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Busch and Wen [4], henceforth referred to as BW, analyze the following game.
In each period, two players bargain - in Rubinstein’s alternating-offers protocol -
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over the distribution of a fixed and commonly known periodic surplus. If an offer
is accepted, the game ends and each player gets his share of the surplus according
to the agreement at every period thereafter. After any rejection, but before the
game moves to the next period, the players engage in a normal form game to
determine their payoffs for the period. The Pareto frontier of the disagreement
game is contained in the bargaining frontier. We shall refer to this game as the
negotiation game.

The negotiation game generally admits a large number of subgame-perfect
equilibria, as summarized by BW in a result that has a same flavour as the Folk
theorem in repeated games. The structure of the disagreement game determines
what can be sustained as credible threats in the negotiation game and thus shapes
the lowest possible subgame-perfect equilibrium (SPE) payoff for each player. BW
then show that, provided the players are sufficiently patient, any payoff vector
consistent with these payoffs can be supported as a SPE outcome in the negotiation
game. Moreover, one can construct a pair of equilibrium strategies that generate
any length of delay in reaching an agreement as well as a sequence of inefficient
actions taken after disagreements. The negotiation game has a unique (efficient)
equilibrium only in the degenerate case in which any Nash equilibrium payoff of
the disagreement game coincides with its minmax point.

The negotiation game and its equilibria can be interpreted from two alternative
viewpoints. Naturally, we can think of the game as a standard alternating-offers
bargaining game with endogenous disagreement payoffs.! In fact, Fernandez and
Glazer [7] (and also Haller and Holden [11]) derive much of the insights in a
well-known application of the game along this bargaining interpretation. They
consider the standoff between a union and a firm. During a contract renewal pro-
cess, a union and a firm renegotiate over the distribution of a periodic revenue,
but a disagreement puts them in a strategic situation. The union can either accept
the firm’s wage offer or forego the status quo wage for one period and strike be-
fore making a counter-offer next period. (The firm is inactive in the disagreement
game.) Fernandez and Glazer’s characterization of subgame-perfect equilibria in
this specific setting contains many of the salient features of the equilibria in the
general game, and thus, offers an explanation as to why such socially wasteful
activities as strikes may take place even in a situation where the agents are com-
pletely rational and fully informed.

The alternative viewpoint focuses on the repeated game aspect of the nego-
tiation game (and this is the interpretation we want to emphasize in the paper).
Real world repeated interactions are often accompanied by negotiations which

IThe issue of endogenous disagreement payoffs in a bargaining situation goes back at least
to Nash [14] who considers the problem in a co-operative framework.



can lead to mutual agreement. While equilibria in standard repeated games are
usually given the interpretation of implicit, self-enforcing agreements, the situa-
tions depicted by the negotiation game are associated with explicit contracts that
can bind the players to a particular set of outcomes. For example, we observe
firms engaged in a repeated horizontal or vertical relationship negotiating over a
long-term contract, or even a merger. Similarly, countries involved in international
trade often attempt to settle an agreement that enforces fixed quotas and tariffs.

The Folk theorem gives economic theorists little hope of making any predic-
tions in repeated interactions. However, as the aforementioned examples suggest,
it seems that negotiation is often a salient feature of real world repeated interac-
tions, presumably to enforce co-operation and efficient outcomes. Can bargaining
be used to isolate equilibria in repeated games? Unfortunately, the contributions
of BW and others demonstrate that Folk theorem type results with a large num-
ber of equilibria which involve delay and inefficiency may persist even when the
players are endowed with an opportunity at the beginning of each period to settle
on the efficient outcome once and for all.

In order to enrich this line of enquiry, on the issue of how bargaining can be
used to select (efficient) equilibria in repeated games, this paper departs from the
standard rationality paradigm and introduces the notion of complexity into the
negotiation game. Our central message is that the equilibrium strategies support-
ing inefficient outcomes in this game are unnecessarily too complex to implement.
Bargaining combined with the players’ preference for less complex strategies (at
the margin) select only efficient outcomes in the repeated game.

There are many different ways of defining the complexity of a strategy. In
the literature on repeated games played by automata the number of states of the
machine is often used as a measure of complexity (Rubinstein [20], Abreu and
Rubinstein [1], Piccione [17] and Piccione and Rubinstein [18]). This is because
the set of states of the machine can be regarded as a partition of possible histo-
ries. In particular, Kalai and Stanford [13] show that the counting-states measure
of complexity, henceforth referred to as state complexity, is equivalent to looking
at at the number of continuation strategies that the strategy induces at different
histories of the game. We extend this notion of strategic complexity to the ne-
gotiation game, and facilitate the analysis by considering an equivalent “machine
game”.

The alternating-offers bargaining imposes an asymmetric structure on the ne-
gotiation game which is stationary only every two periods (henceforth we shall
refer to every two periods as a “stage”). To account for such structural asymme-
try of the game, we shall adopt machine specifications that formally distinguish
between the different roles played by each player in a given stage. A player can
be either proposer or responder. In the main machine specification used in the
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analysis, there are two “sub-machines”, each playing a role (of a proposer or a re-
sponder) with distinct states, output and transition functions. Transition occurs
at the end of each period, from a state belonging to one sub-machine to a state
belonging to the other sub-machine as roles are reversed.

We first demonstrate that the result of Kalai and Stanford [13] holds for our
specification of machines. The total number of states used by each sub-machine
under this specification is equivalent to measuring the total number of continuation
strategies that the implemented strategy induces at the beginning of each period.

The concept of Nash equilibrium is then refined to incorporate the players’
preference for less complex strategies. In our choice of equilibrium notions, com-
plexity enters a player’s preferences, together with the payoffs in the underlying
game, either lexicographically or as a positive fixed cost c¢. The larger this cost
is, the more is required of complexity. We can thus interpret it as a measure of
the players’ “bounded rationality”. We will refer to a Nash equilibrium (of the
machine game) with fixed complexity cost ¢ by NEMc and adopt the convention
of using ¢ = 0 (and thus NEMO) to refer to the lexicographic case. We also in-
voke the notion of subgame-perfection and consider the set of NEMc that are
subgame-perfect, referred to as SPEMec.

The selection result is as follows. We first show that, independently of the
degree of complexity cost and discount factor, if an agreement occurs in some finite
period as the outcome of some NEMc then it must occur within the very first stage
of the game, and moreover, the players’ equilibrium strategies must be stationary
(history-independent). Since any stationary subgame-perfect equilibrium in the
negotiation game is efficient (see BW), it then follows that the set of SPEMc
inducing an agreement must be efficient.

We then consider the other possible outcome, one in which there is perpetual
disagreement. Here the following set of results are shown for a discount factor
arbitrarily close to one. We first show that, given any non-negative complexity
cost, every SPEMc involving perpetual disagreement is at least long-run (almost)
efficient; that is, the players must reach a finite period in which the continuation
game then on is (almost) efficient. It follows that, in cases where all disagree-
ment game outcomes are inefficient, delay cannot persist indefinitely under any
SPEMec. In fact, if we assume a strictly positive complexity cost, then we also de-
rive that perpetual disagreement is not consistent with SPEMc however small that
complexity cost is (even when agreement only weakly dominates disagreement).
Combined with the previous set of results on agreement, this implies a very strong
prediction for the case in which players are sufficiently patient. For any ¢ > 0 (or
if ¢ = 0 and agreement strictly dominates disagreement), every SPEMc of the
negotiation game must be efficient such that an agreement is reached in the first
stage and the associated strategies are stationary.
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We also explore an alternative machine specification that employs more fre-
quent transitions and hence account for finer partitions of histories and continua-
tion strategies. This machine consists of four sub-machines; while keeping the role
distinction, transition occurs twice in each period at the end of bargaining and
at the end of the disagreement game. We obtain sharper results in this case. The
results on perpetual disagreement do not depend on the discount factor.

Our contribution thus takes the study of complexity in repeated games a step
further from the aforementioned literature in which complexity has yielded only
a limited selective power. (See also Bloise [3] who shows robust examples of two-
player repeated games in which the set of Nash equilibria with complexity costs co-
incides with the set of individually rational payoffs.) This paper demonstrates that
complexity and bargaining in tandem may offer an explanation for co-operation
and efficiency in repeated games.

There have been extensive and wide-ranging approaches at restricting the un-
wieldily large set of equilibria resulting from the Folk theorem. Among these
attempts, one literature motivates the notion of bargaining and negotiation by
invoking the idea that punishments that are inefficient may be vulnerable to rene-
gotiation and hence not credible. This literature suggests a solution concept based
on renegotiation-proofness.? This line of research takes a “black box” approach to
renegotiation. Unlike in the negotiation game, the process of (re)negotiation is
not explicitly modelled; rather, the renegotiation arguments are embedded in the
additional restrictions imposed on an equilibrium.

