quadratic and cubic terms, and
the validity of the model is tested by a GMM statistics using the weighting
matrix proposed in Jagannathan and Wang (1996) and Hansen and Jagan-
nathan (1997). As explained earlier in the paper, the main feature of our
paper, with respect Harvey and Siddique (2000) and Dittmar (2002) contri-
butions, is that we focus on testing the asset pricing model with coskewness
(4) through the restrictions it imposes on the return generating process (1),
instead of adopting a methodology using an unspeci..ed alternative (e.g. by
a GMM test).

Il Estimators and Test Statistics.

This section derives the estimators and test statistics used in our empirical
applications. We consider various procedures widely investigated in the lit-
erature [see e.g. Campbell, Lo, MacKinlay (1997) and Gourieroux, Jasiak
(2001)], and derive their properties within the alternative coskewness asset
pricing models. For completeness, and only when necessary, full derivations
are provided in the Appendices.

We assume that the error term ¢, in (1) with ¢t = 1,.....,7T, is an ho-



moscedastic martingale dicerence sequence satisfying:

E[Et‘ftflaRM,t;RF,t} = 0, (lO)

E[gtg;‘gt—hRM,t;RF,t} = 2,

where 3 is a positive de..nite N x N matrix. The factor f, = (TM7t,qM7t)'
IS supposed to be exogenous in the sense of Engle, Hendry and Richard
(1988), and we denote by p and X its expectation and variance-covariance
matrix, respectively. We conduct estimation and inference in the framework
of Pseudo Maximum Likelihood (PML) methods [White (1981), Gourieroux,
Monfort and Trognon (1984), Bollerslev and Wooldridge (1992)]. If 6 de-
notes the parameter of interest in the model under consideration, the PML
estimator is de..ned by the maximization:

0= arg max Lr(0), (11)

where the criterium L (6) is a (conditional) pseudo-loglikelihood, i.e. the
(conditional) loglikelihood of the model, assuming a given conditional distri-
bution for ¢, satisfying (10) and such that the resulting pseudo true density
of the model is exponential quadratic. Under regularity assumptions, the
PML estimator ¢ is consistent, for any chosen conditional distribution of ¢;
satisfying the above conditions (see above references). 6 is eGcient when
the pseudo conditional distribution of ¢; coincides with the true one, being
then the PML estimator identical with the maximum likelihood (ML) esti-
mator. Since the PML estimator is based on the maximization of a statistical
criterion, hypothesis testing can be conducted by usual general asymptotic
tests. In what follows, we will systematically analyze, along those lines, the
alternative speci..cations introduced in Section I.

II.LA The return generating process

The quadratic market model (1) [and the market model (2)] are Seemingly
Unrelated Regressions (SUR) systems [Zellner (1962)], with the same regres-
sors in each equation. Denoting by 6 the parameters® of interest in model
(1):

0= (a,,ﬂ/,yl,vech(z)/),,
the PML estimator of 6 based on the normal family is obtained by maximiz-
ing:



T e
Ly(f) = —5 logdet T — = > &,(6) S'=,(6), (12)
t=1

where
el) =r —a—Brage —vque, t=1,....T.
As is well-known, the PML estimator for (a',’,~') is equivalent to the

GLS estimator on the SUR system and also to the OLS estimator performed
equation by equation in (1). Let B denote the NV x 3 matrix de..ned by B =
[a B ~]. The asymptotic distribution of the PML estimator B= [a B ﬁ] is
given by:
~ -1
VI (B-B) -5 NO.s0E[RF] ), (13)

where Fy, = (1,721, qurt) -

Let us now consider the (joint) signi..cancy of the coskewness coe@cients
by testing H;. against Hy: v = 0. It can be easily performed by a Wald
statistics, which is given by? [see (13)]:

1 o/~
Fx __ Sy—-1o
o= T—i?y XL (14)

Statistics 5 is asymptotically x?(p)-distributed, with p = N, when T —
Q.

11.B Restricted equilibrium models

Let us now consider the constrained models (6) and (8) derived by arbitrage
equilibrium. These models are more complicated since they entail cross-
equation restrictions. We denote by:

’

0 = (ﬂ/,yl,ﬂ, Ao, vech (E)/> ,

the vector of parameters of model (8). The PML estimator of # based on a
normal pseudo conditional loglikelihood is de..ned by maximization of:

T
Lp (6) = — g logdet £ — 2 3" 2,(0)75,(0), (15)
t=1
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where:

e(0) =i — Brace — Ve — 9 — Aoty t=1,...,T.
The PML estimator is given by the following system of implicit equations
[see Appendix A]:

</1§, )T0> = (22712)*12/%*1 (7“ — Bra — ’qu> : a7
i:%fﬁﬁ, (18)

where:
g =1 — »37‘M,t - %IM,t - /7\19 — Aot

~

A= (ryaue +9) . Z =G0,

and 7= 230 7y, Tar = &0 e T = % Doy dare. AN estimator for
A= (A, \2) is simply obtained by:

X:ﬁ+<%). (19)

Note that (B ,7) is obtained by (time series) OLS regressions of r; — Not

on H, in a SUR system, performed equation by equation, whereas (@,)})

is obtained by (cross-sectional) GLS regression of 7 — EFM — A4, On Z. A
step of a feasible algorithm consists in: a) starting from old estimates; b)

computing <B/ﬁ'> from (16); ¢) computing (5, )To> from (17) using new

estimates for 3, v and 7 d) computing S from (18), using new estimates.
The procedure is iterated until a convergence criterion is met. The starting
values for 3, v and X are provided by the unrestricted estimates on model
(1), whereas for the parameters \q and +} they are provided by equation (17)
[where estimates from (1) are used]. The asymptotic distributions of the PML
estimator are reported in Appendix A. In particular, it is shown that the
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asymptotic variance of the estimator of (ﬁ',y', P, Ao, A1, )\2> is independent

of the true distribution of the error term ¢;, as long as this satis..es the
conditions for PML estimation. The results for constrained PML estimation
of models (6) follow by setting Ao = 0, Z =7, and deleting the vector ..

