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Abstract
Decision theorists claim that an ordinal measure of risk may be

sufficient for an agent to make a rational choice under uncertainty.
We propose a measure of financial risk, namely the Varying Cross-
sectional Risk (VCR), that is based on a ranking of returns. VCR is
defined as the probability of a sharp jump over time in the position
of an asset return within the cross-sectional return distribution of the
assets that constitute the market, which is represented by the Stan-
dard and Poor’s 500 Index (SP500). We model the joint dynamics of
the cross-sectional position and the asset return by analyzing (1) the
marginal probability distribution of a sharp jump in the cross-sectional
position within the context of a duration model, and (2) the probabil-
ity distribution of the asset return conditional on a jump, for which
we specify different dynamics in returns depending upon whether or
not a jump has taken place. As a result, the marginal probability dis-
tribution of returns is a mixture of distributions. The performance of
our model is assessed in an out-of-sample exercise. We design a set
of trading rules that are evaluated according to their profitability and
riskiness. A trading rule based on our VCR model is dominant pro-
viding superior mean trading returns and accurate estimation of the
Value-at-Risk.
Key words: ARCH, CAPM, Duration, Nonlinearity, Trading rule,

VaR.
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1 Introduction

Economists, investors, regulators, decision makers at large face uncertainty
in a daily basis. While there is an intuitive notion, probably shared by most
of us, on the meaning of uncertainty, which involves the realization of fu-
ture events within a probabilistic understanding of the world, there is no
agreement on how to quantify uncertainty such as becomes an operational
measure. The measure of uncertainty depends on who you are and what you
do. Financial economists and econometricians for most part equate uncer-
tainty with risk and risk with volatility. We are very familiar with measures
such as variance, range, absolute deviation; in general, any measure that can
summarize the dispersion of the random variable under analysis. Investors
and regulators are not only concerned with measures of volatility but also
they monitor the lower tail of the probability distribution of returns. Regu-
lators worry about catastrophic or large losses that can jeopardize the health
of the financial system of the economy. On the other hand, decision theo-
rists deal with volatility measures only in particular instances; they prefer
to analyze rational choices considering the entire probability distribution of
the random variable in question.

Granger (2002) provided very illuminating comments on risk. He re-
viewed the statistical foundations for the choice of the variance and the
mean absolute deviation as appropriate measures of volatility and contrasted
these results with the rejection by uncertainty theorists of these measures
as appropriate measures of risk. Rational choice under uncertainty requires
a connection to an objective function, such as an utility function, for which
a variance may not summarize completely the risk faced by an agent. De-
cision theorists claim that an ordinal measure of risk, i.e. the constructing
a ranking of assets, may be sufficient for an agent to make a rational choice
under uncertainty. The empirical question is how these theoretical results
can help decision makers when they face numerous time series of historical
asset prices.

The contribution of this paper is framed in a middle ground between
variance advocates and decision theorists. We develop an empirical model of
financial returns that widens the conception of risk maintained by financial
economists. Our model combines a cardinal measure of risk -conditional
volatility- with an ordinal measure -the cross-sectional position of an asset
in relation to its peers. That is to say, we jointly consider a time-varying
coordinate and a cross-sectional coordinate for each asset return. Fixing
the time coordinate, we observe the market as a collection of assets returns,
and every asset is assigned a cross-sectional position or percentile. From
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period to period, the position of the asset in relation to the cross-section
of assets changes. Our objective is to model the dynamics of the cross-
sectional position jointly with the asset return. In Figure 1, we present
a stylized description of the problem that we aim to analyze. Let yit be
the asset return of firm i at time t, and zit the cross-sectional position of
this return, i.e. zit = Φcs(yit) where Φcs(.) is the cumulative distribution
function of all asset returns that constitute the market at time t. In Figure
1, for every t, we draw the probability density function of all assets, this is
the cross-sectional market distribution, which is time-varying. To illustrate
the different dynamics of yit and zit, we choose four points in time. Consider
the sequential movements of yit and zit on going from t1 to t4. We observe
that from t1 to t2, the market overall has gone down as well as the return
and the cross-sectional position of asset i, yt1 > yt2 , zt1 > zt2 . However, from
t2 to t3, the asset return is lower yt2 > yt3 but its cross-sectional position has
improved zt2 < zt3 . One may say that this asset has become riskier but, in
relation to its peers, is less risky than it used to be. The opposite happens
on going from t3 to t4. The overall market is going up; for asset i, the return
increases yt3 < yt4 but its cross-sectional position is unchanged zt3 = zt4
One may say that now it is less risky but, in relation to its peers, is as risky
as it used to be. We are interested in this notion of relative risk. We model
the conditional probability of jumping cross-sectional positions, which we
call time-Varying Cross-sectional Risk (VCR). It is time-varying because it
depends on an information set that changes over time, it is cross-sectional
because it depends on the position of the asset in relation to its peers, and
it is risk because it is an assessment of the chances of being a winner or a
looser within the available set of assets.

This notion of relative risk speaks to the idea that assets returns are
related to each other and that risk of an individual asset cannot be under-
stood by solely examining the univariate stochastic process of the asset re-
turn. This is the core of the intellectual contribution of the founding fathers
of portfolio theory, Markowitz (1959), Sharpe (1964) and Lintner (1965).
In the classical Capital Asset Pricing Model (CAPM), the cornerstone of
modern portfolio theory, the variance of a portfolio is a sufficient statistic to
measure risk, the covariance between any two asset is a sufficient measure
of interdependence, risk is fully characterized by the beta of the asset, and
expected returns are linear functions of beta. This complete world comes to
the expense of very restrictive assumptions, such as quadratic utility func-
tions or normality of asset returns. In this paper, while we do not subscribe
to any particular set of assumptions or any particular asset pricing theory,
we are faithful, from an empirical perspective, to the idea of interdependence
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or comovement among assets, which cannot be summarized by a particu-
lar moment of the portfolio returns such as the variance. Comovements
are brought into our modelling strategy as the time-varying cross-sectional
distribution of asset returns. In this general setting, expected returns are
nonlinear functions of this notion of relative risk. Linearity is not excluded
since it can be viewed as a particular case of a more general model, it just
becomes a testable proposition.

