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Abstract. In some games, the impact of higher-order uncertainty is very

large, implying that present economic theories may be misleading as these

theories assume common knowledge of the type structure after specifying the

first or the second orders of beliefs. Focusing on normal-form games in which

the players’ strategy spaces are compact metric spaces, we show that our

key condition, called “global stability under uncertainty,” implies a variety

of results to the effect that the impact of higher-order uncertainty is small.

Our central result states that, under global stability, the maximum change in

equilibrium strategies due to changes in players’ beliefs at orders higher than

k is exponentially decreasing in k. Therefore, given any need for precision,

we can approximate equilibrium strategies by specifying only finitely many

orders of beliefs.
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1. Introduction

Most economic theories are based on equilibrium analysis of models in which

the players’ types (following Harsanyi (1967)) are simply taken as their beliefs

about some underlying uncertainty, such as the marginal cost of a firm or the

value of an object for a buyer, and rarely include a player’s beliefs about the

other players’ beliefs about the underlying uncertainty. Using such a type struc-

ture implicitly assumes that, conditional on the first-order beliefs about some

payoff-relevant uncertainty, all of a player’s higher-order beliefs are common
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knowledge.1 Even the literature on global games (Carlsson and van Damme

(1993)) and on forecasting others’ forecasts (Townsend (1983)) makes this as-

sumption (in a finite-dimensional space of payoff uncertainty.)2

There is now an extensive literature, however, that emphasizes that in some

games higher-order uncertainty has as large an impact on equilibrium behavior

as lower-order uncertainty (see Rubinstein (1989), Kajii and Morris (1998) and

Morris (2002)). As Rubinstein (1989) illustrates, the equilibria of a game in

which a particular piece of information is common knowledge can be profoundly

different from the equilibria of games in which this information is mutually

known only up to some finite order – no matter how many orders we consider.

Most importantly, when the higher-order beliefs have large impact, the present

economic theories may be misleading.3 This large impact is also disturbing

because it is hard to believe that we would ever know a player’s high-order

beliefs with any precision. Without such knowledge, we cannot make accurate

predictions when the impact of higher-order uncertainty is large. Moreover,

assuming that higher-order beliefs correspond to higher-order reasoning, such a

large impact implies that the bounds of rationality are at least as important as

the basic incentives. This would necessitate a change of paradigm for analyzing

these problems. Therefore, it is of fundamental importance to classify games in

which high-order uncertainty has little impact.

In this paper, we provide a broad set of sufficient conditions under which

high-order uncertainty has little impact. Our main sufficient condition is called

“global stability under uncertainty.” It states that the variation in each player’s

best response is always less than the variation in his beliefs about the others’

actions (according to the embedding metric defined later), multiplied by a con-

stant b that is less than 1. Under certain continuity assumptions, we show that
1Here we use the standard terminology: a player’s first-order beliefs are his beliefs about

the underlying uncertainty; his second-order beliefs are roughly his beliefs about the other

players’ first-order beliefs, and so on.
2For an illustration of how a model with such an assumption can be deceptive regarding

the impact of higher-order uncertainty, see Section 2.3.
3For example, the Coase conjecture may fail when we introduce second-order uncertainty

as shown by Feinberg and Skrzypacz (2002).
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global stability under uncertainty is closely related to the standard concept of

global stability of best-response correspondence (under certainty). For games

with one-dimensional strategy spaces, we further provide a simple second-order

condition that guarantees global stability under uncertainty.

We consider finite-person games in which the strategy spaces are compact

metric spaces and there is some payoff-relevant source of uncertainty that comes

from a complete, separable metric space. We work in universal type space,

where the players’ types are their entire hierarchy of beliefs about the underlying

uncertainty, allowing players to entertain any coherent set of beliefs. We fix a

(Bayesian) Nash equilibrium of this game. Note that, since every type space can

be embedded in universal type space, this corresponds to fixing an equilibrium

for all type spaces simultaneously. Let us also fix a player’s beliefs up to a certain

order k. Our main result states that, assuming global stability, the maximum

variation in the player’s equilibrium strategy, as we vary all his higher-order

beliefs, is at most bk times a constant. That means that, if we want to determine

the equilibrium behavior within a certain margin of error (e.g., in order to check

the validity of a certain theoretical prediction), we only need to specify finitely

many orders of beliefs, where the required number of orders k∗ is a logarithmic

function of the desired precision. In particular, the impact of an erroneous

common knowledge assumption at orders higher than k∗ will be less than the

specified bound. This is a contribution to the goal set out by Wilson (1987) of

“successive reductions in the base of common knowledge required to conduct

useful analyses of practical problems.”

We have so far focused on the maximum change in a player’s equilibrium

strategy due to any change in his higher-order beliefs. We also investigate

the relationship of the change in strategy to the size of the change in beliefs.

Towards this goal, firstly, we define an “embedding metric” on beliefs at each

order (as well as on beliefs about the other players’ actions). This metric has

the crucial property of preserving the distances in lower-order beliefs when they

are embedded in the space of higher-order beliefs as point masses, allowing

us to sensibly compare variations at different orders. We ask how much a



4 JONATHAN WEINSTEIN AND MUHAMET YILDIZ

player’s strategy varies as we vary his belief at some order k and keep all his

other beliefs fixed. (To be able to do this without violating the coherency of

his beliefs, we need an independence assumption about the different orders of

beliefs, an assumption that is satisfied in traditional “independent private value”

environments.) Now we can define the marginal impact of a change in kth-order

beliefs as the variation in equilibrium strategies divided by the size of this change

in beliefs as measured by our embedding metric. We show that, under global

stability and the independence assumption, the marginal impact of changes

in kth-order beliefs is at most bk times a constant. This formalizes our notion

that, under global stability, the marginal impact of higher-order beliefs decreases

exponentially. In that case, precision in lower-order beliefs will be much more

important than the precision in higher-order beliefs in approximating a problem.

It also follows that the players’ equilibrium behavior would not change much

if they formed erroneous higher-order beliefs. These assertions may all sound

very natural; we should emphasize that they may easily fail when global stability

does not hold. In particular, with linear best-responses, the marginal impact of

kth-order beliefs actually increases exponentially in k whenever global stability

does not hold.

It also follows from our assumptions that equilibrium behavior is continuous

with respect to the product topology on type space that comes from the em-

bedding metric. Under the assumption that the best-response correspondence

is singleton and satisfies global stability under uncertainty, this further implies

that the correspondence that takes each type to the set of all equilibrium actions

for that type is lower semi-continuous.

Although there is a sizeable literature on the impact of higher-order uncer-

tainty following Rubinstein (1989), the focus of most studies has been relax-

ation of common knowledge and lower semi-continuity of equilibrium in the

worst-case scenarios, such as approximating common knowledge with common

p-beliefs (Monderer and Samet (1989)), robustness of equilibrium against (pos-

sibly substantial) payoff uncertainty with small probability (Fudenberg, Kreps,

and Levine (1988) and Kajii and Morris (1997)), and strong topologies under
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which equilibrium is lower semi-continuous uniformly over all games (Monderer

and Samet (1997) and Kajii and Morris (1998)). Most closely related to our

work, Morris (2002) analyzes the impact of higher-order uncertainty within a

model with linear best responses, reaching the conclusion that impact of higher-

order beliefs can be arbitrarily large if we require a uniform bound over all

games. Our focus differs in two ways. Firstly, we measure the impact of higher-

order uncertainty within a single game (dropping the uniformity requirement).

Second, while our sufficient condition implies continuity of best response, most

of these papers analyze matrix games and naturally use the supremum metric

on the mixed strategies, when the best response is generically discontinuous.

The outline of the paper is as follows. In the next section, we illustrate the

relation between stability and dampening impact of higher-order beliefs using

games with linear best responses. In Section 3, we present our basic model with

independence assumption and introduce the embedding metric; we introduce

global stability in Section 4 and provide sufficient conditions and examples for

it in Section 5. Our major results are presented in Section 6 with independence

assumption, and our main result is extended beyond this assumption in Section

7. Section 8 concludes. Some proofs are relegated to the Appendix.

2. Examples with Linear Best Responses

Wewill now show how dampening impact of higher-order uncertainty is equiv-

alent to stability in games with linear best-response functions, such as the linear

Cournot duopoly. This illustrates the close relationship between these two con-

cepts which we will establish in a broader context in the later sections.