Let us now consider testing hypotheses H; and H, against the alternative
‘Hp. If 0 denotes the parameter of model (1), these hypotheses can be written
in mixed form:

{#:3a€ ACR?: ¢g(0,a) =0}, (20)

where ¢ is a vector function with values in R". Assuming that the rank
conditions:
rank @ =r, rank @ =
a9/ - 1 8@/ - q;

are satis..ed at the true values 6°, a°, a speci..cation test for the hypothesis
(20) based on Asymptotic Least Squares (ALS) consists in verifying whether
the constraints g(@, a) = 0 are satis..ed, where 6 is an unconstrained estimator
of # (the PML estimator in our case) [Gourieroux, Monfort and Trognon
(1985)]. It is based on the following statistics:

;S A

& = arg minTg(@, a) Sqg(0,a),
where S is a consistent estimator for
89 ag/ —1
Sop = | === ,
0 (861 0 90 )

evaluated at the true values 6°, a°, where Q, = V,. [\/T (5— «90)]. Un-

der regularity conditions, &, is asymptotically x?(r — ¢)-distributed, and is
asymptotically equivalent to the other asymptotic tests'°.

We report the ALS test statistics for testing the hypotheses H, and H;
against the alternative Hp [they are fully derived in Appendix B]. The hy-
pothesis H; against Hp is tested by the statistics:

r=T <a _ ﬂa) %,_1 (? _ ﬁ) ~ X (p), (21)
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with p= N — 1, where A = 7i + (O,@) , and:

~ ]~

¥ = arg mﬁin (@—99) (@ —99)
- ) 7E .
The hypothesis H, against Hp is tested by the statistics:

/

(a - X0L> 51 (a - X0L>

& =T ™ ~ X*(p), (22)
1+ A2
with p = N — 2, where A = 7i + (O,E) , and:
(5, X0> = arg qulin @—95 — Aot) 71 (@ — 99 — Aot)
30

- (22 7S 7, Z=(F0).
Finally a test of H; against H, is simply performed by a t-test for the
parameter ).

111 Empirical Results.

In this section we report the results of our tests: we estimate the quadratic
market model (1), and test asset pricing models with coskewness (6) and (8).
We begin with a brief description of the data.

I11.A Data Description.

Our dataset consists of 450 (percentage) monthly returns of the 10 stock
portfolios formed by size by French, for the period from July 1963 to Decem-
ber 2000!. The portfolios are constructed at the end of each June, using the
June market equity and NYSE breakpoints. The portfolios for July of year
t to June of £ + 1 include all NYSE, AMEX, and NASDAQ stocks for which
we have market equity data for June of year ¢. Portfolios are ranked by size,
with portfolio 1 the smallest, and portfolio 10 the largest.

The market return is the value-weighted return on all NYSE, AMEX, and
NASDAQ stocks. The risk free rate is the one-month Treasury bill rate from
Ibbotson Associates!?.

13



111.B Results.

I11.B.1 Quadratic Market Model

We begin with the estimation of the quadratic market model (1). PML-SUR
estimates of the coe@cients «, 3, v and of the variance ¥ in model (1) are
reported in Tables | and I1, respectively.

[Insert somewhere here Tables | and I1]

As explained in Section 11, these estimates are obtained by OLS regressions,
performed equation by equation on the system (1). As expected, the beta
coeCcients are strongly signi..cant for all portfolios, with smaller portfolios
having larger betas in general. From the estimates of the ~ parameter, we
see that small portfolios have signi..cantly negative market coskewness coe¢-
cients (for instance v = —0.017 for the smallest portfolio), whereas the latter
are signi..cantly positive for the two largest portfolios (v = 0.003 for the
largest portfolio). In particular, we notice that the 5 and ~ coeCcients are
strongly correlated across portfolios. We can test for joint signi..cancy of the
coskewness parameter ~ by using the Wald statistics £ in (14). It assumes
the value: ¢£* = 35.34, which is strongly signi..cant at the 5 percent level,
being the associated critical value x3 ,5(10) = 18.31. Finally, from Table II,
we also see that smaller portfolios are characterized by larger variances of
the residual error terms.

We performed several tests of correct speci..cation for the functional form
of the mean of portfolios returns in (1). First, we estimated a factor SUR
model including also a cubic power of market returns, R}, , — Ry, as a factor
in addition to the constant, market excess returns and market squared excess
returns. The cubic factor is found to be not signi..cant for all portfolios.
Furthermore, in order to test for more general forms of misspeci..cations in
the mean, we performed Ramsey Reset Test [Ramsey (1969)] portfolio by
portfolio, by including quadratic and cubic ..tted values of (1) among the
regressors. In this case too, the null of correct speci..cation of the quadratic
market model is accepted for all portfolios.