When theories as CAPM or APT are empirically tested (Fama and
French, 1993, 1996), the most conventional avenue has been to estimate and
test in two stages1. At the risk to oversimplify an extended body of work, let
us summarize the procedure in a couple of bold strokes. First, researchers
run a time series regression in cleverly manipulated data sets, out of which,
the beta of the asset return or portfolio return is obtained. Secondly, they
gather a cross-section of assets or portfolios and run a cross-sectional regres-
sion where the betas are the regressors. These regressions -time series and
cross-sectional- can be more or less sophisticated in order to take care of a
myriad of econometric problems that partly arise from the two-stage proce-
dure. In this paper, the estimation procedure is performed in one-stage. Our
analysis is primarily a time series exercise because our ultimate objective is
to forecast returns but, concurrently, we also incorporate a cross-sectional
dimension. We set our problem as to model the joint distribution of the
return and the probability of a (sharp) jump (Jit) in the cross-sectional po-
sition of the asset, i.e. f(yit, Jit|=t−1) where =t−1 is an information set up
to time t − 1. Since f(yit, Jit|=t−1) = f1(Jit|=t−1)f2(yit|Jit,=t−1), our task
will be accomplished by modelling the conditional distribution of the return
and the marginal distribution of the jump. One of the implications of this
setting is that the marginal distribution of returns is a mixture of distribu-
tions, which may explain the unconditional leptokurtosis that characterize
financial asset returns.

On modelling f1(Jit|=t−1), our paper also connects with the recent lit-
erature in microstructure of financial markets and duration analysis (Engle
and Russell, 1998). This line of research aims to model events (trades) and
waiting times between trades. The question of interest is what is the ex-
pected length of time between two trades given some information set. In
this paper, the event is the jump in the cross-sectional position of the asset
return, however, when we model the expected duration between jumps or
its mirror image -the conditional probability of the jump-, our analysis is

1For other approaches such as estimation of conditional CAPM, see Jagannathan and
Wang (1996).
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performed in calendar time as in Hamilton and Jordà (2002). Given some
information set, the question of interest is what is the likelihood that to-
morrow the return of a given firm is such that there is a sharp change in
the position of this firm in relation to the cross-sectional distribution of re-
turns. This calendar time approach is necessary because asset returns are
reported in calendar time (days, weeks, etc.) and it has the advantage of
incorporating all information that becomes available in each period of time.

The performance of our model is assessed in an out-of-sample exercise
within the context of investment decision making. We consider two scenar-
ios. In the first, we deal with an investor whose interest is to maximize
profits of a portfolio long in stocks. This scenario may be marginally related
to a momentum strategy where the investor is going long on winners and
short on losers (Jegadeesh and Titman, 2001, 2002), however the aim of the
momentum literature is different from ours in that it searches for macroeco-
nomic factors that can explain abnormal returns obtained with a momentum
strategy. The second scenario that we consider is an investor who worries
about potential large losses, she wishes to add a Value-at-Risk evaluation
to her trading strategy. Profitability and riskiness are the two coordinates
in the mind of the investor. We design a set of trading rules that will be
compared in the two aforementioned scenarios. The statistical comparison
is performed within the framework of White (2000) reality check. A trading
rule that exploits the one-step ahead forecast of the ranking of asset returns
will be shown to be clearly superior to other rules based on more standard
models.

The organization of the paper is as follows. In section 2, we provide
our strategy for the joint modelling of asset returns and jumps in the cross-
sectional position. We present the estimation results for a sample of weekly
returns of those SP500 firms that have survived for the last ten years. In
section 3, we assess the out-of-sample performance of our model. We explain
the trading rules, loss functions, and the statistical framework to compare
different trading rules. Finally, in section 4 we conclude.

2 Cross-sectional position and expected returns

In this section, we propose a bivariate model of expected returns and jumps
in the ranking of a given asset within the cross-sectional distribution of asset
returns.

Let yit be the return of the ith firm at time t, and {yit}Mi=1 be the collection
of asset returns of theM firms that constitute themarket at time t. For every
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time period, we order the asset returns from the smallest to the largest, and
we define zit, the cross-sectional position of the ith firm within the market,
as the percentage of firms that have a return less or equal to the return of
the ith firm. We write

zit =M
−1

MX
j=1

1(yit ≥ yjt)

for zit ∈ [M−1, 1] and where 1(.) is the indicator function. We say that a
sharp jump in the cross-sectional position of the ith firm has occurred when
there is a minimum (upwards or downwards) movement of 0.5 in the ranking
of the return of the ith firm. We define such a jump as a binary variable
Jit = 1(|zit − zit−1| ≥ 0.5). The choice of the magnitude of the jump is
not arbitrary. The sharpest jump that we could consider is 0.5. In every
time period, we need to allow for the possibility of jumping, either up or
down, in the following period regardless of the present position of the asset.
For instance, if we choose a jump greater than 0.5, say 0.7, and zit = 0.4,
then the probability of jumping up or down in the next time period is zero
with probability one. Note that the defined jump does not imply that the
return will be above or below the median. As an example, if zit−1 = 0.4
and zit = 0.6, then Jit = 0 but the return at time t will be above the
cross-sectional median of returns.