2.1. Cournot Duopoly. Consider a Cournot duopoly where the inverse-demand
function is given by

P = 1−Q

where P is the price of a good and Q = q1 + q2 where qi is the supply of firm

i ∈ N = {1, 2}. The marginal cost of firm i is denoted by ci, so that its payoff
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function is

ui (q1, q2) = qi (1− q1 − q2 − ci) .

The inverse-demand and payoff functions are common knowledge.

Each firm knows its own marginal cost. If we assumed that the marginal costs

were common knowledge, then we would have the classical complete-information

case. We could also allow incomplete information by assuming that (c1, c2) is

drawn from a commonly known distribution, representing the beliefs of j about

ci conditional on its own cost cj. If we further assumed that c1 and c2 were

independently distributed, then this would correspond to the assumption that

the firms’ beliefs about the other firms’ cost are common knowledge. In this

paper, we do not make such strong informational assumptions; we want to allow

variations in all levels of uncertainty. Firm j has a probability distribution t1j

on ci, representing its beliefs about ci. Firm i has also a probability distribution

t2i on t
1
j , representing i’s beliefs about j’s beliefs about ci. In general, firm i has

probability distribution tki on t
k−1
j , representing kth-order beliefs of firm i. Firm

i’s type is the entire list ti = (ci, t1i , t
2
i , . . .).

A strategy profile (q∗1, q
∗
2), where q

∗
i : ti 7→ q∗i (ti) specifies firm i’s supply as a

function of its type, is an equilibrium iff q∗i (ti) maximizes the expected payoff

of type ti given the strategy q∗j of the other firm. That is, equilibrium strategy

q∗i will maximize the expected payoff

Ei

£
qi
¡
1− qi − q∗j (tj)− ci

¢¤
= qi

¡
1− qi −Ei

£
q∗j (tj)

¤
− ci

¢
,

where expectation Ei will be determined by its beliefs (t1i , t
2
i , . . .) at all levels,

as q∗j (tj) depends on the entire type tj. This implies that

(2.1) q∗i =
1− ci
2
− 1
2
Ei

£
q∗j (tj)

¤
.

Of course, we also have

(2.2) q∗j =
1− cj
2
− 1
2
Ej [q

∗
i (ti)] .

Substituting (2.2) in (2.1), we can obtain

(2.3) q∗i =
1− ci
2
− 1−Ei [cj]

4
+
1

4
EiEj [q

∗
i ] .
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A further substitution of (2.1) in (2.3) would yield

q∗i =
1− ci
2
− 1−Ei [cj]

4
+
1−EiEj [ci]

8
− 1
8
EiEjEi

£
q∗j
¤
.

Here Ei [cj] depends only on t1i , the beliefs of i about the cost of j, EiEj [ci]

depends only on t2i , the beliefs of i about the beliefs of j about the cost of i,

and EiEjEi

£
q∗j
¤
depends on the third and all higher-order beliefs. In general,

q∗i =
1− ci
2
− 1−Ei [cj]

4
+
1−EiEj [ci]

8
− · · ·+ 1

2k
EiEjEi · · ·Ei| {z }

k times

£
q∗j
¤

when k is odd; the last term is EiEjEi · · ·Ej[q
∗
i ]/2

k when k is even. In equilib-

rium, each firm’s supply will always be in [0, 1]; hence the absolute value of the

last term is at most 1/2k. That is, if we fix the beliefs up to kth order, we know

the equilibrium strategy q∗ up to an error of at most 1/2k.

This also implies that we can write the equilibrium strategy as a convergent

series

q∗i =
1− ci
2
− 1− Ei [cj]

4
+
1−EiEj [ci]

8
− 1−EiEjEi [cj]

16
+ · · ·

where the coefficient of the kth term is 1/2k. The significance of this formula is

that the coefficients of expectations decrease exponentially as we go to higher-

order expectations.

2.2. General Case with Linear Best Responses. The analysis above can
be easily generalized to the case with linear best-response functions

BRi = ai + bEi [sj]

where ai is the underlying parameter for player i (such as (1− ci) /2) and sj is

the (unknown) action of player j. Now, the equilibrium strategies satisfy

(2.4) s∗i = ai + bEi [aj] + b2EiEj [ai] + · · ·+ bkEiEjEi · · ·Ei| {z }
k times

£
s∗j
¤

when k is odd. The absolute value of the coefficients will decrease exponentially,

resulting in a convergent infinite series as above, if and only if |b| < 1.
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• Note that this corresponds precisely to the stability of the equilibrium of
the complete information game under the best-response correspondence.

• When the equilibrium is unstable, the impact of higher-order beliefs

in equilibrium is actually higher than that of lower-order beliefs, and

one must know the higher-order beliefs to an impossibly high level of

precision in order to predict behavior.

• Our derivation in this section relies only on the formation of higher-order
expectations–not on the particular type space used. Hence it applies

to any type structure.

• We are only able to use the substitution trick here to derive a simple
formula because of the linearity of the best-response function. In the

general case a player’s best response depends on the details of the entire

distribution (as noted by Morris (2000)) and there is no direct relation-

ship between a player’s best responses under certainty and uncertainty,

rendering such elementary analysis impossible and requiring the more

sophisticated tools of the following sections.

Note also that Morris and Shin (2003) and Morris (2002) obtain specific

examples with linear best responses similar to ours in this section. They focus

on different issues; Morris and Shin (2003) focus on the role of public information

while Morris (2002) focus on the large impact of higher-order expectations in

the worst-case scenario (when the slope of the best response approaches 1).

2.3. A Traditional Type Structure. We have ex ante a ∼ N (0, 1), and

each player i gets a private signal xi = a + εi where εi ∼ N (0, (1− v) /v)

for some v ∈ (0, 1) and a, ε1, and ε2 are all independent. For each i, assume

BRi = E [a+ bsj|xi] = ai+ bE [sj|xi] for some b ≥ 0, where ai ≡ E [a|xi] = vxi.

The above is all common knowledge.

Check that, whenever bv 6= 1, we have a Bayesian Nash equilibrium s∗ with

(2.5) s∗i =
vxi
1− bv

.

When bv < 1, equilibrium seems intuitive. When bv > 1, however, counterin-

tuitively the coefficient of xi is negative and hence s∗i is decreasing in xi. Now,
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write s∗i as a series of higher order expectation as in (2.4). Since the kth-order

expectation of a is EiEjEi . . . Ej [a] = vkxi, we have

s∗i = vxi + bv2xi + b2v3xi + · · ·+ bkEiEjEi · · ·Ei| {z }
k times

£
s∗j
¤
.

Firstly, notice that when bv > 1, higher-order terms increase exponentially,

yielding a divergent series. This explodingly large impact of higher-order uncer-

tainty, however, does not appear in the directly computed formula in (2.5). Sec-

ond, when bv < 1 < b, we have a convergent series yielding seemingly intuitive

formula in (2.5), despite the fact that marginal contributions of higher-order ex-

pectations increase exponentially. This is only because our single-dimensional

type space forced the variations in higher-order expectations to decrease expo-

nentially,4 compensating the increases in marginal contributions. But in the

approximated real-life situation, the players will probably have higher-order

doubts about this model. In that case, their higher-order expectations may

vary significantly, leading to dramatically different behavior (under the equi-

librium of more accurate model). In that case, the model’s predictions about

the behavior will be misleading, and considerations about higher-order beliefs

within the model will yield a false sense of robustness.

3. Model with independence

We consider a game among players N = {1, 2, . . . , n}. The source of underly-
ing uncertainty is a payoff-relevant parameter a ∈ A where (A, d) is a compact

Polish space (i.e., a complete and separable metric space), where d is a metric

on set A. (In the Cournot example above a = (c1, c2) ∈ [0, 1]2.) Each player
i has action space Si, which is a compact metric space, and utility function

ui : A× S → R where S =
Q

i Si.

Notation. Given any list X1, . . . , Xn of sets, write X−i =
Q

j 6=iXj, x−i =

(x1, . . . , xi−1, xi+1, . . . , xn) ∈ X−i, and (xi, x−i) = (x1, . . . , xi−1, xi, xi+1, . . . , xn).