For our analysis, one central result from Table I is that the coskewness co-
eCcients are (signi..cantly) dicerent from zero for all portfolios in our sample,
except for two of moderate size. Furthermore, coskewness coe@cients tend
to be correlated with size, with small portfolios having negative coskewness
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with the market, and the largest portfolios having positive market coskew-
ness. This result is consistent with the ..ndings of Harvey and Siddique
(2000). It is worth noticing that the dependence between portfolios returns
and market returns deviates from that of a linear speci..cation (as that as-
sumed in the market model), in directions of smaller (larger) returns for small
(large) portfolios when the market has a large absolute return. This ..nding
has important consequences for the assessment of risk in various portfolio
classes: small portfolios, having negative market coskewness, are exposed
to a source of risk additional to market risk, and related to large absolute
market returns. In addition, as we have already seen, the market model (2),
if tested against the quadratic market model (1), is rejected with a largely
signi..cant Wald statistics. In the light of these ..ndings, we conclude that
the extension of the return generating process to include the squared market
return is valuable.

111.B.2 Restricted equilibrium models

Let us now investigate market coskewness in the context of models consistent
with arbitrage pricing. This is done by considering constrained PML esti-
mation of speci..cation (6), obtained from the quadratic market model after
imposing restrictions from the asset pricing model (4), and of speci..cation
(8), where a homogeneous additional constant in expected excess returns is
allowed for. These PML estimators are obtained from the algorithm based
on equations (16) to (18), as reported in Section 11 3. The results for model
(6) are reported in Table 111 and for model (8) in Table IV.

[Insert somewhere here Tables 111 and 1V]

The point estimates and standard errors of the parameters  and ~ are sim-
ilar in the two models, and close to those obtained from (1). In particular,
the estimates of the parameter ~ con..rm that small (large) portfolios have
signi..cantly negative (positive) coskewness coedcients. The parameter 1 is
found signi..cantly negative in both models, as expected, but the implied es-
timate for the risk premium for coskewness, ), is not statistically signi..cant
in both models. However, the estimate in model (8), A\, = —7.439, has at
least the expected negative sign. Using it, we deduce that, for a portfolio
with coskewness v = —0.01 (a moderately small portfolio, such as portfolio
number 3 or 4), its contribution to the expected excess return on a annual
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percentage basis is approximately 0.9. This contribution raises to 1.5 for the
smallest portfolio in our data set.

We test the empirical validity of the asset pricing model (4) in our sample
by testing hypothesis H; against the alternative Hr. The ALS test statistics
¢ given in (21) assumes the value £1, = 16.27, which is not signi..cant at the
5 percent level, even though very close to the critical value x2 ,-(9) = 16.90.
Thus, there is a modest evidence that asset pricing model (4) could not be
satis..ed in our sample. In other words, an additional component, other than
covariance and coskewness to market, could be present in expected excess re-
turns. In order to test for the homogeneity of this component across assets,
we test H, against Hp. The test statistics £2 in (22) assumes the value of
2. = 5.32, largely below the critical value x2 (8) = 15.51. A more powerful
test of the asset pricing model (4) should be provided by testing H; against
the alternative H,. This test is performed by the simple t-test of signi..cancy
of Ao and, from Table IV, we see that H; is quite clearly rejected. This con-
..rms our ..nding that asset pricing model (4) may be not supported by the
data. However, since H, is not rejected, this implies that, if the additional
component unexplained by (4) comes from an omitted factor, at least its
sensitivities are homogeneous across portfolios in our sample. Thus charac-
teristics such as size and book to market value should not have explanatory
power for expected excess returns, when coskewness is taken into account.
Moreover, the contribution to expected excess returns of the unexplained
component, deduced from the estimate of parameter )\, is quite modest, ap-
proximately 0.4 on a annual percentage basis. Notice in particular that this
is less than the half of the contribution due to coskewness for portfolios of
modest size. As explained in section i, \g > 0 may be due to the use of a
risk-free rate lower than the actual rate investors face.

111.B.3 Misspeci..cation from neglected coskewness

As already mentioned in Section I, we are also interested in evaluating the
consequences on asset pricing tests of erroneously neglecting coskewness. The
results presented so far suggest that the market model (2) is misspeci..ed,
given that it does not take into account quadratic market returns. If tested
against the quadratic market model (1), it is strongly rejected. For compar-
ison, we report the estimates of the parameter « and 3 in the market model
(2) in Table V.

[Insert somewhere here Table V]
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We notice that the 3 coe@cients are close to those obtained in the quadratic
market model in Table I. Therefore, neglecting the quadratic market returns
does not seem to have dramatic consequences for the estimation of parameter
(. However, we expect that the consequences of this misspeci..cation to
be serious for inference. Indeed, we have seen above that the coskewness
coeCcients are correlated with size, small portfolios having negative market
coskewness and large portfolios positive market coskewness. This suggests
that size can have spurious explanatory power in the cross-section of asset
expected excess returns since it proxies for omitted coskewness. Therefore,
as anticipated in Section I, the empirically observed ability of size to explain
expected excess returns could be due to misspeci..cation of models neglecting
coskewness risk.