Our objective is to model the conditional joint probability density func-
tion of returns and jumps f(yit, Jit|=t−1;Θ), where =t−1 is the information
set up to time t− 1, which contains past realizations of returns, jumps, and
cross-sectional positions. To simplify notation, we drop the subindex i but
in the following analysis should be understood that the proposed modelling
is performed for every single firm in the market. We factor the joint proba-
bility density function as the product of the conditional density of the return
and the marginal density of the jump

f(yt, Jt|=t−1;Θ) = f1(Jt|=t−1; θ1)f2(yt|Jt,=t−1; θ2)
For a sample {yt, Jt}Tt=1, the joint log-likelihood function is
TX
t=1

log f(yt, Jt|=t−1;Θ) =
TX
t=1

log f1(Jt|=t−1; θ1) +
TX
t=1

log f2(yt|Jt,=t−1; θ2)

Let us call L1(θ1) =
PT
t=1 log f1(Jt|=t−1; θ1) and L2(θ2) =

PT
t=1 log f2(yt|Jt,

=t−1; θ2). The maximization of joint log-likelihood function can be achieved
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maximizing L1(θ1) and L2(θ2) separately without loss of efficiency because
the parameter vectors θ1 and θ2 are “variation free” and Jt is weakly exoge-
nous (Engle, 1983).

2.1 Modelling the cross-sectional jump f1(Jt|=t−1; θ1)
In order to model the conditional probability of jumping, we define a count-
ing process N(t) as the cumulative number of jumps up to time t, that is,
N(t) =

Pt
n=1 Jn. This is a non-decreasing step function that is discontin-

uous to the right and to the left and for which N(0) = 0. Associated with
this counting process, we define a duration variable DN(t) as the number of
periods between two jumps. Note that because our interest is to model the
jump jointly with returns and these are recorded in a calendar basis (daily,
weekly, monthly, etc.), the duration variable needs to be defined in calendar
time instead of event time as is customary in duration models. For this
reason, it is very likely that the duration between two jumps could remain
constant for several time periods. The question of interest is, what is the
probability of a sharp jump at time t in the cross-sectional position of the
ith firm asset return given all available information up to time t − 1? This
is the conditional hazard rate pt

pt = Pr(Jt = 1|=t−1) = Pr(N(t) > N(t− 1)|=t−1) (1)

It is easy to see that the probability of jumping and duration must have an
inverse relationship. If the probability of jumping is high, the expected du-
ration must be short, and viceversa. Following Hamilton and Jordà (2002),
we specify an autoregressive conditional hazard (ACH)2 model for (1). Let
ΨN(t) be the expected duration. The expected duration until the next jump
in the cross-sectional position is given by ΨN(t−1) =

P∞
j=1 j(1− pt)j−1pt =

p−1t . Consequently, to model (1), it suffices to model the expected duration
and compute its inverse. A general ACH model is specified as

ΨN(t) =
mX
j=1

αjDN(t)−j +
rX
j=1

βjΨN(t)−j (2)

Since pt is a probability, it must be bounded between zero and one. This
implies that the conditional duration must have a lower bound of one. Fur-
thermore, working in calendar time has the advantage that we can incorpo-
rate information that becomes available between jumps and can affect the

2The ACH model is a discrete-time version of the autoregressive conditional duration
(ACD) of Engle and Russell (1998).
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probability of jumping in future periods. We can write a general conditional
hazard rate as

pt = [ΨN(t−1) + δ
0
Xt−1]−1 (3)

where Xt−1 is a vector of relevant calendar time variables such as past cross-
sectional positions and past returns.

The log-likelihood function L1(θ1) =
PT
t=1 log f1(Jt|=t−1; θ1) correspond-

ing to a sample of observed jumps in the cross-sectional position is

L1(θ1) =
TX
t=1

[Jt log pt(θ1) + (1− Jt) log(1− pt(θ1))] (4)

where θ1 = (α0,β0, δ0)0 is the parameter vector for which the log-likelihood
function is maximized.

2.2 Modelling the conditional return f2(yt|Jt,=t−1; θ2)
We assume that the return to the ith firm asset may behave differently
depending upon the occurrence of a sharp jump. If a sharp jump has oc-
curred, the return was pushed either towards the lower tail or upper tail of
the cross-sectional distribution of returns. In relation to the market, this
asset becomes either a looser or a winner. On the other hand, if there is no
jump, the return keeps its cross-sectional position in relation to the market.
A priori, one may expect different dynamics in these two states. A general
specification is

f2(yt|Jt,=t−1; θ2) =
½
N(µ1t,σ

2
1t) if Jt = 1

N(µ0t,σ
2
0t) if Jt = 0

(5)

where µt is the conditional mean and σ2t is the conditional variance, po-
tentially different depending upon the existence of a jump. The infor-
mation set consists of past returns and cross-sectional positions =t−1 =
{yt−1, yt−2, .....zt−1,zt−2, .....}.

The log-likelihood function L2(θ2) =
PT
t=1 log f2(yt|Jt,=t−1; θ2) is

L2(θ2) =
TX
t=1

log
1√
2π

"
Jtp
σ21t

exp
−(yt − µ1t)2

σ21t
+
1− Jtp

σ20t
exp
−(yt − µ0t)2

σ20t

#

where θ2 includes all parameters in the conditional means and conditional
variances.
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The implication of (5) together with (1) is that the conditional marginal
density function of returns is a mixture of normal density functions where
the weights in the mixture are given by the probability of jumping

g(yt|=t−1) = pt ×N(µ1t,σ21t) + (1− pt)×N(µ0t,σ20t) (6)

Our interest is to forecast returns. From (6), it is easy to see that
expected returns are nonlinear functions of the information set, even in the
simple case where µ1t and µ0t are linear. The expected return is a function of
pt , which we call time-varying cross-sectional risk (VCR). It is time-varying
because it depends on the information set, it is cross-sectional because it
depends on the positioning of the asset return in relation to the other firms
in the market, and it is risk because it assesses the possibility of being a
winner or a looser within the full collection of assets. The one-step ahead
forecast of the return according to (6) is