Likewise, for any family of functions fj : Xj → Yj, j ∈ N , we define f−i : X−i →
Y−i by f−i (x−i) = (fj (xj))j 6=i. Given any metric space (X, d), write ∆(X) for

4This is a general phenomenon (see Samet (1998).)
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the space of probability distributions on X, suppressing the fixed σ-algebra on

X which at least contains all open sets; when we use product spaces, we will

always use the product σ-algebra. We write di for the metric on Si for each

i ∈ N and define the metric d−i on S−i by

d−i
¡
s−i, s0−i

¢
= max

j 6=i
dj
¡
sj, s

0
j

¢
.

We now define the players’ hierarchy of beliefs about the underlying parame-

ter a. We confine ourself to the belief structures where a player’s beliefs are

independent from his own beliefs at other orders. We do this because we want

to be able to (i) vary a player’s kth-order beliefs without worrying about the

coherency of his beliefs and (ii) measure the impact of this change on equilib-

rium strategies without worrying about its impact through the changes in the

player’s beliefs at other orders. (The independence assumption will be dropped

in our main result.)

We define the beliefs (or type) of a player i inductively. His first order beliefs

(about a) are represented by a probability distribution t1i ∈ ∆1 ≡ ∆ (A) on A.

His kth-order beliefs (about tk−1−i ) are represented by a probability distribution

tki ∈ ∆k ≡ ∆
¡
∆n−1

k−1
¢
on ∆n−1

k−1. The type of a player i is the list

ti =
¡
t1i , t

2
i , t

3
i , . . .

¢
of all these probability distributions. We write Ti for the set of all possible

types ti of player i. We also write T =
Q

i Ti for the set of all type profiles

t. His beliefs are represented by the product measure t1i × t2i × t3i × · · · of his
beliefs (t1i , t

2
i , t

3
i , . . .) at each order; that is, given any

Q∞
k=0Xk ⊂ A × T−i, the

probability that he assigns to the event {(a, t−i) ∈
Q∞

k=0Xk} is
Q∞

k=1 t
k
i (Xk−1).

(Here, of course, we have used the independence assumption.) We write t\t̃ki
for the belief structure obtained by changing tki to t̃ki in t; t\t̃k−i and ti\t̃ki are
defined similarly.

Example 1. ( Independent private value environment) Take any incomplete-
information game with payoffs ui (s; θi) for each i where each θi ∈ Θi is inde-

pendently distributed with some probability distribution Pi and privately known

by player i, and this is common knowledge. This game can be embedded in our
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framework, by taking A = ∪iΘi, t1i = δθi, t
2
i = t̂2i ≡ P−i◦ξ−1 where P−i = Πj 6=iPj

and ξ : θ−i 7→ Πj 6=iδθj , and taking t
k
i = t̂ki ≡ δt̂k−1−i

for each k > 2, where δx de-

notes the measure that puts probability 1 on {x}.

A strategy of a player i is a mapping

ti 7→ si (ti) ∈ Si,

that determines which action si (ti) he would choose given his type ti. We fix a

Bayesian Nash equilibrium s∗ = (s∗1, s
∗
2, . . . , s

∗
n), which must be such that s

∗
i (ti)

maximizes the expected value E
£
ui
¡
a, si, s

∗
−i (t−i)

¢
|ti
¤
of ui

¡
a, si, s

∗
−i
¢
under

the probability distribution t1i × t2i × t3i × · · · at each ti and for each i.

Embedding metric. Throughout the paper, we will need a measure of the dis-
tances between probability distributions. We therefore introduce the following

metric, which we will call embedding metric. Let (X, d) be any metric space.

Given any µ, µ0 ∈ ∆ (X), we first write

(3.1) ∆µ,µ0 = {ν ∈ ∆ (X ×X) |marg1ν = µ,marg2ν = µ0}

for the set of all joint probability distributions with marginals µ and µ0, where

margi is the marginal distribution on the ith copy of X. Now we define our

embedding metric d on ∆ (X) by setting

(3.2) d (µ, µ0) = inf
ν∈∆µ,µ0

Eν [d (x1, x2)] ,

where Eν is the expectation operator with respect to ν and (x1, x2) is a generic

member of X ×X. It is easy to verify that this is an extension in the following

sense: if µ and µ0 are point masses at x and x0, respectively, then d (µ, µ0) =

d (x, x0) – thus the notational convenience of using d for both metrics. An

equivalent definition is given by

(3.3) d (µ, µ0) = inf
Y∼µ,Y 0∼µ0

E [d (Y, Y 0)]

where inf is taken over all pairs Y and Y 0 of X-valued random variables with

distributions µ and µ0, respectively, and coming from the same probability space,

and E is the expectation operator on this space.
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The embedding metric has the following property of preserving Lipschitz con-

tinuity; the proof is in the Appendix. Notice in the lemma that µ ◦ f−1 is the
distribution of f (Y ) for a random variable Y ∼ µ.

Lemma 1. Let (X, dX) and (Z, dZ) be two metric spaces, and f : X → Z be

such that

dZ (f (x) , f (x
0)) ≤ λdX (x, x

0) (∀x, x0)
for some λ. Let also dX and dZ be the embedding metrics on ∆ (X) and ∆ (Z),

respectively. Then,

dZ
¡
µ ◦ f−1, µ0 ◦ f−1

¢
≤ λdX (µ, µ

0) (∀µ, µ0) .

4. Stability and Higher-order Uncertainty

We are now ready to present our sufficient condition for the dampening impact

of higher order uncertainty: stability of equilibrium under the best-response

function. The global stability of equilibrium is usually defined by the condition

that the variation in the best response is less than the variation in the other

players’ strategies under certainty.5 We will first extend this notion to the best

response function under uncertainty, which is not directly related to the best

response function under certainty.

Best Responses. Given any player i and any probability distribution π on

A × S−i, we write BRi (π) for the best response of player i when his beliefs

about the underlying uncertainty a and the other players’ actions s−i are rep-

resented by π. Notice that we are taking the best response to be a function

rather than a correspondence. Under certain conditions (e.g., when the strat-

egy spaces are convex and utilities are strictly quasi-concave in own strategy),

the best-response correspondence will indeed be singleton. In general, however,

there may be multiple best responses. In those cases we will assume that the

equilibrium uses a single consistent selection from the best-response correspon-

dence. In the former case, the global stability defined below will be a property
5The usual definition appears to be different. For instance, in two player games we only

need that the product of maximum variations is less than 1. Of course, under this condition,

we could rescale our metrics on each strategy space so that our definition is also satisfied.
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of the game, while in the latter case, it will be a property of equilibrium. Under

the independence assumption, we will have π = t1i × µ for some t1i ∈ ∆ (A)

and µ ∈ ∆ (S−i). In that case, we will write BRi (t
1
i , µ) instead of BRi (π).

When it does not lead to any confusion, we will sometimes suppress some of

the arguments (e.g., write BRi (µ) when t1i is fixed) or write it in the form of

BRi (a, s−i; ti), denoting the best response of player i when his type is ti, where

a and s−i are random variables.

Global Stability under uncertainty. We say that global stability under un-
certainty holds iff there exists b ∈ [0, 1) such that, given any i ∈ N , t1i ∈ ∆ (A),

and any µ, µ0 ∈ ∆ (S−i),

di (BRi (µ) , BRi (µ
0)) ≤ bd−i (µ, µ0) ,

where d−i is the embedding metric on ∆ (S−i).

The required condition for global stability is the standard condition for Lip-

schitz continuity (of each BRi with respect to the embedding metric defined

on ∆ (S−i)) with the additional requirement that the constant b, which can be

thought of as an upper bound on the absolute value of the slope, be less than

1. Of course, this is the same as saying that for each i there is a bi ∈ [0, 1)
satisfying the above condition, since we can take b = max {b1, . . . , bn}.

Global stability is sufficient to guarantee that the impact of higher-order

beliefs on equilibrium is diminishing. This is formally expressed in the next

result. Consider a change in a player i’s kth-order beliefs from tki to t̃
k
i = tki ◦φ−1,

so that i believes that the other players’ k − 1st order beliefs have changed
according to some mapping φ. The next result states that, in that case, the

change in equilibrium strategy of player i can be at most b times the expected

maximum change in the other players’ equilibrium strategies due to the change

in their k − 1st order beliefs, under the original beliefs of i.