Finally, it is interesting to compare the ..ndings of this paper with those
reported in Barone Adesi (1985), whose investigation covers the period 1931-
1975. We see that the sign of the premium for coskewness has not changed,
with assets having negative coskewness commanding higher expected returns,
as expected. On the contrary, both the sign of the premium for size and
consequently the link between coskewness and size are inverted. While it
appears di¢cult to discriminate statistically between a structural size exect
and reward for coskewness, Kan and Zhang (1999a,b) suggest that persistence
of sign and size of coe€cients over time are most likely to be associated with
truly priced factors. Following them, the explanation of the size exect as
arising from neglected coskewness seems to be favored.

IV  Monte Carlo simulations.

In this ..nal section, we report the results of a series of Monte Carlo sim-
ulations undertaken to investigate the importance of specifying the returns
generating process to obtain statistical tests of reliable power. We compare
the ..nite sample properties (size and power) of two statistics for testing the
asset pricing model with coskewness (4): i) the ALS statistics £ in (21),
which test (4) by the restrictions imposed on the return generating process
(1), and ii) a GMM test statistics ¢, which tests (4) through the orthog-
onality conditions (9). In addition, we investigate the exects of nonnormality
of the errors ¢; and of model misspeci...cations of the return generating process
(1) on the ALS statistics £7..
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IV.A Experiment 1.

The data generating process used in Experiment 1 is given by:
Ty =+ Brae + Y +en t =1, ..., 450,

where 7y7; = Rae — 7140 que = Ripy — 7p0, With

Rury ~ #idN(pyy, 03p),
er ~ 1dN(0,%), (e;) independent of (R,,:),
ree = rf, aconstant,

and
a =9y + Agt.

The values of the parameters are chosen to be equal to the estimates obtained
in the empirical analysis reported in the previous section. Speci..cally, 3 and
~ are the third and fourth columns respectively in Table I, the matrix X is
taken from Table 11, ¥ = —14.995 from Table IIl, p,, = 0.52, ¢, = 4.41, and
r; = 0.4, corresponding to the average of the risk free return in our data set.
Dizerent values of parameter )\, are used in the simulations. We will refer
to this data generating process as DGP1. Under DGP1, when \q = 0, the
quadratic equilibrium model (4) is satis..ed. When )\ # 0, the equilibrium
model (4) is not correctly speci..ed, and the misspeci..cation is in the form
of an additional component homogeneous across portfolios, corresponding to
model (8). However, the quadratic model (1) is in any case well-speci...ed.

We perform Monte Carlo simulation (10000 replications), for dicerent
values of )y, and report the rejection frequencies of the two test statistics,
¢ and £$MM - at the nominal size of 0.05 in Table VI.

[Insert somewhere here Table VI]

The second row, Ay = 0, reports the empirical sizes. Both statistics control
the size quite well in ..nite sample, at least for sample size 7" = 450. The
subsequent rows, corresponding to A\, # 0, report the power of the two test
statistics against alternatives corresponding to unexplained components in
expected excess returns, which are homogeneous across portfolios. Note that
such additional components, with Ay = 0.033, were found in the data in the
empirical analysis. Table VI shows that the power of the ALS statistics ¢ is
considerably higher than that of the GMM statistics ¢ . This is due to
the fact that the ALS statistics £1. uses a well-speci..ed alternative for testing
(1), whereas the alternative for the GMM statistics ¢ is left unspeci..ed.
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IV.B Experiment 2.

Under DGP1, the residuals ¢; are normal. When the ¢; are not normal, the
alternative used by the ALS statistics &%, that is model (1), is still correctly
speci..ed, since PML estimators are used to construct ¢7.. However, these
estimators are not eC¢cient. In experiment 2 we investigate the eaect on the
ALS test statistics of non-normality of the residuals ;. The data generat-
ing process used in this experiment, called DGP2, is equal to DGP1 but
the residuals ¢, follow a multivariate t-distribution with df = 5 degrees of
freedom, and a correlation matrix such that variance of ¢; is the same as un-
der DGP1. The rejection frequencies of the Monte Carlo simulation (10000
replications) for the ALS statistics £ are reported in Table VII.

[Insert somewhere here Table VII]

The ALS statistics appears to be only slightly oversized. As expected, the
power is reduced compared to the case of normality, however the loss of
power caused by non-normality is limited. These results suggest that the
ALS statistics does not unduly suzer from departures from normality of the
residuals.

IVV.C Experiment 3.

In the experiments conducted so far, the alternative used by the ALS sta-
tistics was well-speci..ed. In this last experiment we investigate the exect of
a misspeci..cation in the alternative in the form of conditional heteroscedas-
ticity. We thus consider two data generating processes having the same
unconditional variance of the residuals ;, but such that the residuals &, are
conditionally heteroscedastic in one case, and homoscedatic in the other.
Speci..cally, DGP3 is the same as DGP1, but the innovations ¢; follow a
conditionally normal, multivariate ARCH(1) process without cross ecects:

2 . .

Wi+ PE_1, 1=

cov <€i,t,5j7t | st,1> = b R
E— Wigs i F

The matrix © = [w;;] is chosen as in Table I, and p = 0.2. DGP4 is the
same as DGP1, with i.i.d. normal innovations whose unconditional variance
matrix is the same as the unconditional variance of £, in DGP 3. Thus under
DGP4 the alternative of the ALS statistics is well-speci..ed, but not under

19



DGP3. The rejection frequencies of the ALS statistics under DGP3 and
DGP4 are reported in Table VIII.