We also want to mention several recent papers that have rekindled the issue
of complexity in equilibrium selection, and in particular, demonstrated that com-
plexity drives efficient outcomes in some specific games. Chatterjee and Sabourian
[5][6] consider the multi-person Rubinstein bargaining game, and Sabourian [21],
Gale and Sabourian [9][10] consider market games with matching and bargaining.
(These papers are also interested in other issues such as the uniqueness of the
equilibrium set and the competitive nature of equilibria in the case of the mar-
ket games.) In contrast to the present paper, however, these papers build upon a
different notion of strategic complexity. They consider the complexity of response
rules within a period. A simple response rule according to their notion of response
complexity uses only the information available in the current period and not the
history of play up to the period. Introducing this (together with state complexity
in Sabourian [21]) delivers the efficiency results in those games.

The paper is organized as follows. In the following section, we describe the
negotiation game and BW’s main results. We then introduce the notion of com-

2There are in fact many competing proposals of the concept with largely different predictions.
See Pearce [16] and Chapter 5.4 of Fudenberg and Tirole [8] for a survey.



plexity in terms of strategies and machines. The machine game will be described.
Section 4 presents the main analysis and results. We then run the analogous re-
sults with an alternative, more elaborate machine specification in Section 5. We
finally conclude. The appendices contain some relegated proofs and also explains
that the equilibrium concept we use closely parallels that of Abreu and Rubinstein

1].

2 The Negotiation Game

Let us formally describe the negotiation game, as defined by BW. There are two
players indexed by ¢ = 1,2. In the alternating-offers protocol, each player in turn
proposes a partition of a periodic surplus whose value is normalized to one. If the
offer is accepted, the game ends and the players share the surplus accordingly at
every period thereafter. If the offer is rejected, the players engage in a one-shot
game, called the “disagreement game”, before moving onto the next period in
which the rejecting player makes a counter-offer.

We index the (potentially infinite) time periods by t = 1,2, ... and adopt the
convention that player 1 makes offers in odd periods and player 2 makes offers
in even periods. Let A? = {x = (21,22) | Y., 2; = 1} be a partition of the unit
periodic surplus. A period then refers to a single offer # € A? by one player, a
response made by the other player - acceptance “Y” or rejection “N” - and the
play of the disagreement game if the response is rejection. The common discount
factor is 6 € (0,1).

The disagreement game is a two-player normal form game, defined as G =
{A1, Ao, ui(+), ua(-)}. A; is the set of player i’s actions and u;(-) : Ay X Ay — R is
his payoff function in the disagreement game. We shall denote the set of outcomes
in G by A = A; x Ay with its element indexed by a.® Define u(-) : A — R? and
assume that it is bounded. Each player’s minmax payoff is normalized to zero.
Also, we assume that for any a € A

Ul(&) + UQ(CL) S 1

Agreement weakly dominates disagreement. Thus, the bargaining offers the players
an opportunity to settle on the efficient outcome once and for all.

Two types of outcome paths are possible in the negotiation game; one in which
an agreement occurs in a finite time, and one in which disagreement continues
perpetually. Let T denote the end of the negotiation game and a' the disagreement

3The normal form may involve sequential moves. In this case, A; will represent player i’s set
of strategies, rather than actions, in the disagreement game.



game outcome in period ¢t < T. If T = 0o, we mean an outcome path in which
agreement is never reached. Player i’s (discounted) average payoff in this case is

equal to

(1=06)) 6" u(a') .
t=1
If T < oo, denote the agreed partition in T' by z = (21, 23) € A?. Player i’s payoff
from such an outcome path amounts to

T-1

(1-19) Z(St_lui (a") +6" "2 .

t=1

The negotiation game is stationary only every two periods (beginning with an
odd one) or “stage”. In specifying the players’ strategies (and later machines),
we shall formally distinguish between the different roles played by each player
in each stage game. He can be either the proposer (p) or the responder (r) in a
given period. We shall index a player’s role by k. The role distinction provides a
natural framework to capture the structural asymmetry that the alternating offers
bargaining imposes on the repeated (disagreement) game.

In order to define a strategy, we first need to introduce some further notations.
We shall use the following notational convention. Whenever superscripts/subscripts
7 and 7 both appear in the same exposition, we mean i,j = 1,2 and ¢ # j. Simi-
larly, whenever we use superscrpts/subscripts k and [ together, we mean k, 1 = p,r
and k # .

We shall denote a history of outcomes in a period by e, and this belongs to
the set £ = {(2",Y), (2", N, a)}sica2.acai=12 Where the superscript ¢ represents
the identity of the proposer in the period. Let ¢! be the outcome of the period ¢.

We also need notation to represent information available to a player within a
period when it is his turn to take an action given his role. To this end, we define a
“partial history” (information within a period) , d, as an element in the following
set

D = {07 (IZ>> (ivia N)}xieN,i:l,Q .
For example, the null set here refers to the beginning of a period at which the
proposer has to make an offer; (z°, N) represents a partial history of an offer by
player i followed by the other player’s rejection.
Also, let us define

Dy, ={d € D | it is i’s turn to play in role k after d in the period}

Thus, we have A
Dip = {®v (xz> N)}xieAQ
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and A ‘
Dir = {(ZL‘J), (Ij, N)}xieAQ .

We denote the set of actions available to player ¢ in the negotiation game by
C;,=A°UYUNUA4, .

Let us denote by Cy(d) the set of actions available to player i given his role k& and
a corresponding partial history d € D;;. Thus, we have

A? ifd=10
Ci (d):{ A; ifd= (2, N)

and / 'y ,
Y,N} ifd=a’
Cirld) = { A; if d = (27, N)

Let
H =FEx---xFE
S —

t times

be the set of all possible histories of outcomes over ¢ periods in the negotiation
game, excluding those that have resulted in an agreement. The initial history is
empty (trivial) and denoted by H' = (. H* = U2, H' denotes the set of all
possible finite period histories.

For the analysis, we shall divide H* into two smaller subsets according to the
different roles that the players play in each stage. Let H}, be the set of all possible
histories of outcomes over t periods after which player ¢’s role is k. Notice that
Hj, = Hj;. Also, let Hi = U2 Hy.. Thus, the set of all possible periodic histories
of the negotiation game can be written as H> = H® U Hi® (i = 1,2).

A strategy for player i is then a function

such that for any (h,d) € HY X Dy we have fi(h,d) € Ci(d). The set of all
strategies for player ¢ is denoted by Fj.

We can define a stationary (or history-independent) strategy in the following
way.

Definition 1 A strategy f; is stationary if and only if f;(h,d) = f;(h',d) Yh,h' €
HY and ¥Yd € Dy, for k = p,r. A strategy profile f = (fi, f—i) is stationary if f;
18 stationary for all 1.



The behavior induced by such a strategy may depend on the partial history
within the current period but not on the history of the game up to the period.
Notice also that a stationary strategy profile always induces the same outcome in
each stage of the game.

In the spirit of the Folk theorem, BW characterize the set of subgame-perfect
equilibrium (SPE) payoffs of the above game. BW, to this end, compute the lower
bound of each player’s SPE payoff in the negotiation game with discount factor ¢.

Define

w; = max {uj(a) - [gleaj{i ui(aj, a;) — ui(a)} }
which BW assume to be well-defined. Note also that w; < 1 given the assumption
that u(a) < 1Va € A, and w; > 0 if G has at least one Nash equilibrium (given
the minmax point). Then, the infimum of player i’s SPE payoffs in the negotiation
game beginning with his offer (given ¢) is not less than

_l—wj

while the infimum of the other player’s SPE payoffs in the same game is not less

than

y0) = =5 +6
BW show that, provided the players are sufficiently patient, these exists a SPE of
the negotiation game (beginning with ¢’s offer) in which the players obtain these
lower bounds.
Define the limit of these infima as § goes to unity such that

1 —w; 1 —w
v; = 2w3 and v; = 2w .

We are now ready to formally recite the key results of BW below.

BW Result 1 For any payoff vector (v1,v9) of the negotiation game such that
v; > vy and vy > vy, 3 € (0,1) such that Y6 € (,1) (vy,vq) is a SPE payoff
vector of the negotiation game with discount factor d.

This is BW’s main Theorem. Several comments are due. First, many outcome
paths are possible to support a feasible payoff vector in equilibrium, some of which
will involve delays, and moreover, inefficient disagreement game outcomes before
agreement. Perpetual disagreement is also possible.



Second, notice that what determines the nature of equilibria in the negotiation
game is the structure of the disagreement game, and not the discount factor or
the bargaining surplus available. In particular, the negotiation game will admit
a unique subgame-perfect equilibrium only if wy; = ws = 0 which implies that
any Nash equilibrium payoff vector of the disagreement game has to coincide with
its minmax point. Thus, in general, the negotiation game will have a continuum
of equilibria much in the way the Folk theorem characterizes the repeated game
(even when the disagreement game payoffs are always uniformly small relative to
agreement). Nonetheless the forces of bargaining still restrict the set of feasible
equilibrium payoffs in the negotiation game substantially compared to the set of
individually rational payoffs in the disagreement (repeated) game.

