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Abstract

We propose a simultaneous model specification procedure for the conditional mean and condi-
tional variance in nonparametric and semiparametric time series econometric models. An adaptive
and optimal model specification test procedure is then constructed and its asymptotic properties
are investigated. The main results extend and generalize existing results for testing the mean of a
fixed design nonparametric regression model to the testing of both the conditional mean and con-
ditional variance of a class of nonparametric and semiparametric time series econometric models.
In addition, we develop computer—intensive bootstrap simulation procedures for the selection of an
interval of bandwidth parameters as well as the choice of asymptotic critical values. An example
of implementation is given to show how to implement the proposed simultaneous model specifica-
tion procedure in practice. Moreover, finite sample studies are presented to support the proposed

procedure.
KEYWORDS: Continuous-time model, diffusion process, kernel estimation, nonparametric esti-
mation, optimal test, semiparametric method, time series econometrics.

1. Introduction and Motivation

Consider a continuous—time diffusion process of the form
th = ,M(?"t)dt + O'(Tt)dBt,

where p(-) and o(-) > 0 are respectively the univariate drift and volatility functions of the
process, and B, is standard Brownian motion. Recently, Ait-Sahalia (1996a) developed a
simple methodology for testing both the drift and the diffusion. Through using the forward
Kolmogorov equation, the author derived a corresponding relationship between the marginal
density of r;, and the pair (u,0). Then, instead of testing both the drift and the volatility
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simultaneously, the author considered testing whether the density function belongs to a
parametric family of density functions. The approach has the advantage of using discrete data
without discretizing the continuous—time model (see also Ait-Sahalia 1996b). The use of the

marginal density is computationally convenient and can detect a wide range of alternatives.

For a discrete time series regression model, however, it is difficult to establish a corre-
sponding relationship between the marginal density of the time series and the pair of the con-
ditional mean and the conditional variance of the model. Therefore, to specify the marginal
density only may not be adequate for the specification of both the conditional mean and the
conditional variance of a general time series regression model. This motivates the discus-
sion of a simultaneous model specification for both the conditional mean and the conditional

variance of a class of time series econometric models of the form
Yt:g(Xt)+0-(Xt)eta t:172,...,T (11)

where both g(+) and o(-) > 0 are unknown functions defined over R?, the data {(X;,Y;) : t >
1} are either independent observations or dependent time series, {e;} is an independent and
identically distributed (i.i.d.) error with mean zero and variance one, and 7' is the number
of observations.

In recent years, nonparametric and semiparametric techniques have been used to construct
model specification tests for the mean function of model (1.1). Interest focuses on tests for
a parametric form versus a nonparametric form, tests for a semiparametric (partially linear
or single-index) form against a nonparametric form, and tests for the significance of a subset
of the nonparametric regressors. For example, Hardle and Mammen (1993) have developed
consistent tests for a parametric specification by employing the kernel regression estimation
technique; Hong and White (1995) and others have applied the method of series estimation to
consistent testing for a parametric regression model; Eubank and Spiegelman (1990), Eubank
and Hart (1992), Wooldridge (1992), Yatchew (1992), Gozalo (1993), Samarov (1993), Whang
and Andrews (1993), Horowitz and Hérdle (1994), Hjellvik and Tjgstheim (1995), Fan and Li
(1996), Jayasuriva (1996), Zheng (1996), Hjellvik, Yao and Tjgstheim (1998), Li and Wang
(1998), Chen and Fan (1999), Li (1999), Gao and King (2001), Chen, Hardle and Li (2003),
and others have developed consistent tests for a semiparametric model (partially linear or
single-index) versus a nonparametric alternative for either the independent and identically
distributed (i.i.d.) case or the time series case. Other related studies include Robinson (1988,
1989), Andrews (1997), Li and Hsiao (1998), Whang (2000), Ait-Sahalia, Bickel and Stoker
(2001), Fan and Huang (2001), Gozalo and Linton (2001), Gao, Tong and Wolff (2002), Hong
and Lee (2002), and Sperlich, Tjgstheim and Yang (2002).

Recently, Horowitz and Spokoiny (HS) (2001) have developed a new test of a parametric
model of a mean function against a nonparametric alternative. The test adapts to the

unknown smoothness of the alternative model and is uniformly consistent against alternatives



whose distance from the parametric model converges to zero at the fastest possible rate. This

rate is slower than 7—1/2

, where T' is the number of observations. Another feature of the HS
test is that one can avoid choosing a particular bandwidth parameter for testing purposes
when using kernel based test statistics. Existing studies consider using an estimation based
optimal value? for fixing the bandwidth parameter involved. This choice may not be justified
in both theory and practice, as estimation based optimal values may not be optimal for
testing purposes. For a kernel based testing problem, as suggested in the HS paper, one
needs to choose an optimal bandwidth parameter to ensure that the power of the resulting
test can be maximized at (or near) the optimal bandwidth. The HS paper has successfully
used an interval of bandwidth parameters for constructing an adaptive and optimal test for

testing the mean of a fixed design nonparametric regression model.