[Insert somewhere here Table VIII]

The misspeci..cation in form of conditional heteroscedasticity has no exect
on the empirical size of the statistics in these simulations. The power of the
test is reduced, but not dramatically.

V Conclusions

In this paper we consider coskewness and its implications for testing as-
set pricing models. We use a quadratic market model as return generating
process, with market returns and the square of market returns as the two
factors. It is shown that portfolios of small (large) ..rms have negative (posi-
tive) coskewness with market. This implies that small portfolios are subject
to a further source of risk other than covariance with market, that is market
coskewness, which arises from (negative) covariance with large absolute mar-
ket returns. Coskewness coe@cients of the portfolios in our sample are shown
to be jointly signi..cant, rejecting the usual market model. These ..ndings
imply that the quadratic market model, used as a return generating process,
is a valuable extension of the market model.

In order to obtain methodologies of superior power, we propose to test an
asset pricing model, including coskewness, through the restrictions it imposes
on the return generating process. We use an asymptotic test statistics whose
..nite sample properties are validated via a series of Monte Carlo simulations.
We ..nd evidence for a component in expected excess returns which is not
explained by neither covariance nor coskewness with the market. We show
that this unexplained component in expected excess returns does not vary
across portfolios and it is modest in magnitude. This is consistent with a
minor misspeci..cation of the risk-free rate. This ..nding implies that addi-
tional variables representing portfolios characteristics we consider have no
explanatory power for expected excess returns when coskewness is taken in
account. This result cannot be obtained if coskewness is neglected.

In addition to that, our results have implications for testing methodolo-
gies, since they show that neglecting coskewness risk can cause misleading
inference. Indeed, we ..nd that coskewness is positively correlated with size.
This suggests that a possible justi..cation for the anomalous explanatory
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power of size in the cross-section of expected returns, is that it proxies for
omitted coskewness risk. This view is supported by the fact that the sign of
the premium for coskewness, contrary to that of size, has not changed over

time.
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APPENDICES
Appendix A: PML in model (8).
In this appendix we consider the Pseudo Maximum Likelihood (PML)

estimator of model (8), de..ned by maximization of (15). Let us ..rst derive
the PML equations. The score vector is given by:

T
% = ZHt ® X7 ley,
a (5 /Yl) t=1
dLy S
—— = Z X g,
9 (9, \o) ; '

oL 1 d
T _ _pTy-1 -1 r
Foech(S) ) 2P Y7 ® X Pvech [E <5t5t E)] ,

t=1

where H; = (rare, gt + 19)/, g =11 — PBrae — Yque — Y0 — Aoty Z = (7,¢)
and P is such that vec (¥X) = Puvech (X). By equating the score to 0, we
immediately ..nd the equations (16) to (18).

Let us now derive the asymptotic distribution of the PML estimator in
model (8). Under usual regularity conditions (see references in the test) the
asymptotic distribution of the general PML estimator 9 de..ned in (11) is
given by:

VI (0-0°) 5 N (0,45 Ty 1),

where J, (the so called information matrix), and I, are symmetric, positive
de..nite matrices de..ned by:

T 7 9 )
T 9606 ( )}

. 1 0Ly o 0Ly, 4
IO_TIEEoElT ao )5 )|

T—o0

Let us compute matrices .J, and I, in model (8). The second derivatives of
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the loglikelihood are given by:

9L d
PN a o, = —ZHtH;(@E_l,
8(677)8(ﬁ77) t=1
2 T
/ a’LT ’ = _ZHt®Z_1Z1
a (ﬁ 77,) 8097 )\0) t=1
2
O Lr = -TZ'y'z,
0 (9, Xo) 0 (9, \o)
aLT T Ty —1 -1 T Ty —1 -1 d ! -1
_ = i > P
dvech(3)0vech(X)’ 2P Xoexp 2P ex ;QQ

T T
—EPTE‘l (Z gtg;> > leutp,

t=1
with the other ones vanishing in expectation. It results that matrices .J, and

I, are given by [in the block representation corresponding to <6',7’,19, A0>
and vech (2)]:

J*
J0:|: 0 %:|, I():

Ji Sk
JoS'n JoKJy |’
where:

Jo==(PTs @x7'P),

N —

S = cov [gt, vech <5t5;>/} , K=Var [vech <5t5;>] ,
and, in the block form corresponding to <6’,7/>/, (Y, o)

’

e E[HH]®>? Aox1Z [rex!
0~ N ®Zzy! Zy-lz |7 | Znt

(All parameters are evaluated at the true value). Therefore, the asymptotic
variance-covariance matrix of the PML estimator 6 in model (8) is given by:

Vi [\/T (5—90” = ot = [ S,‘ﬁ;;_l JSZ”S } .
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Notice that the asymptotic variance-covariance of (B ﬁ',@, )To> , that is

Jg“l, does not depend on the distribution of the error term ¢;, and in par-
ticular it coincides with the asymptotic variance-covariance matrix of the

I

maximum likelihood (ML) estimator of (5,5 ,9,\,) when &, is normal.
On the contrary, asymmetries and kurtosis of the distribution of ¢, infuence
the asymptotic variance-covariance matrix of vech(¥) and the asymptotic

covariance of (B,ﬁ’,@, )T0> and vech(i), through matrices S and K.