E(yt+1|=t) = pt+1 × µ1t+1 + (1− pt+1)× µ0t+1 (7)

2.3 Estimation Results

We collect the weekly returns, from January 1, 1990 to August 31, 2000, for
all the firms in the SP500 index that have survived for the last ten years
(343 firms). The total number of observations is 599. In Table 1, we sum-
marize the unconditional moments -mean, standard deviation, coefficient
of skewness, and coefficient of kurtosis- for the 343 firms. The frequency
distribution of the unconditional mean seems to be bimodal with two well
defined groups of firms, a cluster with a negative mean return of approxi-
mately -0.25%, and another with a positive mean return of 0.25%. For the
unconditional standard deviation, the median value is 4.37%. The median
coefficient of skewness is 0.01, with most of the firms exhibiting moderate
to low asymmetry. All the firms have a large coefficient of kurtosis with a
median value is 5.23. We calculate the Box-Pierce statistic to test for up
to fourth order autocorrelation in returns and we find mild autocorrelation
for about one-third of the firms. However, the Box-Pierce test for up to
fourth order autocorrelation in squared returns indicates strong dependence
in second moments for all the firms in the SP500 index.

[Table 1 about here]

2.3.1 The duration model

For 343 firms, we fit a conditional duration model as in (2) and (3). The in-
formation set consists of past durations, past returns and past cross-sectional
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positions : {DN(t)−j , yt−j , zt−j} for j = 1, 2, ..... The duration time series for
every firm is characterized by clustering - long (short) durations are fol-
lowed by long (short) durations- and, consequently the specification of a
ACH model may be warranted. We maximize the log-likelihood function
(4) with respect to the parameter vector θ1 = (α0,β0, δ0)0. We estimate
different lag structures (linear and nonlinear) of the information set and,
based on standard model selection criteria (t-statistics and log-likelihood
ratio tests), we obtain the following final specification

pt = [ΨN(t−1) + δ
0
Xt−1]−1

ΨN(t) = αDN(t)−1 + βΨN(t)−1
δ
0
Xt−1 = δ1 + δ2yt−11(zt−1 ≤ 0.5) + δ3yt−11(zt−1 > 0.5) + δ4zt−1

The conditional duration model is an ACH(1,1) with persistence α + β.
There is a nonlinear effect of the predetermined variables on duration. The
effect of past returns on duration depends on whether the cross-sectional
position of the asset is above or below the median. In Table 2, we report
the cross-sectional frequency distributions of the estimates θ̂1 = (α̂0, β̂

0
, δ̂
0
)0

for all the 343 firms. All the parameters are statistically significant at the
customary 5% level with the exception of δ4, for which do not report its
frequency distribution.

[Table 2 about here]

For α̂, the median is 0.36 with 90% of the firms having an α̂ below
0.48. For β̂, its frequency distribution is highly skewed to the right with
a median of 0.06 and with 90% of the firms having a β̂ below 0.25. The
median persistence is 0.45 and for 90% of the firms, the persistence is below
0.63. The estimates δ̂2 and δ̂3 have opposite signs, the former is positive and
the latter is negative with δ̂2 being larger in magnitude than δ̂3. The effect
of δ̂2 and δ̂3 in expected duration depends on the interaction between the
cross-sectional position and the sign of the return. There are four possible
scenarios. For instance, when the past asset return is positive and below
(above) the median market return, its expected duration is longer (shorter)
and the probability of a sharp jump is smaller (larger), other things equal.
On the contrary, when the past asset return is negative and below (above)
the median market return, its expected duration is shorter (longer) and the
probability of a sharp jump is larger (smaller), other things equal. Both
δ̂2 and δ̂3 have a very skewed cross-sectional frequency distributions. For
δ̂2, the median value is 0.15 with 90% of the firms having a δ̂2 below 0.55.
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For δ̂3, the median value is -0.11 with 90% of the firms having a δ̂3 below
-0.45. Roughly speaking, for a representative firm with median parameter
estimates, the expected duration is between 4 and 5 weeks, and sinceE(pt) ≥
[E(ΨN(t−1) + δ

0
Xt−1)]−1, a lower bound for the expected probability of a

sharp jump is between 20 and 25 %.

2.3.2 The nonlinear model for conditional returns

We proceed to estimate (5). Since this model is already nonlinear, we restrict
the specification of the conditional mean and conditional variance in each
state (Jt = 1 or Jt = 0) to parsimonious linear functions of the information
set. The preferred specification of the conditional first two moments is

f2(yt|Jt,=t−1; θ2) =

½
N(µ1t,σ

2
1t) if Jt = 1

N(µ0t,σ
2
0t) if Jt = 0

(8)

µ1t ≡ E(yt|=t−1, Jt = 1) = ν1 + γ1yt−1 + η1zt−1
µ0t ≡ E(yt|=t−1, Jt = 0) = ν0 + γ0yt−1 + η0zt−1
σ21t = σ20t = σ2t = E(²

2
t |=t−1, Jt) = ω + ρ²2t−1 + τσ2t−1

where ²t−1 = (yt−1 − µ1,t−1)Jt−1 + (yt−1 − µ0,t−1)(1 − Jt−1). We arrive to
this specification by implementing a battery of likelihood ratio tests. The
descriptive statistics mentioned at the beginning of this section show that
the returns are leptokurtic. If the returns are coming from a mixture of
distributions, we can explain the unconditional leptokurtosis that we find in
the data. Consequently, the tests should aim to gather statistical evidence
for the mixture of normals that we propose in (5). In a first instance, we
focus on the possibility of different dynamics in the conditional mean in each
state with equal constant variances. The first hypothesis of interest is

H1
0 : ν1 = v0, γ1 = γ0, η1 = η0

where both the restricted and the unrestricted model have σ21t = σ20t = σ2.
This null is rejected very strongly for all the firms in the SP500 index3. In a
second instance, we relax the assumption of constant variance across states
and write a second null hypothesis as