Another relevant result of BW concerns stationary strategies. For a pair of
stationary strategies to constitute a SPE of the negotiation game, only a Nash
equilibrium of the disagreement game can be played after a rejection; otherwise,
there will be a profitable deviation for some player. We can thus analyze the ne-
gotiation game as if there is a fixed sequence of disagreement game plays, and
consequently, the Rubinstein [19] bargaining result carries over. When we hence-
forth refer to an equilibrium as being efficient, we mean that its outcome is such
that either an agreement takes place immediately in the first period or otherwise
the disagreement payoffs sum up to one in every period up to agreement. The
following puts together Proposition 1 and Corollary 1 of BW.

BW Result 2 If G has a Nash equilibrium, denoted by a* € A, then the negotia-
tion game has a subgame-perfect equilibrium in which the strategies are stationary

and player 1’s offer z = (21, z3) € A? such that

L+ 6uy (a*) —uy (a*)
N 1+6

21
15 accepted immediately. Any other stationary SPE is efficient.

Thus, any stationary SPE of the negotiation game, if exists (which is guar-
anteed if the disagreement game has at least one Nash equilibrium), must be
efficient. Delay is possible (either over one period or indefinitely), but then the
Nash equilibrium payoffs must be efficient, i.e. ), u;(a*) = 1, such that the players
are always indifferent between agreement and delay of one period. Note also that
if the disagreement game has multiple Nash equilibria there can be many differ-
ent (but all efficient) payoff distributions that will support the above equilibrium
outcome of the negotiation game.
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3 Complexity, Machines, and Equilibrium

There are many alternative ways to think of the “complexity” of a strategy in
dynamic games. One natural and intuitive way to measure strategic complexity,
which we shall adopt in the paper, is to consider the total number of distinct
continuation strategies that the strategy induces at different histories (Kalai and
Stanford [13]).

In a repeated game, it is natural to take the measure over all its possible
subgames. In the negotiation game, each stage game is sequential and this means
that we can have several different measures of complexity this way. For instance, we
can take all possible subgames at the beginning of each period of the negotiation
game to correspond with our definition of periodic histories H'. Let f;|h be a
continuation strategy at history h € H* induced by f; € F;. Thus,

filh(h',d) = fi(h, 1 d) for any (h,h',d) € HS X Dy for any k .

Also, let us define the set of all such continuation strategies by F;(f;) = {filh : h €
H®>}. Then the cardinality of this set provides a measure of strategic complexity.
Let us call it comp(f;).

The set of continuation strategies can also be divided into smaller sets ac-
cording to the role specification. Define Fii(fi) = {filh : h € H}. We have
Fi(f;) = U Fir(f;). Complexity can then be equivalently measured by comp(f;) =
> & |Fir(fi)|. We can also measure complexity over finer partitions of histories and
corresponding continuation strategies. As we shall see, the precise definition of
complexity is going to play some role in shaping the results.

In dynamic games any strategy can be implemented by an automaton or a
“machine” (we shall clarify this statement below). Moreover, Kalai and Stanford
[13] show that in repeated games the above notion of complexity of a strategy
(the number of continuation strategies) is equivalent to counting the number of
states of the (smallest) automaton that implements the strategy. Thus, one could
equivalently describe any result either in terms of underlying strategies and their
complexity (comp(-)) or in terms of machines and their number of states.

We shall establish below that this equivalence between the two representa-
tions of strategic complexity also holds in the negotiation game. Our approach to
complexity will then be facilitated in machine terms as this will provide a more
economical platform to present the analysis of complexity. Each player’s strategy
space in the negotiation game will be taken as the set of all machines and the
players simultaneously and independently choose a single machine at the begin-
ning of the negotiation game. This is the “machine game”, a term which we shall
interchangeably use with the negotiation game.
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Since each stage game of the negotiation game has a sequential structure, many
different machine specifications are possible to equivalently represent a strategy.
(The same is also the case in other sequential dynamic games; see Piccione and
Rubinstein [18], Chatterjee and Sabourian [5][6] and Sabourian [21]). The fact
that the stage game is also asymmetric across its two periods - a player switches
his role in the bargaining process - adds to this issue of multiple possible machine
specifications.

In this paper, we present two particular machine specifications. We choose to
run the analysis first with the simpler of the two. The results are in fact sharper un-
der the other specification, but our chosen order of analysis will serve to strengthen
the expositional flow. As we shall see later, counting the number of states for these
machines corresponds precisely to the manner in which we divide the histories and
accordingly define the notion of complexity in terms of (continuation) strategies.

The following defines a machine that employs two “sub-machines”.

Definition 2 (Two sub-machine (2SM) specification) A machine (automa-
ton), M; = {M,,, M, }, consists of two sub-machines M;, = (Qip, qilp, Nips Mip) and
Mir = (Qir; q1'1r7 )‘ih Mll) where fO’I" any ka [ = b,r

Qi s the set of states;

¢, s the initial state belonging to Qq;

Aik - Qi X Dy — C; is the output function such that
Xit(qi, d) € Cip(d), Yqix € Qi and ¥d € Dyy; and

Wik - Qi X E— Qg is the transition function.

Each sub-machine in the above definition of a machine consists of a set of
distinct states, an initial state and an output function enabling a player to play
a given role. Transitions take place at the end of each period from a state in one
sub-machine to a state in the other sub-machine as roles are reversed each period.
We shall sometimes refer to a machine in the above definition simply as a 2SM.

We shall assume that each sub-machine has to have at least one state.* But
notice that we do not assume finiteness of a machine; each sub-machine may have
any arbitrary (possibly infinite) number of states. This is in contrast to Abreu and
Rubinstein [1] and others who consider finite automata. Assuming that machines
can only have a finite number of states is itself a restriction on the players’ choice
of strategies.

4We could also define a distinct terminal state for each sub-machine. This is immaterial. We
are assuming that if an offer is accepted by the responder, M; enters the terminal state of the
relevant sub-machine and shuts off.
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Notice also that the initial state of the sub-machine that operates in the sec-
ond period is in fact redundant because the first state used by this sub-machine
depends on the transition function taking place between the first two periods of
the game (in terms of strategies, the continuation strategy from the second period
on can be contingent on what happens in the first period). Nevertheless, we endow
both sub-machines with an initial state for expositional ease.

We can now formally state what we mean by a machine implementing a strat-
egy in the negotiation game. Consider a machine M; = {M,,, M;.} where, for
k=mp,r, Myt = (Qir, @Grs Nik, iir)- For every k = p,r and for any h € H;®, denote
the state at history h by ¢;(h) € Q. Formally if h = (', ..., e!™1) then ¢;(h) = ¢!
where for any 0 < 7 <'t, ¢7 is defined inductively by

1 qilk if 7 is in role k initially at ¢t =1
%= qill if 7 is in role [ initially at t =1

and for 7 > 0

_ pa(gl ' e™Y)  ifiisinrole k at T
% = pa(qtem™ ) ifiisinrole l at T

Definition 3 M; implements f; if Yk, YVh € HY and d € Dy,
Air(q(h),d) = fi(h, d)
where q(h) is defined inductively as above.
The following defines a minimal machine.

Definition 4 A machine is minimal if and only if each of its sub-machines has
exactly one state.

A minimal 2SM implements the same actions in every period regardless of
the history of the preceding periods, provided that the partial history within the
current period (given a role) is the same. Hence, it corresponds to a stationary
strategy as in Definition 1.

We have thus far established that machines and strategies are equivalent in the
negotiation game. Now let us formally show that comp(f;) is equivalent to counting
the total number of states of the machine that implements the strategy f;. It must
be stressed here that the exact specification of a machine is important in qualifying
this statement. Since in defining comp(f;) we take continuation strategies at the
beginning of each period, we need transitions to take place between periods in
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accordance with the continuation points chosen. It is also important that each
sub-machine uses its own distinct set of states.

Let ||M;|| = >, |Qix| be the total number of states (or size) of machine M,
in the 2SM specification. The cardinality of the set of continuation strategies
that a strategy induces at the beginning of each period of the negotiation game
corresponds to the size of the smallest 2SM implementing the strategy.

Proposition 1 For every f; € F; let ®(f;) be the set of 25Ms that implement f;.
Also, let M; = {M,,, M;,} be such that

|34 € {M: € ®(f) | 1M < M) | VM € ®(f)} -
Then, we have |Fy(fi)| = 1Mz for any k = p,r and thus | VL] = comp(f;).

Proof. The proof is a direct application of the proof of Theorem 1 in Kalai
and Stanford [13]. For ease of exposition, it is relegated to Appendix A. ||

Given this result, we now formally define the notion of complexity in terms of
machines, as adopted in the literature on repeated games played by automata a
la Rubinstein [20] and Abreu and Rubinstein [1].°

Definition 5 (State complexity) A machine M] is more complex than another
machine M;, or M| = M;, if ||M!|| > ||M;||. Also, we say that M| is at least
complex as M;, or M| = M;, if || M]|| > || M;]|.