The asymptotic variance-covariance of (B ,7) and (5, )TO) is given ex-
plicitly in block form by:
=[]
Jt g
where:

/

’ ’ -1 ’ -1
T = (2 + ) ®E+l2;1)\/\ (2r+2) }@Z(ZE*Z) 7,

-1

2= oy 1A®Z(ZZ 12) ,
Jng J8<12/

-1

T2 = (1 LAY 1)\> <Z z—lz> .

Finally, let us consider the asymptotic distribution of estimator \ de..ned
in (19). The estimator:
T

where f; = (rMJ,qM,t)/, can be seen as a component of the PML estimator
on the extended pseudo-likelihood:

'ﬂ |

T

T 1 e
Ly (6,11, %) :LT(Q)—Elogdeth—ig(ft_,u) S2U(f - ),

where Ly (6) is given in (15). It is easily seen that 6 and (u, X;) are asymp-
totically independent. It follows:

Vas [\/T <)\A2 — )\2,0)} = Y22+ Vas [\/T <{§—190>] :

24



Appendix B: Asymptotic Least Squares.

In this Appendix we derive the ALS statistics ¢1. in (21) and &2 in (22).
In both cases the restrictions [see (20)] are of the form:

g(0,a) = Aj(a)vec(B) + As(a),

where B is the N x 3 matrix de..ned by B = [« (5 7] and A;(a) is such that:

A1<a) = (1,0, —’19> ® IN = AT(CL) ®IN

Let us derive the weighting matrix S, = (9g/06 Q,0g/06)~*, where Qy =
Vs (ﬁ (5 - 9)) >From (13) we get:

898_9'

’ -1 ’
gy = AE [FtFt} A ®Y

= (14T 3

The test statistics follow.
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Notes

!Coskewness cannot be explained e.g. in the framework of MacKinlay and
Pastor (2000), because their assumption of multivariate normality implies
independence of the unexplained returns to the tested factor.

20ur methodology is similar in spirit to one of the approaches of Harvey
and Siddique (2000), who include a coskewness portfolio among the regressors
in an extended market model, and test the corresponding asset pricing model
by a Gibbons-Ross-Shanken F'-statistics [Gibbons, Ross, Shanken (1989)].
In our model, testing methodologies are less simple, since the square of the
market returns is not a traded asset.

3Harvey and Siddique (2000), p. 1281, suggest that "...book/market value
and size exects in asset returns may proxy for conditional skewness in asset
returns".

4As another consequence on inference of neglecting erroneously coskew-
ness, we expect the power of the return generating process to be seriously
compromised. As an example, we can compare results for testing the Capital
Asset Pricing Model (CAPM) when the market model is the alternative, and
when the quadratic market model is the alternative. If the market model is
misspeci..ed due to the omission of the quadratic market returns term, its
power is presumably low against CAPM.

Sfor a time series (Y;,t € Z), Y; denotes all present and past values Y,
s <t.

5Note that v can equivalently be written as:
1
T Ve
The numerator is a third-order cross moment of the residuals in the regres-
sions of R, and R?m on R,,;. This is slightly dizerent from the measure of
coskewness of Kraus and Litzenberger (1976)

cov [€t, €] -

"Ross (1976) shows that the absence of arbitrage implies the approxima-
tive relation: E(r;) ~ 51 + vX2. Under additional restrictions this relation
becomes exact [see e.g. the discussion in Campbell, Lo, MacKinlay (1987)].
In this paper we assume as usual that exact factor pricing holds.
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8For an x n symmetric matrix A, vech(A) denotes the 1" x 1 vector

representation of A, where only elements on and above the main diagonal
appear.

9Upper indexes in a matrix denote elements of the inverse.

191t should be noted that exact tests (under normality) can be constructed
for testing hypotheses H; and H, against Hy [see e.g. Zhou (1995), and
Velu and Zhou (1999)]. These tests are asymptotically equivalent to the
Asymptotic Least Squares tests, which are proposed in the paper for their
computational simplicity. A ..rst assessement of the ..nite sample properties
of the ALS test statistics is presented in section V.

1Data are available from the site
http://web.mit.edu/kfrench/www/data_ library.html, in the ..le Portfolios
Formed on Size”.

12The market return and risk free return are available from the site
http://web.mit.edu/kfrench/www/data__library.html, in the ..les ”Fama-French
Benchmark Factors” and Fama-French Factors”. We use the T-bill rate be-
cause other money-market series are not available for the whole period of our
tests.

13As convergence criterium we required the update of each parameter to
be smaller than 5 - 1073, We obtained convergence of the algorithm to the
same estimates over the range of sensible alternative starting points we have
tried.
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Table I: Coeccient estimates of model (1).