To the best of our knowledge, however, the problem of testing both the conditional mean
and the conditional variance of model (1.1) simultaneously has attracted less attention. Re-
cently, Chen and Gao (2003) constructed an empirical likelihood (EL) based test statistic
to test both the mean and the variance of a nonparametric regression model, and proposed
a bootstrap simulation procedure for the implementation of the proposed test. The current
paper proposes two novel classes of test statistics and constructs an adaptive and optimal
test. The proposed adaptive test is consistent against some local alternatives with an optimal
rate. In addition, this paper develops computer—intensive simulation procdures for the choice

of kernel bandwidth parameters and asymptotic critical values.

In summary, our approach has the following features:

(i) It proposes simultaneous test procedures for testing both the conditional mean and
the conditional variance of a class of nonparametric time series econometric models for both
independent and strongly dependent error processes. Sound and novel theoretical properties

for the simultaneous test procedures are established.

(ii) It extends and generalizes the results of Horowitz and Spokoiny (2001) for testing
the mean of fixed design nonparametric regression to the simultaneous tesing of both the
conditional mean and the conditional variance of a class of nonparametric and semiparametric

time series econometric models.

(iii) It is applicable to a wide variety of models, which include general nonparametric
regression models for both the i.i.d. case and the time series case. The test procedure is also
applicable to continuous—time model specification. Both the methodology and theoretical
techniques developed in this paper can be used to improve economic and financial model

building and forecasting.

4Usually, a cross-validation selection procedure is used for choosing an optimum bandwidth parameter
to ensure that the average mean square of the resulting estimator is minimized. See Héardle, Liang and Gao
(2000, §2.1.3) for example.



The rest of the paper is organised as follows. Section 2 proposes two class of model
specification test statistics. An adaptive test procedure is discussed in Section 3 and some
asymptotic consistency results are established. Section 4 provides an application of the
adaptive test procedure to a discrete nonlinear time series model. Section 5 concludes the

paper with some remarks on extensions. Mathematical details are relegated to Appendices
A and B.

2. Model specification tests
Throughout this section, we consider model (1.1). For convenience, let
mi(x) = BE(Y;|X; = 2) = g(z) and my(z) = var(V;| X; = 1) = o*(2)

for + € S C RY Define m(z) = (my(x),ma(x))” be a bivariate vector and {my(-) =
(ma1g(:),map(-))7|0 € O} be a parametric model that specifies parametric forms for the
conditional mean and conditional variance of Y, conditional on X;, where 8 € R? is an
unknown parameter taking a value in the parameter space © C RY.

The interest of this paper is to test
Ho : mi(z) = mip(z) and mo(z) = mag(x) (2.1)
for some 6 € O against
Hy:ma(z) = mig(x) + CrrArr(z) and  mo(z) = mag(z) + CorAar(z),

where both Aj7(z) and Agp(z) are continuous and bounded functions over RY.

Note that the above hypotheses are equivalent to
Ho : m(z) = my(z) versus Hy : m(x) = my(x) + CrArp(z) for all x € S,

where Cp = (Cyr, Cor)7 is a vector of two non—random sequences tending to zero as T" — oo
and Ar(z) = (Air(z), Agr(x))". This contains the parametric case where Ap(-) = 0. Let
6y € © denote the true value of 6 if Hy is true. That is, m(x) = my,(z) for all x € S if Hy is
true.

We first introduce a nonparametric kernel estimator for m(-). Let K be a d-dimensional
bounded probability density function with a compact support on the d-dimensional cube

[—1,1]%. Assume that K(-) satisfies the moment conditions:
/uK(u)du =0 and/uuTK(u)du =071y,

where Z; is the d-dimension identity matrix and 0% is a positive constant. Let h be a

smoothing bandwidth satisfying h — 0 and Th? — oo as T' — oco.



Define Kj,(u) = h™?K (u/h). The Nadaraya-Watson (NW) estimators of my(x) for [ = 1,2
are defined by

ST K- XY,
m{z) = Yoy Kn(z — Xy)

_ Yooy Ko — X)(Y; — ml(Xt))Q'

47
and mo(z) Zthl Ko — X))

(2.2)

This paper considers using the only one smoothing parameter h. One can use two different
bandwidth parameters h; and hsy for [ = 1 and [ = 2 respectively. The representation for this
case will be complicated. See Chen and Gao (2003).

Similarly, for the parametric models, one can estimate m; g by

7 (o) = Yoy Kn(w — Xi)my 5(Xe)
PO T ST (- X))

(2.3)

for [ = 1,2, where 6 is a consistent estimator of # under H,.

Let m(z) = (ma(x), ma(x))" and my(z) = (M1 e(x), mag(x))". The test statistics we are
going to consider are based on the difference between my(-) and m(-), rather than directly
between mj(-) and m(-). Due to the use of (2.2) and (2.3), one can avoid the bias associated
with the nonparametric estimation.

The local linear estimator can also be used to replace the NW estimator in estimating m(-).
As we use m and my to construct each test statistic, however, the possible bias associated
with the NW estimator is not an issue here. In addition, the NW estimator has a simpler
analytic form. Extension of our approach to the local linear estimator based test procedure
can be discussed in a similar fashion, although the proof will be more technical.