Proposition 1. Assume global stability under uncertainty for some b ∈ [0, 1).
Then, given any t, k > 1, i and any measurable function φ : ∆n−1

k−1 → ∆n−1
k−1,

di
¡
s∗i
¡
ti\tki ◦ φ−1

¢
, s∗i (ti)

¢
≤ bE

£
d−i
¡
s∗−i
¡
t−i\φ

¡
tk−1−i

¢¢
, s∗−i (t−i)

¢
|ti
¤
.
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Proof. Let µ and µ0 be the distributions of s∗−i under ti and ti\tki ◦ φ−1, re-
spectively. Clearly, s∗−i and s∗−i ◦ φ are two random variables coming from the

same state space T−i and have the distributions µ and µ0, respectively, under ti.

Therefore,

di
¡
s∗i
¡
ti\tki ◦ φ−1

¢
, s∗i (ti)

¢
= di

¡
BRi

¡
t1i , µ

¢
, BRi

¡
t1i , µ

0¢¢
≤ inf

s−i∼µ,s0−i∼µ0
biE

£
d−i
¡
s−i, s0−i

¢¤
≤ bE

£
d−i
¡
s∗−i, s

∗
−i ◦ φ

¢
|ti
¤

= bE
£
d−i
¡
s∗−i
¡
t−i\φ

¡
tk−1−i

¢¢
, s∗−i (t−i)

¢
|ti
¤
.

¤

5. Sufficient conditions for stability

In this section we present two sets of sufficient conditions for global stability

under uncertainty. Both sets of conditions are closely related to global stability

under certainty. We first present a general class of games where global stability

under uncertainty is closely related to global stability under certainty. This

class is characterized by Assumption 1a.

Assumption 1a. Best-response function of player i takes the form of

(5.1) BRi

¡
t1i , µ

¢
= fi (E [gi (a, s−i)])

where expectation is taken with respect to ti0×µ ∈ ∆ (A× S−i); fi : X → Si and

gi : A× S−i → X are two Lipschitz continuous functions defined through some

Banach space (X, dX); i.e., there exist αi and βi such that di (fi (x) , fi (x
0)) ≤

αidX (x, x
0) and dX

¡
gi (a, s−i) , gi

¡
a, s0−i

¢¢
≤ βid−i

¡
s−i, s0−i

¢
.

Note that the functional form in (5.1) is satisfied whenever ui is analytical

and the optimization problem has an interior solution. (The Taylor expansion

for the first order condition would imply such a functional form, where E [gi]

is the vector of all moments.) The more substantial part of this assumption is

that fi and gi are Lipschitz continuous. Under certainty, Assumption 1a yields
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a best response function

BRi (a, s−i) = fi (gi (a, s−i)) ≡ hi (a, s−i) .

Our equilibrium would be stable under the best response correspondence if

di
¡
hi (a, s−i) , hi

¡
a, s0−i

¢¢
≤ bid−i

¡
s−i, s0−i

¢
at each a for some bi < 1. The

latter condition is slightly weaker than the following assumption.

Assumption 1b. For each i ∈ N , we have bi ≡ αiβi < 1.

Proposition 2. Assumptions 1a and 1b imply global stability under uncertainty.

Proof. In the Appendix. ¤

That is, under Assumption 1a, global stability under uncertainty is implied by

the existence of αi’s and βi’s that satisfy Assumption 1b. Moreover, whenever

f or g is the identity, global stability under certainty and uncertainty will be

equivalent. Hence, there is a close link between these two concepts. Although

Assumption 1 might not be easy to check in general, our next example presents

a general class of games where these conditions can be easily checked.

Example 2. For each i ∈ N , take Si = [x, x̄] for some x, x̄ ∈ R and

ui (a, si, s−i) = φi (si) gi (a, s−i)− ci (si) ,

where gi : A×S−i → R is a continuously differentiable function with |∂gi/∂sj| <
βi for each j 6= i and for some βi ∈ R, and φi and ci are twice continuously

differentiable functions with φ0i > 0, φ00i < 0, c0i > 0, and c00i ≥ 0. Note that

gi is Lipschitz continuous with parameter βi with respect to the changes in s−i.

Check that

BRi

¡
t1i , µ

¢
= fi (E [gi (a, s−i)])

where fi (z) is x if z < c0 (x) /φ0 (x), x̄ if z > c (x̄) /φ0 (x̄), and it is the unique so-

lution x to the first order condition c0 (x) /φ0 (x) = z otherwise. By the inverse-

function theorem, fi is also Lipschitz continuous with parameter αi = 1/γi

where γi = minx∈[x,x̄] (c
0 (x) /φ0 (x))0 > 0. Therefore, global stability is satisfied

whenever b ≡ maxi∈N βi/γi < 1.
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Focusing on games where the agents’ strategy spaces are one-dimensional, our

next result presents a simple sufficient condition for global stability, and hence

for dampening impact of higher order uncertainty, in terms of second derivatives

of the utility functions.

Proposition 3. For each i, assume Si ⊂ R, ui (a, ·) is twice-continuously dif-
ferentiable, ui (a, ·, s−i) is strictly concave, ∂2ui/∂s2i is bounded away from zero,
and

(5.2) bi ≡ max
a

X
j 6=i

maxs |∂2ui (a, s) /∂si∂sj|
mins |∂2ui (a, s) /∂s2i |

< 1.

Then, we have global stability under uncertainty whenever (i) BRi (t
1
i , µ) is in

the interior of Si for all t1i × µ, or (ii) Si is convex.

Proof. In the Appendix. ¤

Example 3. Consider Cournot oligopoly with linear inverse-demand function
P and arbitrary cost function ci with c00i ≥ 0 (where both P and ci may depend

on parameter a.) Check that |∂2ui/∂si∂sj| = |P 0| and |∂2ui/∂s2i | = 2 |P 0| + c00i ,

so that

bi = max
|P 0|

2 |P 0|+ c00i
≤ 1
2
,

yielding global stability.

6. Equilibrium Impact with Independence

In this section, using the embedding metric defined above, we will put a

natural metric on the type space, which will allow us to compare variations in

different orders of the type space. We will show that, under the previously stated

conditions, variations in higher-order beliefs have a lower impact on equilibrium

behavior than comparable variations in lower-order beliefs.

6.1. Embedding metric on beliefs. We now apply the embedding-metric

construction inductively to define our embedding metric on beliefs of each player
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at each order. First, for k = 1, we extend d to ∆1 = ∆ (A) by setting

d
¡
t1i , t̃

1
i

¢
= inf

a∼t1i ,a0∼t̃
1
i

E [d (a, a0)]

at each t1i , t̃
1
i ∈ ∆1 and to ∆n−1

1 by setting

d
¡
t1−i, t̃

1
−i
¢
= max

j 6=i
d
¡
t1j , t̃

1
j

¢
at each t1−i, t̃

1
−i ∈ ∆n−1

1 . For any k > 1, we extend d to ∆k by setting

d
¡
tki , t̃

k
i

¢
= inf

Y∼tki ,Y 0∼t̃ki
E [d (Y, Y 0)] ,

where Y and Y 0 take values in ∆n−1
k−1 (whose generic member is t

k−1
−i ), and to ∆k

by setting

d
¡
tk−i, t̃

k
−i
¢
= max

j 6=i
d
¡
tkj , t̃

k
j

¢
at each tk−i, t̃

k
−i ∈ ∆n−1

1 .

6.2. Dampening impact of higher-order uncertainty. Assuming global
stability, we will now find an upper bound for the change in equilibrium strat-

egy caused by a change in any kth-order beliefs. When we consider comparable

changes (according to d) at all orders k, this bound will be decreasing exponen-

tially in k.

Proposition 4. Assume that, for each i ∈ N , BRi (·, µ) is Lipschitz continuous
uniformly on µ, i.e.,

(6.1) di
¡
BRi

¡
t1i ;µ

¢
, BRi

¡
t̃1i ;µ

¢¢
≤ αdi

¡
t1i , t̃

1
i

¢ ¡
∀µ, t1i , t̃1i

¢
for some α ∈ R. Assume also global stability under uncertainty for parameter
b. Then, in the model with independence, for any i, ti, k, and any t̃ki ,

(6.2) di
¡
s∗i (ti) , s

∗
i

¡
ti\t̃ki

¢¢
≤ αbk−1d

¡
tki , t̃

k
i

¢
.

The conclusion can be spelled out as follows: Change the beliefs of a player at

some order k while all the other beliefs are fixed. The change in the equilibrium

strategy due to this change in the beliefs is at most an exponentially decreasing

function of k times the change in the beliefs according to our embedding metric.
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In other words, the bound of the rate of change in equilibrium strategy as a

function of kth-order belief is exponentially decreasing in k.