[ Portfolio i | &, 15, 17, |
1 0.418 1.101 —0.017
(1.84) (24.23) || (—3.32)
[1.70] 20.24] [—2.94]
2 0.299 1188 | —0.013
(1.65) (32.62) || (—3.05)
[1.56] 27.07) | [~2.65]
3 0.288 1.182 —0.010
(1.88) (38.37) (—2.84)
[1.86] [29.18] [—2.45]
1 0.283 1166 | —0.010
(1.96) (39.99) || (—3.00)
[1.83] 30.98] || [-2.82]
5 0.328 1135 | —0.009
(2.73) (46.94) || (—3.34)
2.51] [34.16] [—2.68]
6 0.162 1.110 —0.006
(1.59) (54.02) || (—2.58)
[1.53] [37.85] [—2.28]
7 0.110 1.105 —0.002
(1.29) (64.37) | (—0.88)
[1.24] [50.66] [—0.84]
8 0.076 1.083 —0.000
(1.02) (72.59) | (—0.18)
0.90] [56.61] [—0.23]
9 —0.016 1.017 0.003
(—0.30) | (92.76) | (2.06)
(—0.28] | [98.43] | [2.26]
10 —0.057 0.933 0.003
(=1.10) | (88.77) | (2.64)
(~0.99] | [66.71] [ [2.73]

Notes: Table I reports for each portfolio 7, i = 1, ..., 10, the PML-SUR
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estimates of the coeCcients «;, 3,, v, of the quadratic market model:

Ty = 0+ Birars + YViqus + it =1,...,T, i=1,.., N,
where 7, = Riy — Ry, vy = Ry — Reyy Qe = 312\47,5 — Rpy. R;y is the
return of portfolio 7 in month ¢, and Ry;; (Rr.) denotes the market return

(the risk free return). In round parentheses we report t-statistics computed
under the assumption:

E[gt‘gt—lyRM,t;RF,t} = 0,

!
E |:5t5t|5t—17 RM,t; RF¢:| = 2, Et = (81775, ---75N,t) ,

while t-statistics calculated with Newey-West (1987) heteroscedasticity and
autocorrelation consistent estimator with 5 lags are in square parentheses.
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Table I1: Variance estimates of model (1).

[ [t [2 [3 [4 [5 6 [7 [8 [9 [10 |
T [ 17.94 | 13.42 | 10.69 || 9.41 | 6.93 | 5.20 || 4.02 || 2.64 || 051 || —3.11
2 1150 || 9.02 | 8.27 || 6.35 | 4.81 || 3.69 || 2.61 || 0.58 | —2.72
3 824 | 7.18 | 5.65 || 451 || 3.34 || 2.39 || 0.68 | —2.40
1 7.39 || 5.56 || 4.37 || 3.40 | 241 || 0.78 || —2.33
5 5.07 || 3.71 ] 2.82 | 2.21 | 0.77 || —1.93
6 3.67 || 242 || 1.85 || 0.78 | —1.59
7 2.56 || 1.68 || 0.75 | —1.29
g 1.93 [ 0.8 || —1.05
9 1.04 | —0.50
10 0.96

Notes: Table Il reports the estimate of the variance ¥ = F [ets; | "ares Qore
of the error ¢, in the quadratic market model:

re=a+Brye +yque +ent=1,....,T, i=1,..., N,
where Ty = Rt — RF7tL, Tme = RMJ — RFJ, dMme = R?W,t — RF,t- Rt is the

N-vector of portfolios returns, Ry, (Rr.) is the market return (the risk free
return), and . is a N-vector of ones.
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Table 111: PML estimates of model (6).

Portiolio i | 3, | 3: |

1 1.106 | —0.017
(24.50) (—3.25)
2 1.191 || —0.012
(32.97) (—2,99)
3 1.186 || —0.009
(38.79) || (—2.79)
4 1.170 || —0.009
(40.41) (—2.90)
5 1.140 || —0.009
(47.38) (—3.14)
6 1.112 || —0.006
(54.56) (—2.50)
7 1.107 || —0.001
(65.07) || (—0.76)
8 1.085 || —0.001
(73.37) (—0.05)
9 1.017 || 0.002
(93.66) || (2.14)
10 0.933 || 0.003
(89.53) || (2.63)
Y= —14.955 || A2 = 4.850
(—2.23) (0.70)

Notes: Table Il reports PML estimates of the coeC@cients of the re-
stricted model (6):

Ty :ﬁTM7t+7(]M,t+719+5tat: 1,..... T,

where 9 is a scalar parameter, derived from the quadratic market model (1)
by imposing the restriction given by the asset pricing model with coskewness:
E (ry) = M + Agy. The scalar ¢ and the premium for coskewness \, are
related by: 9 = Xy — E(qum:). The restricted model (6) corresponds to
hypothesis H;: 39 : a = ¥y in (1). t-statistics are reported in parentheses.
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Table IVV: PML estimates of model (8).

Portiolio i | 3, | 3: |

1 1.100 || —0.017
(24.38) || (-3.32)
2 1.187 || —0.012
(32.84) (—3.05)
3 1.183 || —0.010
(38.70) || (=291
4 1.167 || —0.010
(40.31) (—3.07)
5t 1.137 || —0.009
(47.35) || (-3.52)
6 1.110 || —0.006
(54.45) (—2.62)
7 1.107 || —0.002
(65.07) || (~1.06)
8 1.085 || —0.001
(73.40) (—0.38)
9 1.018 || 0.002
(93.72) || (1.90)
10 0.934 || 0.003
(89.60) || (2.57)
V= —=27.244 || Ay = —7.439 || Ao = 0.032
(~3.73) (1.01) (3.27)

Notes: Table IV reports PML estimates of the coeCcients of the re-
stricted model (8):