To wrap up the description of the machine game, let us fix some more no-
tational conventions. Let M = (Mj, Ms) be a machine profile. There are several
variables that will depend on the particular machine profile chosen. Given the
machine profile M, T'(M) is the end of the negotiation game; z(M) € A? is the
agreement offer if T'(M) < oo; a'(M) is the disagreement game outcome in period
t <T(M); and ¢f(M) is the state of player i’s (sub-)machine appearing in period
t <T(M) induced by M.

SWe also draw attention to the work of Binmore, Piccione, and Samuelson [2] who propose
another notion of complexity similar to state complexity considered in this paper and others.
According to their “collapsing state condition”, an automaton M' is less complex than another
automaton M? if the same implementation can be obtained by consolidating a collection of
states belonging to M? into a single state in M. It will not be difficult to see that our results
will also hold under this scheme.
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Similarly, we denote by wf(M) player i’s (discounted) average continuation
payoff at period t when the machine profile M is chosen, and this amounts to

(1 - 8) X, 7 ui(a (M) if T(M) = o0

M) =< (1 —=8) 2 67y (a7 (M) 4 671 2(M) if t < T(M) < oo
We shall use the abbreviation 7} (M) = m;(M).

For ease of exposition, the argument in M will sometimes be dropped when
we refer to one of these variables that depends on the particular machine profile,

e.g. mi = wi(M). Unless otherwise stated, the variable will refer to the profile in
the claim.

We now introduce an equilibrium notion that captures the players’ preference
for less complex strategies. There are several ways of refining Nash equilibrium
with complexity. We choose an equilibrium notion in which complexity enters a
player’s preferences after the payoffs and with a (non-negative) fixed cost c.°

To facilitate this concept, we first define the notion of e-best response. (The
following definition can equivalently refer to underlying strategies.)

Definition 6 For any ¢ > 0, a machine M, is a e-best response to M_; if, VM,
Wi(Mi, M_Z) +e€ Z 7TZ'(M,L~,, M—z) .

If a machine is a 0-best response, then it is a best response in the conventional
sense.
Using this, we define a NEMec.

Definition 7 A machine profile M* = (My, MJ) constitutes a Nash equilibrium
of the machine game with complexity cost ¢ > 0 (NEMc) if, Vi,

(1) M is a best response to M*,; and
(it) There exists no M, such that M is a c-best response to M*, and M} = M.

By definition, the set of NEMc is a subset of the set of Nash equilibria in the
negotiation game. The case of zero complexity cost ¢ = 0 is closest to the standard
equilibrium and corresponds to the case of lexicographic preferences. Any NEMc
with a positive complexity cost ¢ > 0 must also be a NEMc with ¢ = 0. The

6Sabourian [21] employs this equilibrium notion.
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magnitude of ¢ therefore can be interpreted as a measure of how much the players
care for less complex strategies, or indeed the players’ bounded rationality.

Abreu and Rubinstein [1], henceforth referred to as AR, propose a general way
of describing a player’s preference ordering over machine profiles that is increasing
in his payoff of the game and decreasing in the complexity of his machine. A Nash
equilibrium can then be written in terms of machines that are most preferred
against each other. In contrast, our equilibrium concept directly finds a subset
of Nash equilibria of the underlying game that fits our complexity cost criterion
(at the margin). There is, however, an analytical parallel between our choice of
solution concept and that of AR because the latter must also be a Nash equilibrium
of the negotiation game (see Appendix B). Our complexity cost criterion can
be thought of as an alternative way to embed the trade-off between payoff and
complexity that underlies AR’s preference ordering.

NEMec strategy profiles are not necessarily credible however. We could intro-
duce credibility, as in Chatterjee and Sabourian [5][6], by introducing trembles
into the model and considering the limit of extensive form trembling hand equi-
librium (Nash equilibrium with independent trembles at each information set)
with complexity cost as the trembles become small. The noise will ensure that
strategies are optimal (allowing for complexity) after all histories that occur with
a positive probability.

A more direct, and simpler, way of introducing credibility would be to consider
NEMc strategy profiles that are subgame-perfect equilibria of the negotiation
game without complexity cost.

Definition 8 A machine profile M* = (My, MJ) constitutes a subgame-perfect
equilibrium of the machine game with complexity cost ¢ > 0 (SPEMc) if M* 1is
both a NEMc and a subgame-perfect equilibrium (SPE) of the negotiation game.
We shall denote by Q°(c) the set of SPEMc profiles in the negotiation game with
common discount factor o when the complexity cost is c.

Given Proposition 1, we can equivalently define these notions of equilibrium
(NEMc and SPEMc) in terms of underlying strategies and the corresponding
measure of complexity comp(-). As mentioned earlier, we prefer the machine game
analysis for its expositional economy.

4 Analysis: Complexity and Efficiency

4.1 Some Preliminary Results

In this sub-section, we lay out some Lemmas that will pave way for the main results
below. These results are derived independently of the magnitude of complexity
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cost.

We first state an obvious, yet very important, implication of the complexity
requirement. Every state belonging to the equilibrium machines has to appear on
the equilibrium path. If there is a state that does not appear on the equilibrium
path, it can be “dropped” to reduce complexity cost without affecting the outcome
and payoff.

Lemma 1 Assume that M* = (My,Msy) is a NEMc with ¢ > 0. Let M} =
{M;;,M;} where, for k= p,r, Mj = (kaaqz'llfa o> Hix). Then, Vg; € Qj, Vi and

Vk, there exists a period t such that qt(M*) = g;.

Proof : Suppose not. So suppose that there exists some ¢; € @7, that does not
appear in any period t on the equilibrium path.
But then, consider player i using another machine M; = {M;,, M;.} which is

identical to M} except only that ¢; is dropped (so the set of states of M}, is just
Qi \@i)-

Clearly m;(M;, M;) = m;(M;, M7), and moreover, we have M; = M;. Hence,
we have contradiction against the assumption that M* is a NEMc profile. ||

A NEMc machine may have an infinite number of states. But, It follows from
Lemma 1 that:

Corollary 1 If M* = (M, M3) is a NEMc with ¢ > 0, then M} (i = 1,2) must
have a countable number of states.

Next note that since any strategy can be implemented by a machine it follows
from its definition that any NEMc profile M* = (M7, MJ) corresponds to a Nash
equilibrium of the underlying negotiation game; thus (Ve > 0)

(M, M™;) = ?ggﬁz(fza M*;) Vi (1)

(3 (3

More generally, the equilibrium machines must be best response (in terms of
payoffs) along the equilibrium path of the negotiation game. The following must
be the case:

Lemma 2 Assume that M* = (M;, M3) is a NEMc with ¢ > 0. Then, Vi, j and
V1 < T(M*), we have

m; (M*) = max;(fi, M7 (qj)) -

! fi€F;

where q7 = qf (M*), and M} (qf) is the machine that is identical to M} except that
it starts with the sub-machine which operates in period T with the initial state q;.
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Proof. Suppose not. Then, for some ¢ and 7 < T’ (M*), there exists another
machine M; = {M,,, M;,} such that

m] (M) < my(M;, M7 (q5)) -

Now, consider player i using at the outset another machine M; = {M;,, M;,}
where, for k = p,r, M}, = (Qly., q}t, Ny, tt;.). This machine is constructed in the
following way. Let ¢! € Q7 denote the state of M;* appearing in period ¢ (where
i is in role k). Also let e be the outcome in period ¢ induced by M*. For every

t < 7, there exists a distinct state ¢j(t) € @, such that
L), d) = N (¢l, d) for all d € Dy, .
The transition function of the new machine is such that V¢ < 7 —1
pi(@i(t), ') = gi(t + 1)

and fort =7—1
pin(gi(t),e') = q
where § € Qy, is another distinct state such that M/(q) = M.
Thus, M played against M replicates the outcome path up to 7 such that

T—1 =
Z (Stflui (at(Mi/7 Mj*>) - Z 6t71ui (a’t(Mi*’ MJ*))
t=1 =1

followed by activation of M; at 7. It follows that
Wl(M;,Mj*) > Wi(Mi*y M]*) .
But this contradicts (1) above. ||

Now it follows that if a state belonging to a player’s equilibrium machine
appears twice on the outcome path then the continuation payoff of the other
player must be identical at both periods.

Lemma 3 Assume that M* = (M, M3) is a NEMc with ¢ > 0. Then, Yi,j and
Vi, t' < T(M*), we have the following:

if ¢.(M*) =g (M), then mi(M*) ==l (M) .
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Proof. This follows from Lemma 2. ||

Using this information, we can show that if a state belonging to a player’s
equilibrium machine appears on the outcome path for the first time, then the
state of the other player’s machine in that period must also be appearing for the
first time. This Lemma will provide a critical tool behind the derivation of some
of the main results below.