Proof. Firstly, for k = 1, (6.2) is just (6.1). Now assume that (6.2) holds at

some k − 1, i.e., for all j ∈ N , t̂, and t̃k−1j ,

(6.3) dj
¡
s∗j
¡
t̂j
¢
, s∗j
¡
t̂j\t̃k−1j

¢¢
≤ αbk−2d

¡
t̂k−1j , t̃k−1j

¢
.

For any fixed t and i ∈ N , let us define f : ∆n−1
k−1 → S−i by setting

f
¡
t̂k−1−i

¢
= BR−i

¡
t\t̂k−1−i

¢
at each t̂k−1−i ∈ ∆n−1

k−1. Fix t̂i = ti, so that our induction hypothesis (6.3) becomes

d
¡
f
¡
t̂k−1−i

¢
, f
¡
t̃k−1−i

¢¢
≤ αbk−2d

¡
t̂k−1−i , t̃k−1−i

¢ ¡
∀t̂k−1−i , t̃k−1−i

¢
.

Then, by Lemma 1, for any t̃k−1i ,

d
¡
tki ◦ f−1, t̃ki ◦ f−1

¢
≤ αbk−2d

¡
tki , t̃

k
i

¢
.

Notice that tki ◦ f−1 and t̃ki ◦ f−1 are the distributions of s∗−i under ti and ti\t̃ki .
Therefore, by global stability,

di
¡
s∗i (ti) , s

∗
i

¡
ti\t̃ki

¢¢
≤ bd

¡
tki ◦ f−1, t̃ki ◦ f−1

¢
≤ αbbk−2d

¡
tki , t̃

k
i

¢
≤ αbk−1d

¡
tki , t̃

k
i

¢
.

¤

In case we only know a player’s beliefs up to kth order and have no knowledge

of his beliefs at higher orders, the following result tells us the accuracy with

which we can predict his equilibrium behavior. This is important because, as

argued in the Introduction, modelers would prefer not to have to specify the

players’ higher-order beliefs. This result might be thought to be a corollary to

Proposition 4; it can be obtained simply by adding the effects of changes at

k + 1st and all higher orders. The validity of this infinite summation, however,

will be established only when we prove Proposition 8, which is a more general

form of this proposition and only assumes global stability and boundedness of
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the strategy space.6 Notice also that our present result does not refer to any

topology on the type space –although we used our embedding metric to reach

this result.

Proposition 5. Under the assumptions and the notation of Proposition 4, let
DA = maxa,a0∈A d (a, a0). Let ti, t̃i be such that tli = t̃li for all l ≤ k for some

k > 1. Then, in the model with independence,

di
¡
s∗i (ti) , s

∗
i

¡
t̃i
¢¢
≤ bkαDA/ (1− b) .

In certain cases, a modeler might want to predict the equilibrium behavior

within a certain margin of error. For example, checking the validity of certain

qualitative predictions of his theories may only require the knowledge of equi-

librium strategies within a certain margin of error. Proposition 5 tells us how

many orders of uncertainty he needs to specify. It implies that, given any � > 0

and any t ∈ T , if we know t up to the order

(6.4) k ≥ log (�)− log (αDA/ (1− b))

log (b)
,

then we can compute the equilibrium strategies up to a maximum error of

�. Notice that the expression on the right-hand side is increasing in b and

decreasing in �.

6.3. Continuity in product topology. Many authors emphasized that equi-
librium strategy is not continuous with respect to the product topology on type

space and introduced stronger topologies, such as the topology of uniform con-

vergence, in order to make the equilibrium strategies continuous (see Monderer

and Samet (1996) and Kajii and Morris (1998)). (The equilibrium correspon-

dence fails to be lower semi-continuous.) These authors require uniform con-

vergence over all games, in essence focusing on the worst-case games, such as

e-mail game which has high dependence on higher order beliefs. Moreover, they

6This infinite summation would give us a proof only if we had continuity at infinity, i.e.,

for any sequence {t[l]}l∈N of types such that t[l] is identical to some fixed type t at the first
l orders, liml→∞ ds

∗
(t [l] , t) = 0. Proposition 8 implies the latter statement as an immediate

corollary.
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consider the games with discrete strategy-spaces, where the best-response cor-

respondence cannot usually have any continuous selection, which is needed for

global stability. Here we fix a game, and ask whether the equilibrium strategies

of this game are continuous with respect to a product topology. Our next re-

sult answers this question in the affirmative for games satisfying global stability

under uncertainty and for the product topology on type space generated by the

embedding metric on beliefs.

Note that this topology is the topology of pointwise convergence under the

embedding metric. That is, equilibrium strategy s∗i is continuous with respect

to this topology iff, for any sequence {ti,m}m∈N of types,£
tki,m → t̂ki ∀k ∈ N

¤
⇒
£
s∗i (ti,m)→ s∗i

¡
t̂i
¢¤
,

where convergence of beliefs at each order is according to the embedding metric.

Also, because the space of beliefs is compact under the embedding metric, this

topology is metrized by the metric db (called a Fréchet metric) defined by

db
¡
ti, t̃i

¢
=

∞X
k=1

bk−1d
¡
tki , t̃

k
i

¢
,

where b is any number in (0, 1). Our next result states that, under global sta-

bility, the equilibrium strategy is Lipschitz continuous with respect to a Fréchet

metric, and hence it is continuous in the product topology.

Proposition 6. Under the assumptions and the notation of Proposition 4, in
the model with independence, for each i ∈ N , the equilibrium strategy s∗i of

player i is Lipschitz continuous with respect to db. In that case, s∗i is continuous

with respect to the product topology on type space generated by the embedding

metric on beliefs at each order.

Proof. Fix any two types ti and t̃i of player i. For each k ∈ N, define the type
ti,k by setting

tli,k =

(
tli if l ≤ k,

t̃li otherwise
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at each order l. We have

di
¡
s∗i (ti) , s

∗
i

¡
t̃i
¢¢
≤

∞X
k=1

di (s
∗
i (ti,k) , s

∗
i (ti,k−1)) =

∞X
k=1

di
¡
s∗i (ti,k) , s

∗
i

¡
ti,k\t̃ki

¢¢
≤

∞X
k=1

αbk−1d
¡
tki , t̃

k
i

¢
= αdb

¡
ti, t̃i

¢
,

where α is as defined in Proposition 4, proving the result. To see the first in-

equality, note that we can change t̃i to ti by changing t̃ki to tki one at a time.

Hence, by Proposition 5, for each � > 0, there exists an integer l such that

di
¡
s∗i (ti) , s

∗
i

¡
t̃i
¢¢
≤
Pl

k=1 di (s
∗
i (ti,k) , s

∗
i (ti,k−1))+� ≤

P∞
k=1 di (s

∗
i (ti,k) , s

∗
i (ti,k−1))+

�. Since � is arbitrary, this yields the inequality. The next equality is by defini-

tion; the next inequality Proposition 4, and the last equality is by definition. ¤

Corollary 1. Assume that players’ best responses are always unique and satisfy
global stability under uncertainty. Define equilibrium correspondence Σ∗ by set-

ting Σ∗ (t) = {s∗ (t) |s∗ is a Bayesian Nash Equilibrium} at each t ∈ T . Then,

under the assumptions of Proposition 4, Σ∗ is lower semi-continuous with re-

spect to the product topology on type space generated by the embedding metric

on beliefs at each order.

Proof. Take any t, any s∗ (t) ∈ Σ∗ (t), and sequence t (n) that converges to t

in the topology above. By definition s∗ (t) is the value of a Bayesian Nash

equilibrium s∗ at t. Then, by Proposition 6, s∗ (t (n)) ∈ Σ∗ (t (n)) converges to

s∗ (t). ¤

7. Without independence

We will now define the universal type space without imposing independence.

We will show that our main result, namely Proposition 5, generalizes to this

structure.