Ty = Brae +Yque + Y0+ Aot +e, t =1, T,

where 9 and )\, are scalar parameters, derived from the quadratic market
model (1) by imposing the restriction: E (r;) = Aot + A3 + A27y. Under this
restriction, asset expected excess returns contain a component )\, which is
not explained by neither covariance nor coskewness with the market. The
restricted model (8) corresponds to hypothesis Hy: 39, Ay : @ = 9y 4+ Age In
(). t-statistics are reported in parentheses.
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Table V: Estimates of model (2).

| Portfolioi | &, |5, |
1 0.080 || 1.102
(0.39) || (23.97)
2 0.050 || 1.188
(0.31) || (32.34)
3 0.092 || 1.183
(0.67) || (38.09)
4 0.088 || 1.167
(0.67) | (39.65)
5 0.148 || 1.135
(1.36) || (46.43)
6 0.044 || 1.110
(0.48) || (53.69)
7 0.076 || 1.105
(1.00) || (64.39)
8 0.069 || 1.083
(1.05) || (72.67)
9 0.034 || 1.017
(0.71) || (92.41)
10 0.005 || 0.933
(0.10) || (88.18)

Notes: Table V reports for each portfolio 7, i = 1, ..., 10, the PML-SUR
estimates of the coe@cients «;, 3, of the traditional market model :

Tit = Q4 + ﬁiTMﬂg + Eity t= 1, ....,T, 1= 1, ceny N,
where r;; = Ry — Rpy, "me = Ry — Rpy. Riy 1S the return of portfolio

¢ in month ¢, and R, (Rr,) is the market return (the risk free return).
t-statistics are reported in parentheses.
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Table VI: Rejection frequencies in experiment 1

o [&77 [& |
| 0.00 || 0.0404 || 0.0559 ||
| 0.03 ]| 0.0505 || 0.4641 |
| 0.06 || 0.0712 || 0.9746 ||
| 0.10 || 0.1217 || 0.9924 ||
1 0.15 [ 0.2307 ] 0.9945 |

Notes: Table VI reports the rejection frequencies of the GMM statistics
ESMM Tderived from (9)] and the ALS statistics ¢ [in (21)] for testing the
asset pricing model with coskewness (4):

E (Tt) = MG+ N\,

at 0.05 con..dence level, in experiment 1. The data generating process (called
DGP1) used in this experiment is given by:

e =+ Brae + g + € t=1,...,450,
— _ R2 i
where 7arr = R — Tpts qurg = Rayy — 754, With

Ry~ #dN(pp, %),
ee ~ dN(0,%), (e¢) independent of (R,..),
Tt = 'rf,aconstant,

and
a =9y + Aot.

Parameters ( and ~y are the third and fourth columns respectively in Table I,
the matrix X is taken from Table 11, ¥ = —14.995 from Table 111, p,, = 0.52,
om =4.41, and ry = 0.4, corresponding to the average of the risk free return
in our data set. Under DGP1, when \q = 0, the quadratic equilibrium model
(4) is satis..ed. When )y # 0, the equilibrium model (4) is not correctly
speci..ed, and the misspeci..cation is in the form of an additional component
homogeneous across portfolios, corresponding to model (8).
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Table VII: Rejection frequencies in experiment 2

[Xo [& |
[ 0.00 ] 0.0617 |
[ 0.03 ] 0.3781 |
[ 0.06 ]| 0.9368 ||
| 0.10 ] 0.9876 ||
| 0.15 ] 0.9910 ||

Notes: Table VII reports the rejection frequencies of the ALS statistics
& [in (21)] for testing (4):

E (re) = MB + A2,

at 0.05 con..dence level, in experiment 2. The data generating process used
in this experiment (called DGP2) is the same as DGP1 (see Table VI), but
the residuals ¢; follow a multivariate t-distribution with df = 5 degrees of
freedom, and a correlation matrix such that variance of &; is the same as
under DGP1.
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Table VIII: Rejection frequencies in experiment 3

N ¢y under DGP 4 || &5 under DGP 3
(homosced.) (cond. heterosced.)
| 0.00 ] 0.0587 | 0.0539 |
| 0.03 ]| 0.3683 | 0.1720 |
| 0.06 || 0.9333 [ 0.5791 |
| 0.10 | 0.9855 | 0.9373 |

Notes: Table VIII reports the rejection frequencies of the ALS statistics
& [in (21)] for testing (4):

E (re) = M8+ A2,

at 0.05 con..dence level, in experiment 3. In this experiment we consider
two data generating processes (called DGP3 and DGP4) having the same
unconditional variance of the residuals ;, but such that the residuals &, are
conditionally heteroscedastic in one case, and homoscedatic in the other.
Speci..cally, DGP3 is the same as DGP1 (see Table V1), but the innovations
¢; follow a conditionally normal, multivariate ARCH(1) process without cross

exects: )
e o wi e, 1=

cov <Ez,t75]7t |E> = { wij, i
The matrix 2 = [w;;] is chosen as in Table 11, and p = 0.2. DGP4 is the same
as DGP1 (see Table V1), with i.i.d. normal innovations whose unconditional
variance matrix is the same as the unconditional variance of ¢, in DGP 3.
Thus under DGP4 the alternative of the ALS statistics is well-speci..ed, but
not under DGP3.
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