H2
0 : ν1 = v0, γ1 = γ0, η1 = η0

where both the restricted and the unrestricted model have σ21t = σ20t = σ2t
with σ2t specified as in (8). For all firms, we reject again very strongly this

3We do not report all the testing results for the 343 firms but they are available upon
request.
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null hypothesis and hence, we claim that there are different dynamics in
the conditional mean across states as well as dynamics in the conditional
variance. In the third instance, we inquire about the possibility of having
different dynamics in the conditional variance. Following the rejection of
H1
0 and H

2
0 , the third hypothesis that we test is equal conditional variances

maintaining the nonlinearity in the conditional mean, i.e. µ1t 6= µ0t, as in
(8),

H3
0 : σ

2
1t = σ20t

The unrestricted model has conditional means as in (8) and conditional
variances that follow a GARCH(1,1) process with different parameters de-
pending on Jt = 1 or Jt = 0. We fail to reject the third hypothesis and we
settle in a final model as in (8).

The estimation results for the 343 firms are summarized in Table 3.
We report the cross-sectional frequency distributions of the parameters es-
timates of the conditional mean and conditional variance. The majority of
the parameters are statistically significant at the 5% level.

[Table 3 about here]

When we consider asset returns for which a sharp jump has taken place,
the impact of past returns, γ̂1, is predominantly negative (in 75% of the firms
γ̂1 < 0). The effect of past cross-sectional positions, η̂1, is clearly negative
for all the firms. These signs are expected. Consider an asset whose past
return has been going down and, at the same time, has experienced a move
down in its cross-sectional position. A movement down in past returns and
cross-sectional positions implies that the likelihood of a sharp jump up is
increased. Given that we are considering an asset for which a sharp jump
is happening, we should expect that the most likely direction of the jump
is up, thus increasing the present expected return. When we consider asset
returns for which there is no jump, the effect of past returns, γ̂0, on expected
returns could be positive or negative across the firms with a median value of
0.15. On the contrary, the marginal effect of past cross-sectional positions,
η̂0, is clearly positive. This means that asset returns who move up in the
cross-sectional ranking of firms, but who have not experienced a sharp jump,
tend to have an increase in their expected returns, other things equal. For
individual firms we observe that |γ̂1| > |γ̂0| and |η̂1| > η̂0, which it is
consistent with the notion that, most of the time, sharp jumps in cross-
sectional positions must be associated with large movements in expected
returns. The median value of γ̂1 is -1.11 compared to the median of γ̂0 that
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is 0.15; and the median of η̂1 is -0.61 compared to the median of η̂0 that is
0.37.

The second part of Table 3 describes the estimates of the parameters
of the conditional variance. The model is a standard GARCH(1,1). The
persistence is measured by ρ + τ . The median persistence is 0.93, with a
median value for ρ̂ of 0.06 and a median value for τ̂ of 0.87. A leverage
effect in the conditional variance does seem to be warranted, the different
specifications of the conditional mean across states take care of potential
asymmetries in returns. We run standard diagnostic checks such as the
Box-Pierce statistics for autocorrelation in residuals, squared residuals, and
standardized squared residuals and we conclude that the residuals, standard-
ized residuals, and standardized squared residuals seem to be white noise.
The specification (8) passes standard diagnostic checks for model adequacy.
However, a more important aspect of the model is to assess its forecasting
performance, which we analyze in the following section.

3 Out-of-sample evaluation of the VCR model

In this section we assess the performance of the proposed VCR model within
the context of investment decision making. We consider two major scenarios.
First, we deal with an investor whose interest is to maximize profits from
trading stocks. We assume that her trading strategy -what to buy, what to
sell- depends on the forecast of expected returns based on the VCR model,
The superiority of the proposed specification depends on its potential ability
to generate larger profits than those obtained with more standard models. In
the second scenario, in addition to the return, the investor wishes to assess
potential large losses by adding a Value-at-Risk evaluation of her trading
strategy. In this case, the modelling of the conditional variance becomes
also relevant. Both scenarios provide an out-of-sample evaluation of the
VCR model.

3.1 Trading rules

We consider four trading strategies. The first one is called “VCR-position
trading rule” and it is based on the one-step ahead forecast of individual
asset returns based on the VCR model. We proceed as follows. For each
firm in the market (343 firms), we compute the one-step ahead forecast
ŷi,t+1 of the return as in (7) and predict the ordinal position of the asset
in relation to the overall market, that is, ẑi,t+1 = M−1PM

j=1 1(ŷit+1 ≥
ŷj,t+1). The sequence of one-step ahead forecasts is obtained with a rolling
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sample. For a sample size of T and with the first R observations, we estimate
the parameters of the model θ̂R and compute the one-step ahead forecast
ŷi,R+1(θ̂R). Next, using observations 2 to R + 1, we estimate the model
again to obtain θ̂R+1 and calculate the one-step ahead forecast ŷi,R+2(θ̂R+1).
We keep rolling the sample one observation at a time until we reach T , to
obtain θ̂T and the last one-step forecast ŷi,T+1(θ̂T ). In the first period of the
forecasting interval (R,T ), the investor observes the predicted ranking and
buys the top five performing assets. In every subsequent period, the investor
revises her portfolio, selling the assets that fall out of the top performers
and buying the ones that raise to the top, and she computes the one-period
portfolio return πt = K−1

PK
j=1 yjt where K = 5 is the number of assets

in the top performing portfolio. Every asset in the portfolio is weighted
equally.

The second trading rule is called “Position trading rule” and, though it
takes into account the cross-sectional position of an asset, ignores the non-
linearity of the model (mixture of normal densities) for expected returns.
The one-step ahead forecast for every asset in the market is obtained from
a linear specification of the conditional mean where the regressors are past
returns and past cross-sectional positions. As in the previous rule, the ordi-
nal position is predicted and a rolling sample scheme is used to obtain the
sequence of one-step ahead forecasts. The investor follows the same strategy
as before buying the top five performing assets and revising her portfolio in
every period.