General model (without independence). The independence assumption
was built into our previous model to allow for simpler notation and a clearer

consideration of the effects of changing beliefs at a single order. In order to allow

for the general case, we will need to consider the usual (and more complicated)
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construction of the universal type space by Brandenburger and Dekel (1993), a

variant of an earlier construction by Mertens and Zamir (1985). The meanings

of kth-order beliefs in our two models are not parallel, as in the new model the

kth-order belief will contain information about all lower orders as well. We will

define our types using the auxiliary sequence {Xk} of sets defined inductively
by X0 = A and Xk = [∆ (Xk−1)]

n ×Xk−1 for each k > 0. We endow each Xk

with the weak topology and the σ-algebra generated by this topology, yielding

a standard separable Borel space as A is a Polish space. A player i’s first or-

der beliefs are represented by a probability distribution τ 1i on X0, second order

beliefs (about all players’ first order beliefs and the underlying uncertainty) are

represented by a probability distribution τ 2i on X1, etc. Therefore, a type τ i of

a player i is a member of
Q∞

k=1∆ (Xk−1). Since a player’s kth-order beliefs now

contain information about his lower order beliefs, we need the usual coherence

requirements. We write T for the subset of (
Q∞

k=1∆ (Xk−1))
n in which it is

common knowledge that the players’ beliefs are coherent, i.e., the players know

their own beliefs and their marginals from different orders agree. We will use

the variables τ , τ̃ ∈ T as generic type profiles. The rest of the model in Section
3 is unchanged.

Dropping the independence assumption causes two complications. First, since

a player’s higher-order beliefs contain information about his lower-order beliefs,

we can no longer vary a player’s belief at order k and keep his beliefs at order

l > k constant –as in Proposition 4– without violating the coherency require-

ments. Instead, we allow all the beliefs at all orders higher than k to vary (as

in Proposition 5). Second, since the other players’ actions are now (possibly)

perceived to be correlated with the underlying uncertainty, we need to extend

our definition of global stability to allow such correlation. To do this, let d̄−i be

any metric on A× S−i such that

(7.1) d̄−i
¡
(a, s−i) ,

¡
a, s0−i

¢¢
= d−i

¡
s−i, s0−i

¢
for each a ∈ A and s−i, s0−i ∈ S−i, so that the metric d−i on S−i is preserved when

S−i is embedded inA×S−i. Extend also d̄−i to∆ (A× S−i) using the embedding

metric as before. We are able to leave the metric d̄−i only partially specified
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since global stability is related only to responsiveness of the best response with

respect to the changes in the other players’ strategies. Thus we will be able to

prove that as long as the inequality below is satified for some d̄−i our results

will hold.

Global Stability under uncertainty in general model. We say that global
stability under uncertainty holds iff there exist some b ∈ [0, 1) and some embed-
ding metric d̄−i on ∆ (A× S−i) satifying (7.1) and such that, given any i ∈ N

and any π, π0 ∈ ∆ (A× S−i) with margAπ = margAπ0, we have

(7.2) di (BRi (π) , BRi (π
0)) ≤ bd̄−i (π, π0) .

The next propostion extend Propositions 2 and 3 to the present set up. One

can also check that Example 2 of Section 5 remains valid under the new defini-

tion, while we will have global stability under the new definition in Example 3

whenever maxa |P 0| ≤ 2mina |P 0|.

Proposition 7. (a) Assumptions 1a and 1b imply global stability under un-
certainty. (b) For each i, assume Si ⊂ R, ui (a, ·) is twice-continuously differ-
entiable, ui (a, ·, s−i) is strictly concave, ∂2ui/∂s2i is bounded away from zero,

and

(7.3) bi ≡
X
j 6=i

maxs,a |∂2ui (a, s) /∂si∂sj|
mins,a |∂2ui (a, s) /∂s2i |

< 1.

Then, we have global stability under uncertainty whenever (i) BRi (π) is in the

interior of Si for all π, or (ii) Si is convex.

Proof. In the Appendix. ¤

We are now ready to state our main result, which extends Proposition 5 to

our general model.

Proposition 8. Let DS = maxi∈N supπ,π0∈∆(A×S−i) di (BRi (π) , BRi (π
0)) ∈ R.

Let also τ , τ̃ ∈ T be such that τ li = τ̃ li for all l ≤ k for some k ≥ 0. Assume
global stability under uncertainty for parameter b. Then, in the general model,

(7.4) di (s
∗
i (τ i) , s

∗
i (τ̃ i)) ≤ bkDS.
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Notice that our result assumes only global stability and boundedness of the

strategy space. Under these two assumptions we reach the conclusion that, if we

know the beliefs up to a certain order k, we can know the equilibrium play within

a bound of error that is an exponentially decreasing function of k, bounding the

maximum impact all the higher-order beliefs can have on equilibrium. Our

result does not refer to any topology on the type space. Finally, DS is chosen

as a bound on the variations in equilibrium outcomes. If there are other known

bounds on the equilibrium outcomes (perhaps due to some support restrictions),

then we can replace DS with these bounds. In the remainder of the section we

prove our proposition. We start with the following technical lemma.

Lemma 2. Let (X,ΣX), (Y,ΣY ), (Z,ΣZ) be separable standard Borel spaces,

and endow X×Y , Y ×Z, X×Z, and X×Y ×Z with the σ-algebras generated

by the corresponding product topologies. Let probability measures P and P 0 on

X × Y and X × Z, respectively, be such that margXP = margXP
0. Then, there

exists a probability measure P̃ on X × Y × Z such that margX×YP̃ = P and

margX×ZP̃ = P
0.

Proof. In the Appendix. ¤

Proof of Proposition 8. Define Ω = A×T to be the universal state space. This
is the subset of the larger space Ω̄ = A× (

Q∞
k=1∆ (Xk−1))

n in which coherency

is common knowledge. By Brandenburger and Dekel (1993), Ω̄ is a Polish space,

yielding a standard separable Borel space, and for every τ = (τ 1, . . . , τn) ∈ T
and for every i ∈ N , there exists a probability distribution κτ i ∈ ∆

¡
Ω̄
¢
such

that

(7.5) margXk−1κτ i = τki (∀k),

and κτ i (Ω) = 1. Let

β : (a, τ) 7→
¡
a, s∗−i (τ−i)

¢
,

and write

πτ i = κτ i ◦ β−1 ∈ ∆ (A× S−i)



HIGHER-ORDER UNCERTAINTY 25

for the joint distribution of the underlying uncertainty and the other players’

actions induced by τ i. Notice that s∗i (τ i) = BRi (πτ i).

We will use induction on k. For k = 0, this is true by definition. Fix any

k > 0, and assume that the result is true for k − 1. Take any τ and τ̃ as in the

hypothesis. We have

di (s
∗
i (τ i) , s

∗
i (τ̃ i)) = di (BRi (πτ i) , BRi (πτ̃ i))

≤ bd̄−i (πτ i , πτ̃ i)

≡ b inf
ν∈∆πτi ,πτ̃i

Eν

£
d̄−i
¡
(a, s−i) ,

¡
a0, s0−i

¢¢¤
,(7.6)

where the inequality is due to global stability and ∆πτi ,πτ̃ i
is defined by (3.1).

The rest of the proof is devoted to constructing a ν ∈ ∆πτi ,πτ̃ i
such that, under

the induction hypothesis,

(7.7) Eν

£
d̄−i
¡
(a, s−i) ,

¡
a0, s0−i

¢¢¤
≤ bk−1DS.

Combining (7.6) and (7.7), we obtain (7.4).

We will decompose Ω̄ as Ω̄ = A× L×H where

(7.8) L =
k−1Y
l=1

(∆ (Xl−1))
n and H =

∞Y
l=k

(∆ (Xl−1))
n

are the spaces of lower and higher-order beliefs. For k = 1, we use the convention

that L is a singleton set, and l ∈ L can simply be ignored in the following

analysis for that case. Note that Xk−1 = A× L.

By (7.5), we have probability distributions κτ i and κτ̃ i on Ω̄ such that

margXk−1κτ i = τki = τ̃ki = margXk−1κτ̃ i ,

where the second equality is by our hypothesis. Since we have separable stan-

dard Borel spaces, by Lemma 2, there exists σ ∈ ∆ (Xk−1 ×H ×H) such that

the marginals of σ on the cross product of Xk−1 with the first and second copies

of H are

marg12σ = κτ i and marg13σ = κτ̃ i ,

respectively.
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Now, consider ν = σ ◦ γ−1 ∈ ∆
¡
(A× S−i)

2¢ where
(7.9) γ : (a, l, h1, h2) 7→ (β (a, l, h1) , β (a, l, h2)) .