We now introduce the following notation.
¢ =Y —mi(Xy), i = € —my(Xy),
oij(v) =FE [einf]Xt = x} for i =0,1,2 and so(x) = |So(x)| ",
where |A] is the determinant of a matrix A and

ZO({E) _ ( O'QQ(I) 0'11(1’) ) .

011(.%) 0'02(.%)
Let f(x) be the marginal density of {X,;}. We assume without loss of generality that R(K) =
[ K?*(x)dz = 1. Let
S(w) = [ (@) o(2).
In this section, we then construct two different classes of model specification tests and

establish their asymptotic distributions. Section 3 discusses an optimal version of one of the

proposed tests. Empirical comparisons of the two tests are given in Section 4.

2.1. Class I of Test Statistics



To construct the first class of our test statistics, we have a look at the following null

hypothesis:
Hor : mi(x) = myp(z) against Hyp : my(z) = mag(x) + CirlAir(z). (2.4)

For testing (2.4), Hardle and Mammen (1993) suggested using the following test statistic

HMy = (Th?) / (71 () — Ting(x))? m(z)de, (2.5)
where () is a positive weight function satisfying [ 7%(x)dx < co. The authors showed that
under Ho; -

My = L1 N(0,1), (2.6)
Oon

2 xT)mlx 0'2 x)m(x 2 . . .
where o = K®(0) [ %dm and o3, = 2h4KW(0) [ (%) dz, in which f(x) is the
density function of X; and o?(z) = Var(V;| X; = ).

For testing (2.1), equation (2.5) thus motivates the use of a test statistic of the form
Nir(h) = (Th) /{’Tﬁ(ﬂi) —mg(x)} S @) {m(x) — mg(e) () de (2.7)

provided that $7!(z) exists, where

) . Goo(z) 011() ) ’ (2.8)

SN x) = f(@)55 (), Solz) = ( .

f(z) = 2 oL K (25%) and for i,j = 0,1,2,

S K (=) anl
O'ij(x) - Zz“:1 K (x—hXt>

& =Y, —mi(Xy), ho= & — ma(Xy).

The use of the weight function, 7(-), is due to both theoretical and practical considera-
tions. For the theoretical consideration, one does not need to assume that the support of the
marginal density, f(-), of {X;} is compact. This will not exclude some important distribu-
tions such as Gaussian distributions, which is particularly important in financial modelling.
For the practical consideration, when the support of f(-) is not compact, one can use 7(-)
for approximation and truncation purposes.

Before establishing the asymptotic distribution of (2.7), we give the following remark.

Remark 2.1. We should point out that (2.7) is a natural extension of (2.5) and is asymp-
totically equivalent to the test statistic based on the empirical likelihood method (see Chen
and Gao 2003).

We now state the main result of this section and the proof is relegated to Appendix A.



Theorem 2.1. (i) Suppose that Assumptions A.1-A.J hold. Then under H

Nir(h) = 2px
LIT = LIT(h> = M —D N(O7 1) as T' — 00, (29)
Oh
where i, = [7w(x)dr, o} = 4h'C(K,7), C(K,m) = KD(0)R%K) [ *(x)dz, KY)(-) de-
notes the j-times convolution product of K(-), and R(K) = [ K*(u)du.
(ii) Assume that the conditions of (i) hold. In addition, assume that there is a random
data—driven h such that % —1—,0asT — oo. Then under Hy

Nir(h) — 24

Lir = Lip(h) = T 5 N(0,1) (2.10)

O
as T — o0.

Remark 2.2. One needs to point out that either (2.9) or (2.10) is already a normalized form.
It follows from (2.9) or (2.10) that L7 or L7 has an asymptotic normality distribution under
the null hypothesis Hy. In general, Hy should be rejected if Ly or ﬁlT exceeds a critical
value, Lj,, of the normal distribution. As can be seen from (2.10), the test statistic, ﬁlT,

involves the kernel function only and is therefore applicable to real data implementation.

Remark 2.3. Theorem 2.1(ii) shows that the asymptotic normality remains unchanged
when h is replaced with the random data—driven ﬁ, which is known as the plug—in method.
Recently, Gao and King (2001), and Lavergne (2001) suggested using the plug—in method.
Apart from using the plug-in method for testing purposes, there are some other methods.
For example, Horowitz and Spokoiny (2001) adopted the maximum of a test statistic over a
bandwidth interval. For our case, their test statistic is similar to maxpepg, Lir(h), in which
Hyp is an interval of bandwidths. We discuss an extension of Horowitz and Spokoiny (2001)

to our case in Section 3.

Theorem 2.1 gives the asymptotic normality of the test statistics for the simultaneous

testing problem. When the null hypothesis is rejected, one needs to further test
Hor : mi(x) = myp(x) against Hip @ my(z) = mag(x) + CirAir(2)
or
Hoo : ma(x) = mog(x) against His : mo(z) = mag(x) + Corlor(z).
Define
ﬁhn%h)z(TW@X/ﬁﬁﬂx)—ﬁﬂﬁ@ﬂp5%%$ﬁﬂ$ﬁm
and
ﬁhm%h)=(Tﬁd)/{ﬁhtﬂ-—ﬁ%ﬁtﬂ}%EQCﬂﬂtﬂdw

We now have the following theorem.