The third trading rule is a buy-and-hold strategy of the market portfolio.
At the beginning of the forecasting interval, the investor buys the SP500
index and holds it until the end of the interval. At any given t, the one-
period portfolio return is πt = ymt where ymt is the return to the SP500
index.

The four trading rule is driven by the market efficiency hypothesis. We
call this rule the “Random walk trading rule”. If stock prices follow a random
walk, the best predictor of price is the previous price, and the best forecast
for the return of any given asset is zero. Hence πt = 0 for any t and any
asset.

In summary, three out of the four trading rules aim to assess the pre-
dictability of stock returns: the “VCR-position trading rule” claims that
stock returns are non-linearly predictable, the “Position trading rule” claims
that stock returns are linearly predictable, and the “Random walk trading
rule” claims that stock returns are linearly non-predictable. The “Buy-and-
hold the market trading rule” claims that actively managed portfolios have
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no advantage over passively index investing.

3.2 Loss functions: mean trading return and VaR

The simplest evaluation criterium is to compute the return of each trading
strategy over the forecasting interval (R,T ). Suppose that there are P pe-
riods in this interval. For every trading rule we evaluate the mean trading
return MTR = P−1

PT
t=R πt+1. The rule that provides the largest MTR

would be a preferred trading strategy. However, with each trading rule
we choose different portfolios that may have different levels of risk. The in-
vestor while pursuing a highMTR may also wish to control for catastrophic
events maintaining a minimum amount of capital to cushion against exces-
sive losses. Consequently, each trading rule would be evaluated according
to their ability to allocate the optimal amount of capital for unlikely events,
rendering a Value-at-Risk evaluation criterium necessary.

Consider a portfolio of assets whose return is given by πt. We are in-
terested in V aRπ

t+1(α), the one-step ahead Value-at-Risk forecast of πt at a
given nominal tail coverage probability α. This is defined as the conditional
quantile

Pr(πt+1 ≤ V aRπ
t+1(α)|=t) = α

If the density function of πt+1 belongs to the location-scale family (eg.
Lehmann 1983, p. 20), V aRπ

t+1(α) can be estimated as

V aRπ
t+1(α) = µt+1(θ̂t) + Φ

−1
t+1(α)σt+1(θ̂t)

where µt+1(θ̂t) is the conditional mean forecast of the return, σt+1(θ̂t) is the
conditional standard deviation forecast, Φt+1(.) is the conditional cumula-
tive distribution function of the standardized portfolio return, and θ̂t is the
parameter vector estimated with information up to time t.

We evaluate the trading rules according to three VaR based loss func-
tions. The first loss function aims to minimize the required capital to protect
the investor against a large negative return, the second loss function assesses
which trading rule provides the correct predicted tail coverage probability,
and the third loss function is based on quantile estimation and it evaluates
which trading rule provides the best estimate of the VaR.

The first loss function V1, suggested by Bao et al. (2002) sets the mini-
mum required capitalMRCt+1(α) = V aRπ

t (α). Over the forecasting period,
the trading rule that provides the lowest amount of capital to put aside to
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protect the investor from a large loss will be preferred

V1 ≡ P−1
TX
t=R

MRCt+1(α) = P
−1

TX
t=R

V aRπ
t (α)

The second loss function V2 aims to choose the trading rule that mini-
mizes the difference between the nominal and the empirical lower tail proba-
bility. It is proposed by Lee and Saltoglou (2001) as an out-of-sample evalua-
tion criterium based on the likelihood ratio statistic of Christofferson (1998).
Over the forecasting interval (R,T ), consider the following counts n0 =PT
t=R 1(πt+1 > V aR

π
t (α)) and n1 =

PT
t=R 1(πt+1 < V aR

π
t (α)). If the V aR

has been correctly estimated, n0 must be P ×(1−α) and n1 equals to P ×α.
In fact, the log-likelihood function of a sample {1(πt+1 < V aRπ

t (α)}Tt=R is
L(α) = (1−α)n0αn1 and the maximum likelihood estimator of α is α̂ = n1/P.
If we were to test H0 : α =nominal tail probability, the likelihood ratio test
2(logL(α̂)− logL (α)) would be a suitable statistic. The loss function V2 is
based in this statistic. A trading rule that minimizes V2 will be preferred.

V2 ≡ P−12 [logL(α̂)− logL (α)]

= P−12
TX
t=R

·
1(πt+1 < V aR

π
t (α)) log

α̂

α
+ 1(πt+1 > V aR

π
t (α)) log

1− α̂

1− α

¸
The third loss function V3 chooses the trading rule that minimizes the

objective function used in quantile estimation (Koenker and Bassett, 1978)

V3 ≡ P−1
TX
t=R

|πt+1 − V aRπ
t (α)| ×

× [(1− α)× 1(πt+1 < V aRπ
t (α)) + α× 1(πt+1 ≥ V aRπ

t (α))]

The trading rule that provides the smallest V3 is preferred because it indi-
cates a better goodness of fit.

3.3 Comparison of trading rules

The question of interest is, out of the four proposed trading rules, which
one is the best? Each rule produces different forecasts that are evalu-
ated according to the four loss functions introduced in the previous section:
−MTR,V1, V2, and V3 4. The best trading rule is the one that provides the

4We write a negative sign in the mean trading return (−MRT ) so as to minimize this
function as well as those based on V aR calculations.
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minimum loss. However, for every loss function, how can we tell when the
difference among the losses produced by each trading rule is statistically sig-
nificant? Furthermore, is it a pairwise comparison among the four trading
rules sufficient? Note that all trading rules are based on the same data, and
that their forecasts are not independent. We need a statistical procedure
to assess whether the difference among the losses is significant while, at the
same time, taking into account any forecast dependence across trading rules
and controlling for potential biases due to data snooping. This procedure
is the “reality check” proposed by White (2000). Suppose that we choose
one of the trading rules as a benchmark. We aim to compare the loss of
the remaining trading rules to that of the benchmark. We formulate a null
hypothesis where the trading rule with the smallest loss is not any worse
than the benchmark rule. If we reject the null hypothesis, there is at least
one trading rule that produces less loss than the benchmark. A brief sketch
of the formal testing procedure follows.