Lemma 4 Assume that M* = (M7, MJ) is a NEMc with ¢ > 0. Then, for any i
and any T < T(M*), we have the following:

if qf (M*) # ¢/(M*) Vt < T, then q]T(M*) + qj(M*) Vit <71 .

Proof. Suppose not. So, there exists some i and some 7 < T such that ¢] # ¢!
Vt < 71 and qJT-' = ¢} for some 7" < 7. Then, by Lemma 3, 7] = a7

Consider player i using another machine M; = {M;,, M;.} where, for k = p,r,
M, = (Qy, g, Ny, ptly). This machine is identical to M} except that:

e ¢/ is dropped; and
e the transition function is such that i, (¢/ *,e™ ') = ¢ (k € {p,7}).
To be precise, M/ is such that (assume that ¢ is in role & in period 7)
* Qi = Q\q and Q) = Q;
* = g and gy = q;;
o for every k' = p,r, every ¢; € Ql;,, and every d € Dy
i (@i, d) = Ny (g4, d)
o for every k, every ¢; € Qi and every e € E
par (@i, €) = 13 (i, €)

and for every [, every ¢; € @}, and every e € E

AP if g =g
par(is €) —{ 1 (gie)  otherwise

where e""! € E is the outcome that M* generates in period 7 — 1.
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Since g] appears for the first time in period 7 on the original equilibrium path,
we cannot have ¢] ' and e”~! appearing together before 7 — 1. Otherwise, the
transition function of the equilibrium machine would induce ¢ before 7 which
contradicts our assumption of 7.

Thus, playing M, against M; does not alter the outcome path up to 7. But
from 7 onwards, the outcome path between 7 and 7 — 1 will repeat itself ad
infinitum.

This does not change i’s payoff from the machine game (given M}). We know
that

al (M7, M7) = > 67 ug(al) + 677w (M, M)
t=r1'

= D0 T wla) + 67 (M M)

t=1'
1 T—1
= 2 0 wi(d) (2)
t=T1’

where the second equality follows from Lemma 3. The new machine also yields
the same payoff because

T7—1 T—1
7T (M, M) = Z 5 ug(at) + 67T Z 6w (at) + ...
t=T7' t="1'
T—1
= D 6T u(a) (146 4820 )
t=1'

1 T7—1 .
t=r1'

Since (Mj, M3) and (M;, M;) induce the same outcome before 7/, it follows
that m;(M], M;) = m;(M;, M}). But then, since ¢] is dropped, M; = M. Thus,
we have contradiction against NEMc.” ||

"Notice that this result turns on the assumption that each sub-machine uses a distinct set of
states. If the sub-machines shared the states, we could not simply “drop” ¢ since it could be
used for the other sub-machine (playing a different role) before 7.
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4.2 Agreement

In this sub-section, we shall show that, independently of ¢, if an agreement occurs
at some finite period as a NEMc outcome, then it must occur within the very first
stage (two periods) of the negotiation game.

We can immediately state that if an agreement occurs within the first stage
as a NEMc outcome, then the associated equilibrium machines must be minimal,
and thus, the implemented strategies must be stationary.

Lemma 5 If M* = (M, MJ) is a NEMc with ¢ > 0 and T(M*) < 2, then
|Qir] =1 Vi and Vk.

Proof: Suppose not. So, suppose that |Q;x| > 1 for some i and for some k.
But then, for this player ¢, dropping every state in his machine other than the two
states appearing the first and second periods leaves his payoff unchanged and yet
reduces complexity cost. Hence, we have contradiction against NEMc. ||

Next we show that if a NEMc induces an agreement in a finite period beyond
the first stage, it must be that the pair of states appearing in the final period are
distinct.

Lemma 6 Assume that M* = (M, My) is a NEMc with ¢ > 0 and T(M*) < cc.
Then, qt(M*) # ¢f (M*) Yt < T(M*) and Vi.

Proof. Suppose not. So, suppose that ¢! = ¢! for some i and some t < T'. Let
z = (21, 22) € A? be the agreement at 7. There are two possible cases to consider.

Case A: Player i is the proposer at T.

Define 7 = min{t|¢} = ¢/ }. By Lemma 3, 7] = ] . Since there is an agreement
on z at T', we have 7] = z;.

Now consider player j using another machine M = {Mj , M } where, for
k=p,r, Mj = (Q, q},;, N> ). This machine is identical to M} except that:

e ¢j is dropped (i.e. @), = Q},\¢}); and

T—1 771) T

e the transition function is such that u,(q; ™" e =q;j-

J

Since, by Lemma 4, ¢} (as does g7 by definition) appears for the first time at 7
on the original equilibrium path, this new machine (given M) generates an iden-
tical outcome path as the original machine M} up to 7 and then induces the agree-

ment 2z at 7. We know 77 = z;, and thus, it follows that 7;(M;, M) = m;( M, M7).
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But since gj is dropped, M} > M]’ This contradicts NEMc.

Case B: Player i is the responder at T'.
We can show contradiction similarly to Case A above. ||

We are now ready to present our first major result. For any value of complexity
cost, any NEMc outcome that reaches an agreement must do so in the very first
stage (period 1 or 2) of the negotiation game and hence the associated strategies
must be stationary. The intuition is as follows. The state of each player’s machine
occurring in the last period must be distinct. This implies that, if the last period
occurs beyond the first stage of the game, one of the players must be able to drop
it and instead use another state in his (sub-)machine to condition his behavior in
that period without affecting the outcome of the game. This reduces complexity
cost.

Proposition 2 Assume that M* = (M;, M3) is a NEMc with ¢ > 0 and T'(M*) <
o0o. Then (i) T(M*) < 2; and (it) M; and M; are minimall.

Proof. If part (i) of the claim is true, part (ii) must be true because of Lemma
5. Let us consider part (i).

Suppose not. So, suppose that an agreement z € A? occurs at some T’ € (2, 00).
We know from Lemma 6 that ¢! and ¢J are both distinct. Now suppose that player
1 is the proposer at 17" and consider two possible cases.

Case A: x™ = z at some 7 < I' where i proposes.

Consider another machine M; = {Mj,, M] } where, for k = p,r, M}, =

(Qly, @ity Nig., i) which is identical to M except that:

e ¢/ is dropped (i.e. @}, = Q;\¢/); and
e the transition function is such that p/, (¢f ', e"=1) = ¢7.

Since Aj,(¢7,0) = z and ql appears for the first time at 7" on the original
outcome path, this new machine (given M) generates an identical outcome path
and payoff as the original machine M;. But then, ¢/ is dropped and therefore we
have M > M]. This contradicts NEMc.

Case B: x7 # z V7 < T where i proposes.
Consider another machine M; = {M}, M| } where, for k = p,r, M}y =
(Q'k> @jk> N 143,) which is identical to M} except that:

e ¢} is dropped (i.e. Q). = Q5.\q/);
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e the transition function is such that 1/, (¢ ', e"1)

but fixed ¢; € Q},; and

= ¢; for some arbitrary

e the output function is such that X}, (g;,2) =Y.

Since the offer z does not appear anywhere before T on the original outcome
path (when i proposes), the modified output function does not affect the outcome
and payoff. But then, q]T is dropped and therefore we have M} = M;. This con-
tradicts NEMe. ||

Together with subgame-perfectness requirement (see BW Result 2 above),
Proposition 2 tells us that if there is an agreement in the negotiation game the
outcome must be efficient. Also, non-emptiness of the set of SPEMc (Q%(c)) is
guaranteed (for any 0 and any c) if the disagreement game has at least one Nash
equilibrium.

Corollary 2 For any ¢ > 0 and any § € (0,1), if any M* € Q°(c) is such
that T (M*) < oo, then M* must be efficient and minimal (implements stationary
strategies). If G has at least one Nash equilibrium, then such SPEMc ezists in the
negotiation game.

4.3 Perpetual Disagreement

We now consider SPEMc outcomes in which agreement never occurs. The results
here are sensitive to whether the complexity cost is zero ¢ = 0 (lexicographic
preferences), or positive ¢ > 0.

First, we show that, given any complexity cost and a discount factor arbitrarily
close to one, any SPEMc outcome with perpetual disagreement must be at least
long-run (almost) efficient; that is, the players must eventually reach a finite period
at which the sum of their continuation payoffs is approximately equal to one.

The argument behind this statement turns critically on the fact that every state
of each player’s equilibrium machine must appear on the outcome path (Lemma
1). This implies the following. Suppose that a player deviates from a SPEMc of the
negotiation game by making a different offer in some period. What can the other
player obtain if he rejects this offer? Since the state of each player’s (sub-)machine
is fixed for each period (not each decision node), the ensuing disagreement game
of the period may see an outcome that never happens on the original equilibrium
path; but then, Lemma 1 implies that the subsequent transition must take the
players to some point along the original path for next period. Thus, any punish-
ment for a player who deviates from the proposed equilibrium must itself occur on
the equilibrium path (except for the play of the disagreement game immediately
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after the deviating offer), and as a consequence, the set of equilibrium outcomes
is severely restricted.