Theorem 2.2. (i) Under the conditions of Theorem 2.1(i), under Hoy or Hoe we have for
1=1o0r2,

Lyp=—2 7 N(0,1) (2.11)

as T — oo, where o3, = 2h¢C (K, 7).

(ii) Under the conditions of Theorem 2.1(ii), under Hoy or Hoe we have fori =1 or 2,

NuT(]Al) — Hrx N

O1h

Lyr(h) = p N(0,1) (2.12)

as T — oo, where 6%, = 2h4C(K, 7).

Theorem 2.2 shows that we can test either the conditional mean or the conditional vari-
ance. The conclusion of Theorem 2.2(i) is similar to those obtained previously for kernel
estimation or series estimation based test statistics. Unlike the existing test statistics, our
test statistics depend only on h and K. It follows from (2.4) and (2.5) that the test statistic
of Hardle and Mammen (1993) depends on ¢?(z) = Var(Y;|X; = x). Obviously, o, of (2.6)
needs to be estimated when using Lo in practice. By contrast, oyj, of (2.11) does not involve

any unknown function such as o%(z).

As can be seen from the construction of L7, random denominators are involved in the
form. Our experience suggests that the involvement of random denominators could reduce
the power of the proposed tests. This motivates the construction of the second class of our
test statistics below.

2.2. Class II of Test Statistics

In order to explain the motivation for the construction of the second class of our test
statistics, we need to have a look at some relevant test statistics for testing the null hypothesis
(2.4):

Hor : mi(z) = myp(z) against Hyp : my(z) = mag(x) + Cirlir(z).

For testing (2.4), several authors have proposed novel test statistics. See Li and Wang
(1998), and Gao and King (2001). Let py = K((Xs— X;)/h). To test (2.4), we suggest using
a test statistic of the form

Zzzl 231217755 pstﬁtUs

Loy = Loyr(h) = 3 , (2.13)
2T

where S35 =237, p,UU? and U, = Y, — my 5(X).
Similar to T}, of Horowitz and Spokoiny (2001, pp.606), we construct a test statistic of
the form

- - oyt AU,
LmnglT(h)ZZ*lZSf’# et (2.14)
S21T



where 52, = 257 ST A2U202, {Ay)} is the (s,1) element of the T' x T matrix A, =
WiWy, and W), is the T x T matrix whose (s,t) element is

K((Xs — X4)/h)

un(Xe Xe) = S R = Xu) )

Theoretically, Loy is much more complicated than Lo;7, as the latter involves only a
double summation while the former involves not only a triple summation, but also several

random denominators.

Let P = {py} be a T x T matrix with py as its (s,¢) element and U = (Uy,...,Ur)".

Then the numerator of (2.13) can be expressed as
ZzpstUtU U PU — ZpttU
t=1 s#t

This suggests using the following form for testing the null hypothesis (2.1):

wol12)(2)

where V = (V4,...,Vp)" and V; = U? — My 5(X).
A simple decomposition implies that

(@77 (i ]fj ) (g ) T+ VY PO+ V). (2.15)

Equations (2.13) and (2.15) finally motivate the use of the following test statistic for
testing the null hypothesis (2.1):
Zt 1 Y 4t paW W, WTPW — i

Lor = Lop(h : = 2.16

where 67 = stt 1pStI/VZT/V2 W,=U,+V,, W = (Wl, .. .,WT)T, and i, = Y, ptth =
K(0)>F, W2,

Other alternatives include

PIND D stWWt

Oh

Lor = Lop(h) = (2.17)

where o7 = 237, _| AZW2W?2 and {4y} is as defined in (2.14).

As can be seen from (2.16) and (2.17), there are some similarities theoretically. Empiri-
cally, our small sample studies suggest that Lo is more powerful than Lor. Thus, we suggest

using Loy of (2.16) throughout the rest of this paper.

9



We now conclude our construction and discussion with the following remark.

Remark 2.4. (i) Equation (2.16) extends (2.13) for the univariate case to the bivariate case.
When comparing (2.13) with (2.16), one can see the similarities of the two forms. This also
suggests that one can easily construct a similar form for other multiple test problems, such
as testing the first four moments.

(ii) It follows from the construction of Lop that the form of Lop depends on the use of

(2.15). Before finally using (2.15), we also considered the following alternative:

ol 5 ) (V) -e-vree-n,

Obviously, one can replace W, = U,+V, by W, =U,—V, in (2.16). As our asymptotic and
empirical studies show that there is little difference between using the two different forms,
we suggest using Lo of (2.16) throughout this paper.

(iii) As can be seen from (2.7) and (2.16), the test statistic L;r involves not only a triple
summation, but also several random denominators. By contrast, Lop involves just a double
summation and no random denominator is involved in the numerator. Theoretically, the form
of (2.7) looks much more complicated than that of (2.16), although the two test statistics
have similar asymptotic properties. Empirically, our small sample studies in Section 4 show

that Lop is more powerful than L.
We now state the main result of this section and the proof is relegated to Appendix A.