Let l be the number of competing trading rules (k = 1, . . . , l) to compare
with the benchmark rule (indexed as k = 0). For each trading rule k, one-
step predictions are to be made for P periods from R through T using a
rolling sample, as explained in the previous sections. Consider a generic loss
function L(Y, θ) where Y typically will consist of dependent variables and
predictor variables. In our case, we have four loss functions: −MTR,V1, V2,
and V3. The best trading rule is the one that minimizes the expected loss. We
test a hypothesis about an l×1 vector of moments, E(f∗), where f∗ ≡ f(Y, θ∗)
is an l× 1 vector with the kth element f∗k = L0(Y, θ∗) − Lk(Y, θ∗), for θ∗ =
plimθ̂T and where L0(.). is the loss under the benchmark rule and Lk(.) is
the loss provided by the k trading rule. A test for a hypothesis on E(f∗) may
be based on the l × 1 statistic f̄ ≡ P−1PT

t=R f̂t+1,where f̂t+1 ≡ f(Yt+1, θ̂t).
Our interest is to compare all the trading rules with a benchmark.

An appropriate null hypothesis is that all the trading rules are no bet-
ter than a benchmark, i.e., H0 : max1≤k≤lE(f∗k ) ≤ 0. This is a mul-
tiple hypothesis, the intersection of the one-sided individual hypotheses
E(f∗k ) ≤ 0, k = 1, . . . , l. The alternative is that H0 is false, that is, the
best trading rule is superior to the benchmark. If the null hypothesis is
rejected, there must be at least one trading rule for which E(f∗k ) is positive.
Suppose that

√
P (̄f − E(f∗)) d→ N(0,Ω) as P (T ) → ∞ when T → ∞, for

Ω positive semi-definite. White’s (2000) test statistic for H0 is formed as
V̄ ≡ max1≤k≤l

√
P f̄k,which converges in distribution to max1≤k≤lGk under

H0, where the limit random vector G = (G1, . . . , Gl)0 is N(0,Ω). However,
as the null limiting distribution of max1≤k≤lGk is unknown, White (2000,
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Theorem 2.3) shows that the distribution of
√
P (f̄∗ − f̄) converges to that

of
√
P (f̄ − E(f∗)), where f̄∗ is obtained from the stationary bootstrap of

Politis and Romano (1994). By the continuous mapping theorem this re-
sult extends to the maximal element of the vector

√
P (̄f∗ − f̄) so that the

empirical distribution of

V̄ ∗ = max
1≤k≤l

√
P (f̄∗k − f̄k), (9)

is used to compute the p-value of V̄ (White, 2000, Corollary 2.4). This
p-value is called the “Reality Check p-value”.

3.4 Evaluation of trading rules

The out-of-sample performance of the aforementioned trading rules is pro-
vided in Table 4. In the upper panel, the trading rules are evaluated ac-
cording to the MTR function, and in the lower two panels according to the
V aR loss functions. In both cases, the in-sample horizon is the first 300
periods, R = 300, and the out-of-sample horizon is 299 periods, P = 299.
The stationary bootstrap is implemented with 1000 bootstrap resamples and
smoothing parameter q = 0.255. In the first column of each panel, we report
the benchmark trading rule to which the remaining rules will be compared.

[Table 4 about here]

In the columnMTR of the upper panel, we report the value of this func-
tion for each trading strategy. The “VCR-position” rule produces a mean
trading return of 0.264 that is twice as much as the next most favorable
rule, which is the “position” trading rule. This one and the “buy-and-hold
the market” rule produce similar results. The “random walk” rule is the
least favorable. The statistical difference among the rules is assessed with
the White procedure. In the column White, we report the reality check
p-values. The trading rules “position”, “buy-and-hold the market”, and
“random walk” are clearly dominated with p-values less than 5%, while
the “VCR-position” rule is the dominant rule with a p-value of 1.0. We
also calculate the Diebold-Mariano-West test statistic that corresponds to
a pairwise comparison of the benchmark rule with the best of the alterna-
tive rules. This statistic points in the same direction as that of White’s:
the “VCR-position” is the preferred trading rule when the investor aims to
maximize returns.

5We experiment with different smoothing parameters q = 0.50 and q = 0.75 and we
obtain similar results.
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In the lower two panels of Table 4, we report the out-of-sample perfor-
mance of the trading rules evaluated according to the loss functions V1, V2,
and V3, for two tail nominal probabilities α = 1% and α = 5%6. With re-
spect to V1, the “position” trading rule seems to dominate statistically the
remaining two rules providing the least amount of capital. However, when
we consider V2, the same rule performs very poorly because it estimates a
tail probability of 7.2% for a nominal of 1%, and 14% for a nominal of 5%.
Thus, a minimum amount of capital comes to the expense of a high failure
rate. The “VCR-position” rule delivers the best tail coverage, estimating
a tail probability of 1.1% for a nominal of 1% and 4.3% for a nominal of
5%. The White p-value confirms that this is the dominant rule. With re-
spect to the loss function V3, the three trading rules produce similar losses,
however the differences are statistically significant and the White p-value of
1.0 asserts that, once more, the “VCR-position” trading rule dominates the
alternative strategies.