Notice that the marginal of ν on the first copy of A× S−i is

marg1ν = marg1
¡
σ ◦ γ−1

¢
= (marg12σ) ◦ β−1 = κτ i ◦ β−1 = πτ i ,

and similarly marg2ν = πτ̃ i. Therefore, by definition, ν ∈ ∆πτi ,πτ̃ i
.

We now prove (7.7). Write I ≡ γ (Xk−1 ×H ×H) and take any
¡
(a, s−i) ,

¡
a0, s0−i

¢¢
∈

I. By (7.9), we have a = a0, and hence by (7.1),

(7.10) d̄−i
¡
(a, s−i) ,

¡
a0, s0−i

¢¢
= d−i

¡
s−i, s0−i

¢
.

But by (7.9), s−i = s∗−i (τ̂−i) and s
0
−i = s∗−i (τ̄−i) for some type profiles τ̂ = (l, h1)

and τ̄ = (l, h2), which agree up to the order k − 1 by (7.8). Then, by the
induction hypothesis,

(7.11) d−i
¡
s−i, s0−i

¢
≤ bk−1DS.

Combining (7.10) and (7.11), we obtain

(7.12) d̄−i
¡
(a, s−i) ,

¡
a0, s0−i

¢¢
≤ bk−1DS.

Since suppν ⊂ I (by construction), (7.12) implies (7.7). ¤

8. Conclusion

Present economic theories are mostly based on equilibrium analysis of models

in which only a few low orders of uncertainty are properly specified. We know,

however, that in some games higher-order uncertainty may have a large impact

in equilibrium, changing equilibrium behavior profoundly. In this paper we pre-

sented a sufficient condition, namely global stability under uncertainty, which

guarantees that the impact of higher-order uncertainty is low. Using the univer-

sal type space, in which players can entertain any coherent set of beliefs, we have

shown under this assumption that if we specify the players’ beliefs up to some

order k, we will know their equilibrium behavior within a bound that decreases

exponentially in k (cf. Proposition 8). That is, if a theoretical prediction re-

quires knowledge of the strategies within a margin � of error, then the researcher
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can validate his theory by specifying first k (�) orders of beliefs, where k (�) is

a logarithmic function of �. Under a further independence assumption we also

formalize our notion that, under stability, the marginal impact of higher-order

uncertainty is (exponentially) decreasing in the order (cf. Propositions 1 and

4).7 That is, the problem must be approximated using lower-order uncertainty

rather than higher-order uncertainty; this may be reversed when stability does

not hold, as the impact of higher-order uncertainty may grow exponentially. In

the latter case, we believe that accurate prediction using traditional analysis

will be impossible.

Our study has two important limitations which require further research, im-

posed by our use of normal-form representation and the solution concept of

(unrestricted) Bayesian Nash equilibrium. Firstly, many theories are based on

extensive-form representations and use refinements, such as sequential rational-

ity (Selten (1974), Kreps and Wilson (1982)). Their predictions are often driven

by these refinements when equilibrium itself does not have any predictive power

in their games. It is then crucial to extend our analysis to such a framework,

using extensive-form constructions, such as Battigalli and Siniscalchi (1999).

Secondly, although we are motivated by the wide use of equilibrium analysis,

the concept of equilibrium has only very limited epistemic support (see Aumann

and Brandenburger (1995) and Dekel and Gul (1997)). Hence, extension of our

work for better-founded concepts, such as rationalizability, will be useful; our re-

sults would also be complemented by extensions of Milgrom and Roberts’ (1990)

results to universal type space, bounding rationalizable strategies by equilibria.

Appendix A. Omitted Proofs

A.1. Proof of Lemma 1. Take any µ, µ0 ∈ ∆ (X), and fix any � > 0. By

definition of dX (µ, µ0), there exists ν ∈ ∆µ,µ0 such that

(A.1) Eν [dX (x1, x2)] ≤ dX (µ, µ
0) + �.

7It also follows from these assumptions that the equilibrium strategy is continuous in

player’s type with respect to a product topology (cf. Proposition 6).
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Define f̄ : X2 → Z2 by f̄ (x1, x2) = (f (x1) , f (x2)). Then, by definition,

ν ◦ f̄−1 ∈ ∆µ◦f−1,µ0◦f−1 . Hence,

dZ
¡
µ ◦ f−1, µ0 ◦ f−1

¢
≤ Eν◦f̄−1 [dZ (z1, z2)]

= Eν [dZ (f (x1) , f (x2))]

≤ Eν [λdX (x1, x2)] = λEν [dX (x1, x2)]

≤ λdX (µ, µ
0) + λ�;

since � is arbitrary, the result follows. [Here, the first inequality is by (3.2); the

next equality is by change of variables, the next inequality is by the hypothesis,

and the last inequality is by (A.1).] ¤

A.2. Proof of Proposition 2. Take any i ∈ N , t1i ∈ ∆ (A), and any µ, µ0 ∈
∆ (S−i). Recall that d−i (µ, µ0) ≡ infs−i∼µ,s0−i∼µ0 E

£
d−i
¡
s−i, s0−i

¢¤
. Take any

random variable a with distribution t1i ∈ ∆ (A), and any two random variables

s−i and s0−i with distributions µ and µ
0, respectively. By Assumption 1, we have

BRi (t
1
i , µ) = fi (E [gi (a, s−i)]) and BRi (t

1
i , µ

0) = fi
¡
E
£
gi
¡
a, s0−i

¢¤¢
. Hence,

di (BRi (µ) , BRi (µ
0)) = di

¡
fi (E [gi (a, s−i)]) , fi

¡
E
£
gi
¡
a, s0−i

¢¤¢¢
≤ αidX

¡
E [gi (a, s−i)] , E

£
gi
¡
a, s0−i

¢¤¢
≤ αi

¡
E
£
dX
¡
gi (a, s−i) , gi

¡
a, s0−i

¢¢¤¢
≤ αiβiE

£
d−i
¡
s−i, s0−i

¢¤
= biE

£
d−i
¡
s−i, s0−i

¢¤
,

where the first and the last inequalities are due to Assumption 1, and the second

inequality is by triangle inequality. Since s−i and s0−i are arbitrary, this yields

di (BRi (µ) , BRi (µ
0)) ≤ bid−i (µ, µ0) .

A.3. Proof of Proposition 3. Take any t1i ∈ ∆ (A) and µ, µ0 ∈ ∆ (S−i). We

will assume BRi (ti, µ) and BRi (ti, µ
0) are in the interior of Si. (When Si is

convex, we can take BRi (ti, µ) and BRi (ti, µ
0) as the unconstrained optima, as

in that case the variations in the constrained optima are if anything less than

the variations in unconstrained optima.) We write

U i
¡
s; t1i

¢
=

Z
ui (a, s) dt

1
i (a)
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and write U i
i , U

i
ii, and U i

ij for the first and second order partial derivatives of

U i with respect to si, and the cross partial with respect si and sj, respectively.

Firstly, since BRi (µ) and BRi (µ
0) are in the interior, the first order conditions

for optimization problems with µ and µ0 yield

(A.2) E
£
U i
i (BRi (µ) , s−i)

¤
= 0

and

(A.3) E
£
U i
i

¡
BRi (µ

0) , s0−i
¢¤
= 0,

respectively. Let

J = E
£
U i
i

¡
BRi (µ) , s

0
−i
¢¤

be the value of the derivative at BRi (µ) for the optimization problem with µ0.