Theorem 2.3. (i) Suppose that Assumptions A.1-A.4 hold. Then under Hy
LQT = LQT(h> —D N(O, 1) as ' — oo.

(ii) Assume that the conditions of (i) hold. In addition, assume that there is a random

data—driven h such that % —1—,0asT — oo. Then under Hy
LQT(iL) —D N(O, 1)

as T — o0.

Similar to (2.13), we can construct a test statistic for the univarate test problem Hys

proposed above Theorem 2.2. The test statistic is given by

Zz:l Zz:l,;ﬁt pst‘/s‘/t
SQ2T

Loy = Loar(h) = ; (2.18)

where S%QT =2 ZtT:I Zstl pitVfW-

We now have the following theorem and its proof follows from that of Theorem 2.3.

10



Theorem 2.4. (i) Under the conditions of Theorem 2.3(i), under Ho1 or Hoe we have for
1=1o0r2,
LZiT(h') —D N(O, 1)

as T — oo.
(ii) Under the conditions of Theorem 2.3(ii), under Hoy or Hoa we have for i =1 or 2,

LQZ‘T(]/:L) —D N(O, 1)

asT — oo.

Sections 2.1-2.2 mainly discuss how to establish asymptotically consistent test statistics
for the null hypothesis problem of the form (2.1), in which both mqs(-) and mgg(-) are
parametric functions. As a matter of fact, one can construct similar test statistics for two
different test problems—the first one is that both mie(-) and mgy(-) are of partially linear
forms, and the second problem is that both mi4(-) and may(-) are of single-index forms. This
extension includes some semiparametric models as alternatives to the nonparametric null

models.
2.3. Some extensions and generalizations

Assume that there are two pairs of unknown parameters, («, 3) and (y,0), and a pair of

unknown functions, (¢, ) such that
mig(Xy) = Ula+ ¢(Vy) and meg(Xy) = Z] 5 + (W) (2.19)

or

mag(Xy) = Ul a+ (V7)) and moyg(Xy) = Z] 5+ (W] 6), (2.20)

where 0 = (a, 3) for (2.19), 0 = («a,~, 3, 9) for (2.20), and Uy, V;, Z; and W, are either subsets
of X, or the entire X;.

When {X;} is a sequence of i.i.d. random variables and Uy, V;, Z; and W} are subsets of X,
Hérdle, Liang and Gao (2000, Chapter 2) constructed some consistent estimators for (o, (3)
and (¢,) in (2.19). Similarly, one can establish consistent estimators for the parameters
and functions when { X} is a stationary process. See Hérdle, Liang and Gao (2000, Chapter
6). Li (1999) already considered testing the conditional mean of the form of the first part of
(2.19).

When U; = V; = X; and {X;} is a sequence of dependent processes in (2.20), the condi-
tional mean becomes

mig(Xy) = X{ o+ ¢(X[ 7). (2.21)

For model (2.21), Xia, Tong and Li (1999) established asymptotically normal estimators for

the parameters and function involved. Li (1999) already constructed a consistent test statistic

11



for testing the null hypothesis of the form of (2.21) with ae = 0. Similarly, one can establish
asymptotically normal estimators for the parameters and functions involved in model (2.20).

Assume that &, 3, 4, 0, ¢(-), and 1(-) are consistent estimators of the parameters and
functions involved in (2.19) or (2.20). The detailed construction of the estimators is similar
to Li (1999) and Hérdle, Liang and Gao (2000, Chapter 2) for (2.19) or Li (1999), Xia, Tong
and Li (1999) and Hérdle, Liang and Gao (2000, Chapter 2) for (2.20). We now define

iy 5(Xe) = Ufa+ ¢(Vi) and 1y 5(X;) = Z7 B+ O(W5)
for (2.19), and
My 5(Xe) = Uja+ o(V77) and 1y (X)) = Z{ B+ (W]9)

for (2.20).
Substituting the new estimator mg(z) = (m, (), My (x))" into (2.7), one can establish
the corresponding test statistic Lir(h) of (2.9) for testing the null hypothesis problem of

the form (2.19) or (2.20). Similarly, for the construction of the corresponding test statistic
Lor(h) of (2.16), one needs to replace U; and V; there by

U, = [Ys =, 5(X0)| f(Vi) and V; = {[Yt — iy g (X))~ ’n@,g(Xt)} PV fwy)
for the case of (2.19), and
Uy = [Yi = 1y 5(X0)] F(V75) and V= {[Yt i (X)) - mom} PV FOVT9)

for the case of (2.20), where f (+) is the usual kernel density estimator based on the data

involved.

Therefore, for the null hypothesis problem (2.19) or (2.20), we can establish the corre-
sponding Theorems 2.1 and 2.3. The detailed conditions and the proofs of the resulting
theorems are similar to those for Theorems 2.1 and 2.3. Similarily, one can consider non-
parametric significance testing for both the conditional mean and conditional variance of
model (1.1). To do so, one needs to extend some existing results, such as Fan and Li (1996),
Lavergne and Vuong (2000), and Ait-Sahalia, Bickel and Stoker (2001) to the simultaneous
setting. As they are extremely technical, we shall not provide the details, which, however,

are available upon request from the first author.