4 Conclusions

From an empirical perspective, we have extended the notion of risk. Classical
asset pricing theories explain risk as the covariance of individual returns with
a set of factors. We have borrowed from the classics the abstract notion of
asset interdependence as well as the idea of the market as the main factor
that drives returns, but we have chosen a different route on materializing
the abstract. Our notion of the market is the cross-sectional distribution of
returns at a given moment on time, and our notion of interdependence is
the cross-sectional position (ranking) of a given asset return within the full
set of assets that constitute the market. Our task has been to investigate
the implications of these choices for asset returns.

We have modelled the joint dynamics of the cross-sectional position and
the asset return by analyzing (1) the marginal probability distribution of
a sharp jump in the cross-sectional position, and (2) the probability distri-
bution of the asset return conditional on a jump. The former is conducted
within the context of a duration model, and the latter assumes that there
are different dynamics in returns depending upon whether or not a jump has
occurred. We have estimated and tested the proposed models with weekly
returns of those SP500 corporations that have survived in the index from
January 1, 1990 to August 31, 2000. The estimation results for the 343 firms

6We have removed from this comparison the “random walk” trading rule because there
is indeterminacy on the assets that should form the portfolio.
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are diverse but, broadly speaking, we have found that the expected probabil-
ity of jumping increases when the firm’s cross-sectional position is either at
the very top or the very bottom of the cross-sectional distribution of returns,
hence extreme positions tend to be shorter lived than intermediate ones. For
a representative firm such as one with median parameter estimates, we have
calculated that the expected duration is between 4 and 5 weeks implying
a minimum expected probability of a sharp jump of 20-25%. Furthermore,
we found that the expected return is a function of past cross-sectional po-
sitions and that there are different dynamics when the return is either at
extreme positions (top or bottom of the cross-sectional distribution) or at
intermediate positions.

From an investor’s point of view, the most relevant question is how useful
is this model. We have judged the adequacy of our model in two dimen-
sions: profitability and risk monitoring. Different trading rules are com-
pared within the statistical framework of White’s reality check. A trading
rule based on the one-step ahead forecast of our model dominates alternative
rules based on standard models. It provides superior mean trading returns
and at the same time, estimates correctly the Value-at-Risk.

We summarize this research by underlining two main contributions. First,
the conditional probability of jumping cross-sectional positions is forecastable.
This probability is named Varying Cross sectional Risk because provides
an assessment of the chances of being a winner or a looser within the avail-
able set of assets. Secondly, the marginal probability distribution of returns
is a mixture of distributions that can explain the unconditional leptokurtosis
found in financial asset returns, even in cases where conditional heteroscedas-
ticity is not present. Based on these two contributions, we can predict the
one-step ahead ranking of asset returns.
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Table 1 
Descriptive Statistics of Weekly Returns of the SP500 firms 
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Cross-sectional frequency distribution of unconditional moments 

0

4

8

12

16

20

24

28

32

36

-1.0 -0.5 0.0 0.5

Series: MEAN
Sample 1 343
Observations 343

Mean      -0.007470
Median  -0.016200
Maximum  0.771030
Minimum -0.964030
Std. Dev.   0.291280
Skewness  -0.134563
Kurtosis   2.735350

Jarque-Bera  2.036118
Probability  0.361296

 

0

10

20

30

40

50

60

70

2 4 6 8 10 12 14

Series: STD. DEVIATION
Sample 1 343
Observations 343

Mean       4.734877
Median   4.372920
Maximum  13.53324
Minimum  2.475010
Std. Dev.   1.583924
Skewness   1.911303
Kurtosis   8.657083

Jarque-Bera  666.2048
Probability  0.000000

 

0

20

40

60

80

100

-2.5 0.0 2.5

Series: SKEWNESS
Sample 1 343
Observations 343

Mean      -0.009417
Median   0.014850
Maximum  4.706040
Minimum -4.086720
Std. Dev.   0.681469
Skewness  -0.173610
Kurtosis   17.02490

Jarque-Bera  2812.864
Probability  0.000000

 

0

40

80

120

160

200

240

280

320

0 40 80 120 160 200

Series: KURTOSIS
Sample 1 343
Observations 343

Mean       8.475258
Median   5.228110
Maximum  229.9880
Minimum  3.116470
Std. Dev.   17.33199
Skewness   10.07482
Kurtosis   117.6397

Jarque-Bera  193627.3
Probability  0.000000

 



Table 2 
Cross-sectional frequency distribution of the estimates of the duration model 
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Table 2 (cont.) 
Cross-sectional frequency distribution of the estimates of the duration model 
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Table 3 
Cross-sectional frequency distribution of the estimates  

of the nonlinear model for expected returns 
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Table 4 
 

Out-of-sample performance of the trading rules 
 
Mean Trading Return 

Benchmark trading rule MTR White p-value DMW p-value 
VCR-Position 0.264 1.000 0.984 
Position 0.131 0.021 0.002 
Buy-and-hold market 0.115 0.019 0.001 
Random walk 0.000 0.000 0.000 

 
 
 
 
 

VaR based loss functions 
01.0=α  

Benchmark  
trading rule 

V1 White  
p-value 

V2 α̂  White  
p-value 

V3 White 
p-value 

VCR-Position 1.672 0.000 0.003 0.011 1.000 0.020 1.000 
Position 0.980 1.000 0.097 0.072 0.000 0.038 0.010 
Buy-and-hold 
market 

2.351 0.000 0.040 0.029 0.000 0.040 0.011 

 
05.0=α  

Benchmark  
trading rule 

V1 White  
p-value 

V2 α̂  White  
p-value 

V3 White  
p-value 

VCR-Position 1.076 0.000 0.011 0.043 1.000 0.075 1.000 
Position 0.565 1.000 0.171 0.140 0.000 0.101 0.034 
Buy-and-hold 
market 

1.625 0.000 0.055 0.081 0.000 0.141 0.000 
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Figure 1
Stylized description of the modelling problem