In loose terms, we consider the period in which a player gets his maximum
continuation payoff in the proposer role. Bargaining can then be used by the
other player in the preceding period to break up the on-going disagreement if
there is any (continuation) inefficiency from then on. In such cases, there exists a
Pareto-improving deviation offer because the responder in that period, who will
be proposing next, cannot obtain more from punishing the deviant than what he is
already getting from the original outcome as of next period. We need the discount
factor to be sufficiently large so as to eliminate the importance of the current
period in which the deviation is followed immediately by an off-the-equilibrium
play of the disagreement game.

For the results below,

Proposition 3 For anye € (0,1), 36 < 1 such that, for any § € (6,1), anyc >0
and any M* € Q°(c) with T(M*) = oo, 3 7 < 00 such that >, 77 (M*) > 1 —e.

Proof: Fix any € € (0,1). Define

5= max {1, sup o) - w(a)] (@)

a,a’ €A

which is bounded since u(-) is. Define also

- €
0=1——.
5
Given these, consider any 6 € (6,1) (thus € > 3(1 — §)), any ¢ > 0 and any
M* = (M}, M3) € Q°(c). As before, let M = {M;,, M;.} where, for k = p,r,
M, = ( Tk qilljﬂ )‘;'kka :u;kk>
Define 7, t;; and 7, such that

0<n<e—p(1-9), (5)

tir = {t|  plays role k},
and
7, = min{t| 7t +n > 7t Vt,t' € t;}

where, as before, 7} is player i’s continuation payoff at period ¢ if M* is chosen.
Clearly, 7, < 0.

Now, take any machine profile (M, M7) and consider i’s continuation payoff
after rejecting any offer in any period belonging to t;.. Notice that since
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e every state of M} appears on the equilibrium path of M* (Lemma 1)
o ml = maxy, (f;, M;(q})) Vt (Lemma 2)

player i’s continuation payoff at the next period if he rejects any offer (given M J?“)
is at most sup,e,, ;. We know that 7" +n > 7} Vt € t,,.

This implies that under profile M* if i receives an offer (7% 1 — gmax) € A2
where

TR = (1—5)supui(a)+5(ﬂz”+77)y (6)

acA
he must always accept because of the subgame-perfectness of M*.

Now, consider player j using another machine M} = {M;, M.} where, for
k=p,r, Mj = Q) Gz Njp» W) This machine is 1dentlcal to M except for the
output function which is such that X, (¢;"~ L0) = (amax 1 — erﬂax).

Define

T = mtin{t] q] = q;” 1} ) (7)

Since i always accepts the offer mj2** given M7 and M; differs from M only in
offers, it follows that (M, M) results in an agreement ( max '] — ) in period

T.
™—1

We also know by Lemma 3 that ] = m;” . Thus, we have

— (1= §)us(a™ ) + 677" |

Now, since sup,¢ 4 u;(a) —u;(a™ ') < B (where 3 is given by (4)), we have, by
the definition of 7},
T —al < (1=90)3+dn .

Using this, we can write
1—mp®*>1—(n] +(1—=0)3+6n) . (8)

Since M* is a SPEMc it must be that > 1= : otherwise the deviation
is profitable. This implies that (given § < 1)

AT >1—((1=8)8+n) .

But, since by (5) we have € > (1 — ) # + 7, it follows that at period 7 < oo,
>, m >1— € as in the claim. ||
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Proposition 3 does not however rule out the possibility that we observe ineffi-
ciency (in terms of continuation payoffs) early on in the negotiation game.® Given
any € > 0 and ¢ sufficiently close to one, we can write the total equilibrium payoff
from the negotiation game as

T—1

dom(M)>(1=6)) 8+ (1 —e) (9)

7 t=1

where M* indicates the equilibrium machine profile, u* = >~ u; (a* (M*)), and 7
is the period in which continuation (first) becomes (almost) efficient. The limit of
the right-hand side as ¢ — 0 and d — 1 is not necessarily the efficient level. The
reason is that as we increase & we are changing the equilibrium strategy profile
itself, and consequently, 7 may also increase, that is, it may take longer and longer
to reach the efficient long-run.’

But, it immediately follows from Proposition 3 that if the structure of the
disagreement game is such that there exists no action profile delivering the efficient
surplus, the players cannot disagree forever. Then, the results in the previous
section imply that any SPEMc must induce an agreement in the very first stage
of the game and thus be efficient (and stationary). We summarize this below.

Corollary 3 If Y, ui(a) < 1 Va € A, then 36 € (0,1) such that, for any § €
(6,1) and any ¢ > 0, every M* € Q°(c) is efficient (and stationary) with T(M*) <
2.

Agreement will strictly dominate any disagreement if playing the disagreement
game involves some cost to the players (that bargaining does not). They may, for
instance, discount the time between bargaining and disagreement game within a
period.

In fact, we derive a qualitatively same result from a complexity argument.
If complexity cost is strictly positive, i.e. ¢ > 0, disagreement cannot persist
indefinitely however small that complexity cost is, and thus, any SPEMc of the
negotiation game ends in the first stage and is efficient.

Proposition 4 For any ¢ € (0,1), 3 6 < 1 such that, for any § € (5,1), every
M* € Q9(c) is efficient (and stationary) with T(M*) < 2.

8To be precise, neither does it rule out the possibility that there will be inefficient disagree-
ment game outcomes even after 7. It is just that the continuation game from then on is almost
efficient.

9If we restrict each player’s machine to use only a finite number of states, then any machine
profile must generate cycles. But this is not enough to guarantee that Proposition 3 implies ex
ante efficiency in the limit. For this, we need for instance to additionally assume that the size
of a machine is uniformly bounded so that the first cycle cannot last beyond a fixed period.
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Proof. We shall prove the claim by way of contradiction.

Fix any ¢ € (0,1).1° Define 6 = 1—5 where (3 is given by (4) above. Given these,
consider any & € (9, 1), and any M* = (M}, M3) € Q°(c). Suppose T'(M*) = oo.

Similarly to the proof of Proposition 3 above, define n such that

O<n<c—p(1-9). (10)

Define as before
tix = {t| © plays role k},

7, = min{t| 7t +n > 7t V.t € ty},

and

T = mtin{t| q; = q;-"*l} :

First note that
q§ #q;" Vt<T,. (11)

Otherwise q;f» = q]T-” for some ¢ < 7,. But then, we have 7! = 7" by Lemma 3. This
contradicts the definition of 7.

Next, consider j using another machine M; = { M}, M} } where, for k = p,r,
My, = (Q, 4> N 14;,). This machine is identical to M} except that:

e (similarly to the deviation in the proof of the previous proposition) the
output function is such that )\;-p(q;”_l, 0) = (mpex 1 — X)) (where mRo* is

defined by (6) with 7 now given by (10) above); and additionally

° q;" is dropped (i.e. Q;r = Q;‘fr\q;”).

As in the proof of Proposition 3, such deviation results in an acceptance and
would end the negotiation game at 7. By (11), dropping q}” does not affect the out-
come path up to 7. By the same argument as in the proof of previous Proposition,
j’s deviation payoff here is given by (8) above:

1— 7% > 1 — (a7 + (1 — 0)B + on) .

We know that 1 — 7] > 7. Thus, j’s loss from such deviation is such that

= (1 —=mp™) < (1-0)8+dn . (12)

0The case of ¢ > 1 is trivial because then complexity cost (weakly) dominates any feasible
average payoff for each player in the negotiation game and thus any equilibrium machine must
be minimal. We can refer to BW Result 2 for SPEMc characterization in this case.
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But the new machine M has one less state than M7 (since ¢;" has been
dropped) which means that the deviation also results in a saving on complexity
cost by ¢ > 0. Since we fixed ¢ > (1 —9)F +n and § < 1, we have

T — (1 —m™) <c
implying that the deviation is in fact profitable. (More precisely, this implies that
M is not a c-best response to M;".) This contradicts the proposed SPEMc. There-
fore, T(M*) < oo. But then, we know from Proposition 2 that T'(M*) < 2 and
from Corollary 2 that M* is efficient. ||

5 An Alternative Machine Specification

Since each stage game of the negotiation game has a sequential structure, we
can have alternative machine specifications that employ more frequent transitions
and hence account for finer partitions of histories and continuation strategies.
Let us present a machine which consists of four sub-machines. This machine will
sometimes be referred to as 4SM.