We need to point out that the test statistics proposed in Sections 2.1 and 2.2 are al-
ready normalized test statistics and their asymptotic distributions are standard normal. It
is expected that the rate of convergence may not be fast. Thus, Theorems 2.1-2.4 can only
give some rough idea about the asymptotic behaviour of the test statistics involved when the

sample size is small. Thus, in practice we need to consider using a bootstrap method when

12



implementing the test statistics in practice. As our small sample studies suggest that Lor(h)
is at least as powerful as Ly (h) for each fixed h, we need only to modify Lor(h) to an optimal
test statistic and show that the modified test statistic is consistent against alternatives of the

form (2.1) in Section 3 below.
3. An adaptive test procedure
Section 2 establishes the asymptotic normality of the test statistics for testing
Ho : m(z) = my(x) versus Hy : m(z) = my(z) + CrAr(x),

where Ar(z) is as defined before. The test statistics have nontrivial power only if Cr con-

verges more slowly than 7~/2. Define ||Cr|| = /O3 + Cap.

In this section, we consider that the form of the local alternative models is
mr(x) = me, (z) + CrAr(z), (3.1)

where 0, € ©.

Similar to our tests, the tests of Andrews (1997), Bierens (1982), Bierens and Ploberger
(1997), and Hart (1997) are consistent against alternatives of the form (3.1) whenever Cr
converges more slowly than 7-/2. This section considers the case where the testing problem
is a simultaneous one for the dependent time series case. The main results of this section

correspond to Theorems 1-4 of Horowitz and Spokoiny (2001).
3.1. Asymptotic Behaviour of the Test Statistic under the Null Hypothesis

As discussed in Section 2, the proposed test statistics depend on the bandwidth. This
section then suggests using
L = Iax Lor(h), (3.2)

where Hy = {h = Amax@® © b > A, k=0, 1,2,...}, in which 0 < Apin < hmax, and 0 <
a < 1. Let Jr denote the number of elements of Hr. In this case, Jr < 10g; /,(Amax/Pmin)-

Simulation Scheme: Throughout this section, we use the notation of L* = Lj. We now
discuss how to obtain a critical value for L*. The exact a—level critical value, [} (0 < o < 1)
is the 1 — a quantile of the exact finite-sample distribution of L*. Because 6, is unknown, [,
cannot be evaluated in practice. We therefore suggest choosing a simulated a—level critical

value, [,, by using the following simulation procedure:

1. Foreach t =1,2,...,T, generate Y,* = my3(X;) + /m,3(X;)e;, where {e}} is sampled
randomly from a specified distribution with £ [e;] =0 and E [(ef)ﬂ = 1. In addition,

assume that the third and fourth moments of {e}} exist.
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2. Use the data set {Y;*, X; :t =1,2,...,T} to estimate 6. Denote the resulting estimate
by 0. Compute the statistic L* that is obtained by replacing Y; and 6 with Y, and 0
on the right-hand side of (3.2).

3. Repeat the above steps M times and produce M versions of L* denoted by lij;l for
m = 1,2,...,M. Use the M values of I:fn to construct their empirical bootstrap
distribution function, that is, F*(u) = - S0 T (L*, < u). Use the empirical bootstrap
distribution function to estimate the asymptotic critical value, .

We now state the following result and its proof is relegated to Appendix B.
Theorem 3.1. Assume that Assumptions A.1-A.2 and B.1-B.3 hold. Then under H

lim P(L" > 1) =«

The main result on the behavior of the test statistic L* under Hj is that [, is an asymp-
totically correct a—level critical value under any model in H.

3.2. Consistency Against a Fized Alternative

We now show that L* is consistent against a fixed alternative model. Assume that model
(1.1) holds. Let the parameter set © be an open subset of R?. Let M = {my(-) : 6 € O}
satisfy Assumption B.1 listed in Appendix B. For i = 1,2, let

MZ(Q) = (mig(Xl), ce ,mw(XT))T, m; = (m,(Xl), c. ,mi(XT))T,
M(9) = (M.(0)", My(6)™)" and 71 = (7], 75)"

Measure the distance between m and M by the normalized [, distance

‘ 1 1/2
pm, M) = [inf (17— 10)| )] (33)
= [inf (i, = MO + | M921/2
inf (5l = MOIF + S llme - ME)IF)]

If Hy is false, then p(m, M) > ¢, for all sufficiently large T and some ¢, > 0. A consistent
test will reject a false Hy with probability approaching one as 7" — oo.

The following theorem establishes the consistency.

Theorem 3.2. Assume that the conditions of Theorem 5.1 hold. In addition, if there is
some C, > 0 such that limy_.o, P (p(m, M) > C,) =1 holds, then

7lim P(L*>1,) =1.
The proof of Theorem 3.2 is relegated to Appendix B.