We will now find upper and lower bounds for |J |, and these bounds will yield
(??). First we find an upper bound:

|J | =
¯̄
E
£
U i
i

¡
BRi (µ) , s

0
−i
¢¤¯̄

=
¯̄
E
£
U i
i

¡
BRi (µ) , s

0
−i
¢
− U i

i (BRi (µ) , s−i)
¤¯̄

≤ E
£¯̄
U i
i

¡
BRi (µ) , s

0
−i
¢
− U i

i (BRi (µ) , s−i)
¯̄¤

≤ E

"X
j 6=i
max
s

¯̄
U i
ij

¡
s; t1i

¢¯̄
d−i
¡
s−i, s0−i

¢#
=

X
j 6=i
max
s

¯̄
U i
ij

¡
s; t1i

¢¯̄
E
£
d−i
¡
s−i, s0−i

¢¤
.(A.4)

Here the first equality is by definition, the second equality is by (A.2), and the

following inequality is is by the triangle inequality. To derive the penultimate

inequality, we write U i
i

¡
BRi (µ) , s

0
−i
¢
− U i

i (BRi (µ) , s−i) as the some of the

changes that we would get by changing each coordinate in turn, and apply the

mean value theorem to each, obtaining¯̄
U i
i

¡
BRi (µ) , s

0
−i
¢
− U i

i (BRi (µ) , s−i)
¯̄
≤

X
j 6=i
max
s

¯̄
U i
ij

¡
s; t1i

¢¯̄ ¯̄
sj − s0j

¯̄
≤

X
j 6=i
max
s

¯̄
U i
ij

¡
s; t1i

¢¯̄
d−i
¡
s−i, s0−i

¢
,
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where the last inequality is by our definition of the metric d−i. To find our lower

bound, we write

|J | =
¯̄
E
£
U i
i

¡
BRi (µ) , s

0
−i
¢¤¯̄

=
¯̄
E
£
U i
i

¡
BRi (µ) , s

0
−i
¢
− U i

x

¡
BRi (µ

0) , s0−i
¢¤¯̄

= E
£¯̄
U i
i

¡
BRi (µ) , s

0
−i
¢
− U i

i

¡
BRi (µ

0) , s0−i
¢¯̄¤

≥ E
h
min
s

¯̄
U i
ii

¡
s; t1i

¢¯̄
|BRi (µ)−BRi (µ

0)|
i

= min
s

¯̄
U i
ii

¡
s; t1i

¢¯̄
|BRi (µ)−BRi (µ

0)| .(A.5)

Here the first and the second equalities are by definition and (A.3), respectively.

The third equality is crucial; we have equality here because U i
i

¡
·; s0−i

¢
is strictly

decreasing, and hence U i
i

¡
BRi (µ) , s

0
−i
¢
− U i

i

¡
BRi (µ

0) , s0−i
¢
never changes its

sign. The inequality in the next line is again by the mean value theorem, and the

last equality is because the term inside the expectation is a constant. Combining

(A.4) and (A.5) and observing that d−i (µ, µ0) ≡ infs−i∼µ,s0−i∼µ0 E
£
d−i
¡
s−i, s0−i

¢¤
and that s−i and s0−i are arbitrary, we obtain

|BRi (µ)−BRi (µ
0)| ≤ d−i (µ, µ0)

X
j 6=i

maxs
¯̄
U i
ij (s; t

1
i )
¯̄

mins |U i
ii (s; t

1
i )|

.

Check thatmaxs
¯̄
U i
ij (s; t

1
i )
¯̄
≤
R
maxs |∂2ui (a, s) /∂si∂sj| dt1i (a) andmins |U i

ii (s; t
1
i )| ≥R

mins |∂2ui (a, s) /∂s2i | dt1i (a) . Therefore,X
j 6=i

maxs
¯̄
U i
ij (s; t

1
i )
¯̄

mins |U i
ii (s; t

1
i )|

≤
X
j 6=i

R
maxs |∂2ui (a, s) /∂si∂sj| dt1i (a)R
mins |∂2ui (a, s) /∂s2i | dt1i (a)

≤
X
j 6=i

Z
maxs |∂2ui (a, s) /∂si∂sj|
mins |∂2ui (a, s) /∂s2i |

dt1i (a)

≤ max
a

X
j 6=i

maxs |∂2ui (a, s) /∂si∂sj|
mins |∂2ui (a, s) /∂s2i |

< 1,

completing the proof.

A.4. Proof of Proposition 7. The proof of part (b) is very similar to the
proof of Proposition 3 above. We will prove part (a).
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Under Assumptions 1a and 1b, take any i ∈ N . Firstly, if βi = 0, then

gi (a, s−i) = gi
¡
a, s0−i

¢
= g̃i (a) for each

¡
a, s−i, s0−i

¢
, hence, for each π, π0 with

margAπ = margAπ
0, we have BRi (π) = fi (Eπ (g̃i (a))) = fi (Eπ0 (g̃i (a))) =

BRi (π
0), yielding di (BRi (π) , BRi (π

0)) = 0 ≤ bid̄−i (π, π0) for any d̄−i.

Now assume that βi > 0. Since gi is continuous and A×S−i is compact, there

exists Mi > 0 such that

(A.6) dX
¡
gi (a, s−i) , gi

¡
a0, s0−i

¢¢
≤Mi

¡
∀a, s−i, a0, s0−i

¢
.

Define a metric dA,i on A by setting dA,i (a, a
0) = Mi/βi at each distinct a, a

0,

and define d̄−i on A× S−i by

d̄−i
¡
(a, s−i) ,

¡
a0, s0−i

¢¢
= dA,i (a, a

0) + d−i
¡
s−i, s0−i

¢
.

Now, take any two random variables (a, s−i) ∼ π and
¡
a0, s0−i

¢
∼ π0 that come

from the same probability space and write p for the probability that a 6= a0.

Note that

(A.7) E
£
d̄−i
¡
(a, s−i) ,

¡
a0, s0−i

¢¢¤
= pMi/βi +E

£
d−i
¡
s−i, s0−i

¢¤
.

Moreover, we have

di (BRi (π) , BRi (π
0)) ≤ αiE

£
dX
¡
gi (a, s−i) , gi

¡
a, s0−i

¢¢¤
=

αiE
£
dX
¡
gi (a, s−i) , gi

¡
a, s0−i

¢¢
: a 6= a0

¤
+αiE

£
dX
¡
gi (a, s−i) , gi

¡
a, s0−i

¢¢
: a = a0

¤
≤ αipMi + αiβiE

£
d−i
¡
s−i, s0−i

¢
: a = a0

¤
≤ αipMi + αiβiE

£
d−i
¡
s−i, s0−i

¢¤
= bi

¡
pMi/βi +E

£
d−i
¡
s−i, s0−i

¢¤¢
= biE

£
d̄−i
¡
(a, s−i) ,

¡
a0, s0−i

¢¢¤
,

where the first inequality is derived as in the proof of Proposition 2, the next

equality is by additivity, the next equality is by (A.6) and the Lipschitz conti-

nuity of gi, the next inequality is by the non-negativity of d−i, and the last two

equalities are by definition of bi and (A.7). Since (a, s−i) ∼ π and
¡
a0, s0−i

¢
∼ π0

are arbitrary, this shows that di (BRi (π) , BRi (π
0)) ≤ biE

£
d̄−i (π, π0)

¤
.
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A.5. Proof of Lemma 2. Let P̂ ≡ margXP = margXP
0. Since we have

separable standard Borel spaces, there exists conditional probability P (·||·) :
(ΣX×Y )× (X × Y )→ [0, 1] with respect to the σ-field ΣX × {Y }, and we sim-
ply write P (B|x) for P (X ×B|| (x, y)) where y can be chosen arbitrarily. We
define P 0 (C|x) similarly for each C ∈ ΣZ. Notice that P (·|x) and P 0 (·|x) are
probability distributions on (Y,ΣY ) and (Z,ΣZ), respectively.8 For each x ∈ X,

let

P̃x ≡ P (·|x)× P 0 (·|x)

be the product measure of P (·|x) and P 0 (·|x) on Y ×Z, and define probability

measure P̃ by setting

P̃ (F ) =

Z
P̃x (Fx) dP̂ (x)

at each measurable set F ⊆ X × Y × Z where

Fx = {(y, z) ∈ Y × Z| (x, y, z) ∈ F} .

Notice that, for any rectangle A×B × C ∈ ΣX ×ΣY ×ΣZ,

P̃ (A×B × C) =

Z
χA (x)P (B|x)P 0 (C|x) dP̂ (x) ,

where χA denotes the characteristic function of A.

Now we show that P̃ satisfies the statement of the lemma. For each A ∈ ΣX

and B ∈ ΣY , we have

margX×YP̃(A× B) ≡ P̃ (A×B × Z)

=

Z
χA (x)P (B|x)P 0 (Z|x) dP̂ (x)

=

Z
χA (x)P (B|x) dP̂ (x)

≡ P (A×B) .

Since the probability measures margX×YP̃ and P agree on the π-system of all

rectangles A×B, which generates the entire σ-field on X×Y , by Dynkin’s π-λ

Theorem they are equal. This is similarly true for margX×ZP̃ and P 0.

8See Parthasaraty (1967) for the results of probability theory in this proof.
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