Definition 9 (Four sub-machine (4SM) specification) A machine,

M; = {Mip, M;,, M, M.}, consists of four sub-machines My, = (sz, Qs Nk, ik
and M, = (Qik, @iy, Niks ti,) for k = p,r. Each sub-machine consists of a set of
states, an initial state, an output function and a transition function such that,
Vi € Qi Yqie € Que, Vi, 27 € A2, and Va € A,

5\ip(~i1oa®) S AQ;

~)\ip(Qip7®) € Ay

Azr(dimxj) S {Y,N},

)\ir( ir>®) € Aza

and

/lip((jipaxiaN) S Q’Lpa
Nip(q?’paa) € Qi

fiir (Gir, 27, N) € Qz’r;
ﬂir(qwaa) € Qip-
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This machine maintains the role distinction and makes transition twice within
each period - once after the bargaining and once after the disagreement game.!!
As a notational convention, we shall use §; to denote a state used by a sub-machine
that plays the bargaining part of the negotiation game to distinguish it from ¢;, a
state associated with a sub-machine that plays the disagreement game.

As before Hj; (= HJ,) refers to the set of ¢-period histories. Here, we also denote
the set of all possible histories at a disagreement game of period ¢ in which ¢ plays
role k as HY = HY, x {(z,N) | Vo € A?}. Also, define H® = U2, HY,.

A minimal machine in the 4SM specification corresponds to an alternative
notion of stationarity. It implements a strategy f; such that

o fi(h) = fi(W)Vh, I € HS and Vh, W € H (k= p,r); and
o fi(h,x?) = fi(W,2?) VYh I € HP Vi € A2

)

The definition of complexity captured by the size of a machine in the 4SM
specification also needs to be modified. The size of a 4SM is measured by the
cardinality 37, |Qix| + 32, |Qir|. Define Fy(fi) = {fi|lh : h € H} as before and
introduce Fy(f;) = {f;|h : h € HY} to indicate the set of continuation strategies
at a disagreement game of period ¢ when ¢ plays role k. It is straightforward to
extend Proposition 1 to show that, for any fi € Fy, S, [Fu(fi)| + 34 [Fin(f)]
corresponds to the size of the smallest 4SM implementing f;.

Given this foundation, analyzing the machine game in the 4SM specification
is analogous to the previous 2SM case (though a little more cumbersome expo-
sitionally). Any NEMc profile in 4SM must be by definition a Nash equilibrium
of the underlying negotiation game and every state belonging to an equilibrium
4SM must appear on the equilibrium path (Lemma 1).

The following three Lemmas correspond to Lemmas 2, 3, and 4 respectively.
(We omit some of the proofs.) Note that while the game is being played bargaining
alone does not generate any payoffs. Thus, 7f(-) equally represents i’s continuation
payoff at every subgame within the period (on the equilibrium path).

Lemma 7 Assume that M* = (M, M3) is a NEMc in the 4SM specification with
¢ > 0. Then, Vi, we have:

(i) m (M*)= mf?XWi(fia M;(q;)) ¥V <T(M")
(1) m (M") = mf?LXWi(fiaMf(qT)) VT <T(M")

J

k3

1We can also construct a machine in which transition occurs at each decision node of the
stage game. Six sub-machines will then be required (some of which will in fact serve only to
make transition and not output). There are several other ways to divide each stage. But we
conjecture that as long as we keep the role distinction for the bargaining part the central results
will remain irrespective of the machine specification.
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where M7 (qj) and M3 (qj) are the machines that are identical to M} except that
they start with the sub-machine which operates in the bargaining and disagree-
ment game of period T respectively with the initial states ¢} (= q;(M*)) and q; (=
q; (M7)).

Lemma 8 Assume that M* = (M, M3) is a NEMc in the 4SM specification with
¢ > 0. Then, Vi,j and ¥t,t' < T(M*), we have the following:

if cj;- = q~§/ or q;:» = q;f-,, then mi(M*) = Wf,(M*) )

Lemma 9 Assume that M* = (M, M3) is a NEMc in the 4SM specification with
¢ > 0. Then, for any i and any T < T(M*), we have the following:

() if GO 4 GOL) Vi <7, then GO # G(M*) Vit < 7
(1) if qf (M*) # qi(M*) ¥t <7, then ¢f (M*) # ¢;(M*) ¥t <1 .

Proof. (i) Suppose not. So, there exists some 7 < T such that ¢ # ¢¢ Vt < 7
and qj = cj]T/ for some 7/ < 7. By Lemma 8, 7] = 77 .

Let M = {M;;,,M{;,M{;,M{;} where, for k = p,r, Mj = (Qz’kyqill;k’/\:kvﬂ?k)
and M, = (Qiy, @i Mi» 1iy,)- . ~

But then, consider i using another machine M; = {M; , M, M; , M; } where,
for k = p,r, M}, = (Q;k?(jzllgv i M) and My, = ( ;k’qz‘lli" ks Hig,)- This machine
is identical to M. except that:

e ¢/ is dropped; and
e the transition function is such that (¢} *,e™™') =G (k € {p,7}).

Since ¢7 # §' Vt < 7, this preserves the outcome path up to 7 — 1 while making
the path between 7/ and 7 — 1 repeat from 7 on. Similarly to the proof of Lemma
4 above, we can show that this will not change ¢’s payoff. But, since ¢/ has been
dropped, M > M!. We thus have a contradiction against NEMc.

(ii) This part can be proven similarly to (i) above. ||

Using these Lemmas, it is straightforward to extend the agreement results in
Section 4.2 to the 4SM case. If a NEMc outcome under this alternative specifi-
cation ends at some finite period, the pair of states occurring in the last period
must be distinct. (Notice that the sub-machines used for playing the disagreement
game will not be operating in the final period.)

Lemma 10 Assume that M* = (M{, M) is a NEMc in the 4SM specification
with ¢ > 0 and T(M*) < oo. Then, Gt # ¢ ¥Vt < T and Vi.
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Proof. Suppose not. So, suppose that ¢¢ = ¢! for some i and some t < T'. Let
z = (21, 22) € A? be the agreement at T'. There are two possible cases to consider.

Case A: Player i is the proposer at T

Define 7 = min{t|g; = ¢/ }. By Lemma 8, 77 = 7. Since there is an agreement
on z at T', we have 77 = z;.

Now consider plagfer J ufing an(zther machine M} = {Mj, M; M M}
where, for k = p,r, M}, = (Q%, G Nig, f1y,) and M7y = (Q'sy, qjr Nig, 1fy,)- This
machine is identical to M except that:

e (7 is dropped (i.e. Q;T = @;“T\q;), and
e the transition function is such that u;p(q;-—l, e ) = QJT.

Since, by Lemma 9, ¢} (as does ¢7 by definition) appears for the first time at 7
on the original equilibrium path, this new machine (given M) generates an iden-
tical outcome path as the original machine M} up to 7 and then induces the agree-
ment z at 7. We know 77 = z;, and thus, it follows that 7;(M;, M) = m;( M}, M7).
But since ¢; is dropped, M} > M j’ This contradicts NEMec.

Case B: Player i is the responder at 7'
We can show contradiction similarly to Case A above. ||

Again, this implies that the agreement must occur within the first stage of the
game; otherwise the states in the final period can be “replaced” thereby yielding
a saving on complexity cost. (We shall omit the proof of the following result. It is
almost identical to that of Proposition 2.)

Proposition 5 If M* = (M, My) is a NEMc in the 4SM specification with ¢ > 0
and T(M*) < oo, then (i) T(M*) < 2; (ii) My and M are minimal; and thus
M* s efficient.

What we gain from using this alternative machine specification is in the case of
perpetual disagreement. Specifically, the SPEMc results in Section 4.3 no longer
depend on the discount factor. Let Q°(c) denote the set of SPEMc in 4SM given
discount factor ¢ and complexity cost c.

Proposition 6 Consider any ¢ > 0, any 6 € (0,1), and any M* € Q°(c) such
that T(M*) = co. Then, for any e >0, 3 7 < 0o such that >, 7] (M*) > 1 —e.
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Proof. Fix any e. Consider any ¢ > 0, any 6 € (0, 1) and any M* =
(My, M;) € Q°(c )such that T(M*) 00. As before, let M} = M, M-}

Zp’ 'Lp’ r?

Where for k = b, T, Mzk - (szy q1k7 ~7,k7 ILle) and M;;c = ( ;kkv qzk ’ )‘:kv :uzk)
Define 7 such that 0 < 7 < e. Define also

tie = {t| i plays role k}

and
7=min{t| 7l +n > 7l Vt,t' €t} .
Notice that, given M}, if j offers (n] +n,1 — 7] —n) € A at any t € t;, i
must accept. Since

e every state of M} appears on the equilibrium path of M* (Lemma 1)
e now transition also occurs at the end of bargaining within each period
o 7 = maxy, m;( fi, Mj(q})) Vt (Lemma 7)

(given M +) the maximum continuation payoff i can obtain if he rejects such offer
is equal to sup,e, 7" which is less than 7] + .

Consider now player j using another machine M! = {M i M, M! MY
where, for p = k,r, M}, = (Q,ql, Ny, i) and M = (Qle, gl Ny, if). This
machine is identical to M7 except for the output function which is such that
Nip(@5,0) = (7] + 0,1 — =] —1n).