3.3. Consistency Against a Sequence of Local Alternatives
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In this section, we consider the consistency of L* under local alternatives of the form
mr(x) = my, (z) + CrAr(z)

with ||Cr|| > CoT~Y/2h4/* (loglogT)"* for some constant Cy > 0 and 6; € ©, where

mr(x) = (mir(z), mor(x))",

m1T<J}) = mw(l') + OlTAlT(ZL') and mQT(ZE) = mgg(x) + CQTAQT(Z‘).

Throughout this section, for ¢ = 1,2 let

mir = (mir(Xa), ..., mir(X7))", Air = (Ai(Xq), ..., Ai(X7))7,
mr = (mITvmgT)Tv ZT = (ZIT>K72—T)T7
For k = 1,2, let \7gMy(0) be the T' x ¢ matrix whose (7, j) element is %QEX” and YoM (0) =
((VeM1(0))", (Vo Ma2(0))")".
(

We assume that Ar(z) is a continuous function that is normalized so that

1

2 1 4 2 4 2
2T||AT|| 5T ;:1: | A (Xy)|" + ;:1: Ao (X7 ) > 11 (3.4)

We also suppose that Az is not an element of the space spanned by the columns of AyM (6).
That is,

|70 M(0) = 11y 76 M(0)]] = 6] 76 M(6)]] (3.5)

for some o > 0, where

I, = VoM (61) (VoM (/1) Vo M(61)) " 7o M(61)"

is the projection operator into the column space of 79 M (6, ).

Conditions (3.4) and (3.5) exclude functions Ar(-) for which ||y — M (0r0)|| = o(||Cr|])
for some nonstochastic sequence {070} € ©. Thus, (3.4) and (3.5) ensure that the rate of
convergence of mr to the parametric model M (6,) is the same as the rate of convergence of

Cr to zero. In particular, when (3.4) and (3.5) hold in probability,
1 1/2
int (Sl = M@)IF)| " = sl - o) (36)
holds in probability.

We now state the following consistency result and its proof is relegated to Appendix B.

Theorem 3.3. Assume that Assumptions A.1-A.2 and B.1-B.3 hold. Let 0 be a VT-
consistent estimator of 0. Let myp satisfy (3.1) with ||Cp|| > CTY2h_%4* (loglogT)"* for

max

some constant C' > 0. In addition, let conditions (3.4) and (3.5) hold in probability. Then
lim P(L* > 1) = 1.
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The result shows that the power of the adaptive, rate-optimal test approaches one as
T — oo for any function Ar(-) and sequence {Cr} that satisfy the conditions of Theorem
3.3.

3.4. Consistency Against a Sequence of Smooth Alternatives

This section discusses that L* is consistent uniformly over alternatives in a Hélder smooth-
ness class whose distance from the parametric model approaches zero at the fastest possible
rate. The results can be extended to Sobolev and Besov classes under more technical condi-
tions.

Before specifying our smoothness classes, we introduce the following notation. Let j =

1, -.-,74), where 71,...,74 > 0 are integers, be a multi-index. For ¢ = 1,2, define
(J Ja) J J g
=3 and Dimg(a) = —2ma(a)
= ; an mi(x) = —————
’ i=1 / Ox' - Oy

whenever the derivative exists. Define the Holder norm

[[m[ar,s = sup > (IDma ()] + [DIma()]) -
z€S li1<s
The smoothness classes that we consider consist of functions m € S(H,s) = {m: ||m||gs <
cy } for some (unknown) s > max(2,d/4) and cy < oo.

For some s > max(2,d/4) and all sufficiently large ¢, < 0o, define

25/ (4s+d)
Byr = {m € S(H,s): Tlim P (,o(m,/\/l) > C, <T‘1w/loglogT> ) = 1} , (3.7

where p(m, M) is as defined in (3.3).

We now state the following consistency result and its proof is relegated to Appendix B.

Theorem 3.4. Assume that Assumptions A.1-A.2 and B.1-B.3 hold. Then for 0 < a <1
and By as defined in (3.7)
TIEEO P(L*>1,) =1.

Remark 3.1. Theorems 3.1-3.4 extend Theorems 1-4 of Horowitz and Spokoiny (2001) from
testing the mean of a fixed design regression model to the testing of both the conditional mean
and the conditional variance of nonparametric a—mixing time series. Moreover, we consider
the simultaneous test case where both the mean and variance functions can be simultaneously
tested. Due to the property, we do not need to estimate the conditional variance directly for

the simulation procedure proposed at the beginning of Section 3.

Remark 3.2. As can be seen from the above, the implementation of the adaptive test
requires an intensive computing process. In particular, one needs to select both the interval
of bandwidth parameters, Hr, and the asymptotic critical value, [,. In particular, it is quite

difficult to select a bandwidth parameter, h, for implementing the test statistic, Lir, as
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existing theory provides no theoretical criteria on how this kind of choice should be done. It
should be pointed out that existing selection criteria for h for estimation purposes may not
be applicable and suitable, as estimation based optimal A values are not necessarily optimal
for testing purposes. Our experience suggests that the choice of h should be based on the
assessment of the power of the test involved. In Section 4 below, we provide two detailed

simulation procedures for the choice of both Hr and the asymptotic critical value.
4. An example of implementation

This section then illustrates the proposed adaptive tests by a simulated example. In this
example, we use simulated data to compare some small sample properties of Lir(h) and the
adaptive test statistic L} of (3.2).