Now, note that ¢i # ¢; V¢t < 7. Otherwise, 7 = 7] by Lemma 8, which
contradicts the definition of 7. Thus, (M}, M}) would end the game at 7.

Since M* is a SPEMc, it must be that 77 > 1 — 7] — 7, implying that
77 + 77 > 1 —n. But we fixed n < ¢, and thus, at 7 < oo we have Y, 7] > 1 —¢
as in the claim. ||

Proposition 7 For any ¢ > 0 and any 6 € (0,1), every M* € Q°(c) is efficient
(and stationary) with T (M*) < 2.

_ Proof. Suppose not. So, consider any ¢ > 0, any ¢ € (0,1), and any M* €
Q%(c); suppose T'(M*) = oo
Define n such that 0 < n < ¢, and also
tir = {t| @ plays role k}

and
7 =min{t| 7t +n > 7t Vt,t' € t;}
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as before. 3 )
) Consi~der now player j using another machine M; = {M},, M, M;,,
Miy, = (Qig, G Nigs i) and My = (Qg, @i Nigor Hie)-
This machine is identical to M} except that:

M } where

e (similarly to the deviation in the proof of the previous proposition) the
!/

output function S\j (@;,0) = (7] +n,1 — 7] —n); and additionally

e ¢j is dropped (i.e. @), = Q},\q}).

First note that we have ¢7 # ¢; and ¢] # ¢; V¢t < 7. Otherwise, m; = 7] by
Lemma 8, which contradicts the definition of 7. Thus, dropping ¢j would not affect
the outcome up to 7 when the deviation would end the game (before reaching the
disagreement game stage of the period).

Since m] <1 — 7}, j’s loss from such deviation cannot be greater than 7. But
the new machine M} has one less state than M} and there is also a saving in
complexity cost by ¢. We fixed n < ¢ and thus the deviation is profitable. This
contradicts the proposed SPEMc; therefore, T(M*) < oo. It then follows from
Proposition 5 that T'(M*) < 2 and M* is efficient and stationary. ||

6 Conclusion

When players care for complexity of a strategy as well as payoffs, the negoti-
ation game can only display equilibria that are efficient. Thus, complexity and
bargaining together offer an explanation for co-operation in two-person repeated
interactions.

Independently of complexity cost, discount factor and the choice of machine
specification, the negotiation game cannot have a NEMc in which an agreement
takes place after delay beyond the first stage. If an agreement were to be part of
an equilibrium outcome, then it must be so in the very first stage of the game,
and the associated strategy profile must be stationary. Consequently, any SPEMc
that induces an agreement must be efficient.

In fact, if complexity cost is strictly positive (and also discount factor is suffi-
ciently close to one when we have the two sub-machine specification) there cannot
be any other type of SPEMc outcome however small that complexity cost is. Thus,
we have a very strong selection result in this case. If complexity cost is zero, and
hence we have lexicographic preferences, it is also possible to have an equilibrium
in which disagreement persists indefinitely. But this case still has to be (almost)
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efficient in the long run. It also follows here that perpetual disagreement cannot
occur in cases where disagreement is strictly dominated by agreement.

There are several channels to further generalize the analysis in this paper.
Especially, we can reinforce the repeated game flavor of the negotiation game
by considering a broader set of payoffs that can be associated with bargaining
and agreement. We can, for instance, let the space of offers be some arbitrary
set P C R? such that u(a) C P for all a € A, thereby allowing an offer to be
any (inefficient) disagreement game payoff vector as well as a partition of the
maximum surplus available. We conjecture that complexity will still select the
efficient outcomes in this case.

7 Appendix A: Relegated Proofs

Proof of Proposition 1. Let M; = {M,,, M;.} be implementation of some
strategy f; where M, = (Qir, G}y, ik, i) for k= p,r.

First, we show that Qx| > |Fix(fi)| Vk.

For any ¢; € Qi and k = p,r, let M;(¢;) = {Mix(q:), My} be the machine that
is identical to M; except that

e it starts with the sub-machine M;;; and

o M, = (Qik, Gis Nik» lik)-

Note that for every f; € Fir(f;) and k = p,r, there exists some h € HY such
that f; = fi|h. Now define a function Iy, : Qi — Fi(f;) such that Ty () is the
strategy implemented by M;(g;) for any ¢; € Q. It then follows that for every
fi € Fy(f;), there must exist a distinct state §; € Qi such that Ty(q) = fi.
Simply let ¢; = ¢;(h) (as defined inductively above) where h is the history such
that f; = fi|h.'?

Second, we show that there exists a machine implementation of f; which only
uses Fir(fi) and Fy(f;) as the set of states for its sub-machines.

Define M; = {M,,, M;,} such that, for k = p,r, My, = (FEu(fi), fis Nik, k)
where

o f1 € Fy(f:) is the initial state and if ¢ plays role k at the initial history
then f} = fi

o for any f; € Fy.(f;) and d € Dy, \ix(fi,d) = fi(0,d) where () is the empty
history;

121t is critical here that each sub-machine uses its own distinct set of states. Otherwise, a
single state can be used to activate two distinct continuation strategies, one in each role.
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o [ii(fi,e) = filh,e forany h € HY and e € E.

This machine has ), |Fix(f;)| states (each k sub-machine with |Fj;(f;)| states)
and implements f;. ||

8 Appendix B: An Alternative Equilibrium Con-
cept

The following defines the general preference ordering over machine profiles pro-
posed by Abreu and Rubinstein [1] (AR).

Definition 10 Let >{ (and ~5) denote player i’s preference ordering over the
set of machines profiles. For any pair of machine profiles M = (M;, M_;) and
M'" = (M],M'",), we have M =i M’ if one of the following holds:

(1) mi(M;, M_;) > m(M], M",;) and ||M;]]| < || M]]
(#) (M, M_;) > m(M;, M";) and |[M;|| < [[M]] .

A Nash equilibrium can then be written in terms of machines that are most
preferred against each other.

Definition 11 A machine profile M* = (M, My) constitutes a Nash equilibrium
of the machine game (NEM) if, Vi, there exists no M| such that

(M, M) =7 (M, M*;) .

The following Lemma extends Lemma 168.2 in Osborne and Rubinstein [15]
(also part (a) of AR’s Theorem 1) to the negotiation game. Any NEM must be
such that each player’s machine uses an equal number of states, and consequently,
must correspond to a Nash equilibrium of the negotiation game.

Lemma 11 Suppose that A is compact and u;(+) is continuous for all i. Then, if
M* = (M5, M3) is a NEM, we have

(1) NM{[] = [|Mz]]; and
(17) m;(M™) :mfaxm(fi,Mfi) Vi.
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Proof. Consider machines in the 2SM specification. (The 4SM case can be
treated similarly.)

Let S;, define the set of player i’s one-period strategies in the extensive form
game that he plays in role k € {p,r} every other period of the negotiation game.
We denote its element by s;, € Si. With slight abuse of notation, let u;(sik, s;1)
denote player i’s (one-period) payoff given the pair of strategies.

(i) Fix player j’s machine M; = {M,,, M;.} where, for k = p,r, My, =
(ij,qjl-k, Ajk, f45). Then, suppose that player ¢ solves his dynamic optimization
problem for the machine game ignoring complexity such that

o

max >0 (sl My(01) (13

{Szk }1?21 t=1

where q§- is defined inductively as before (by the transition functions of j’s ma-
chine).

This is a (deterministic) Markovian problem with the transition of states given
by the other player’s machine, and therefore, i’s optimal action(s) in each period
depends at most on the state of the other player’s machine and the partial history
within the period. (For finite state space, this statement is established by the
Blackwell’s theorem. For a general (countable) state space, the case we consider
in the paper, see Hinderer [12] and the references therein. Also, such solution exists
if S;, and S;, are compact (which is true if A is compact) and w;(-) is continuous.)
Let s},(q,d) denote the optimal action for player i in role k given ¢ € @; and
d € Dyy.

Now, consider a machine for player i M; = {M,,, M;.} defined by, for k = p,r,

® Qi = Qyi;

* G =y

® \ir(q,d) = sj.(q,d) Vg € Qi and Vd € Dy; and
o wik(q, €) = (g, e) Ve € E.

This machine solves the maximization problem (13) above using only the states
used by the other player’s machine.

Thus, if M* = (M7, M) is a NEM profile, then ||[M}|| < ||M*,|| Vi. It follows
that ||M ] = ||M;]].

(i) This follows from part (i). ||

Lemma 11 connects our notion of NEMc (Definition 7) with AR’s equilibrium
notion (Definition 11). Effectively, both definitions take the set of Nash equilibria
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of the negotiation game and select outcomes that capture some measure of “trade-
oft” between payoffs and complexity. In this sense, the equilibrium notions used
in this paper closely parallel those of AR.
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