Example 4.1. Consider a nonlinear time series model of the form

Yi,=a+BX,+0-/1+05X? e,

in which
Xt == O.5Xt,1 -+ €, t=1 2, .

?

LT, (4.1)

where «, § and ¢ > 0 are unknown parameters to be estimated, both {¢ : ¢ > 1} and
{e; : t > 1} are mutually independent and identically distributed, and independent of X,
e ~ U(—0.5,0.5), Xg ~U(—1,1), and {e;} is either the standard N(0,1) or the normalized

exponential Exp(1) — 1 error, which has mean zero and variance one.

Define the true forms of the conditional mean and conditional variance by

go(Xi) = a+ X, and 0y(X;) = 0y/1+0.5X2

We now consider a sequence of alternative models of the form
}/;g = gT(Xt) -+ O'T(Xt)et, (42)
where
gr(z) = go(x) + Cré(z/Dr) and  or(x) = op(x) + Cré(z/Dr), (4.3)

1/9
in which Dy = (Tﬁlx/loglogT) / , Cp = D3 and ¢(-) is the probability density function of
the standard normal distribution. The choice of (4.2) and (4.3) ensures that (3.7) holds with
s =2 and d = 1. This implies that the adaptive test is consistent against the sequence with

an optimal rate.

In the following detailed simulation, we consider using a class of alternatives of the form

Y, = at fX, + ;¢<Xt/w> " (o TH05X7 + ;¢(Xt/¢>> e, (4.4)
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where 1) # 0 is defined as the truncation parameter to be chosen, and the others are as
defined in (4.1). In Table 4.1 below, we calculate both the size and the power of our adaptive

test for various cases.

The vector of unknown parameters, 6 = («, 3,0), involved in (4.1) was then estimated
using the pseudo—maximum likelihood method, which is quite common in the estimation of
parametric ARCH models. Due to the structure of (4.1), we choose the following weight

function and the kernel function given by

1if -1,1
r@)=q 2 TrElL (45)
0 otherwise
and
21-2%)? ifrel-1,1
K(l‘) — 16( T ) 1rx E [ Y ] (46)
0 otherwise.
Let z; = £ and n = [T"/?] ([z] < x denotes the largest integer part of ). Define
. 1. - e N N
Nir(h 5 Z (Th){m(z;) — my(z;)}™E Y {mi(x;) — mg(z:)}, (4.7)

where mi(z) = (1 (), Mz ()7, Mg(x) = (Me(x), Mag(x))7, § is an estimator of 0,

i K((z — Xo)/h)Y, o (2) = Yoy K((z = Xo)/h) (Vi — i (Xy))?
Sio K((w = Xp)/h) Yo K((x — Xo)/h) ’
Yoy K ((x = Xo)/h)mp(Xe)

Sim1 K((z = X1)/h)
for 1 = 1,2, my9(Xy) = a+ Xy, may(X;) = 0?14 0.5X7],
57(e) = f@)Si (@), Sole) = ( Taol) oul) ) ,

0'11(1’) O'OQ(ZL‘)

ﬁl (I’) =

mye(z) =

fx)=2>T K (—TX) and for i,7 = 0,1,2,
L SLKE (55 gt
Ul](x) - Zt : (x hXt> )

and K (-) is as defined in (4.6). Alternatively, one can generate x; from the density = (-) as

€t - Y% - ml(Xt)a ﬁt = g? - mz(Xt)7

many as ) = 1000 times and then define

Ry = X LS () - male)) S @) - mola) |- (09

Q Q replications =1

With the choice of 7(-) and K (-) in (4.5) and (4.6), the constant C'(K, 7) involved in L7
is 22 In order to calculate L3 of (3.2), one needs to find Hy, which is chosen by the following

s1mulat10n procedure:
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e For the simulation, we start with some initial values for 6y and Xj.
e For eacht =1,2,...,T, generate the data (X, Y;) from (4.2) and (4.3).

e Use the data set {(Y;, X;) : t =1,2,...,T} to estimate 6. Denote the resulting estimate
by . For each fixed h, compute the resulting function of i given by

- - _ Nir(h) -2

L1<h) = L1T<h) \/@

e Repeat the above steps M = 1000 times and produce M versions of ﬁl(h) denoted by
f/lm(h) form=1,2,..., M. Use the M functions of h, f/lm(h) form=1,2,..., M, to
construct their empirical bootstrap distribution function, that is,

1 M
Fip(u) = Mm:lj(le(h) < u),

where I(U < u) is the usual indicator function.

e For the given empirical value [y 05 = 1.65, one can calculate the following power function
¢1(h) =1 — Fip(lo.os)-

e Find approximately at which h value the power function ¢;(h) is maximized. Denote
the maximizer by A*. Similarly, one can find the maximizer, h,, of the corresponding
power function ¢o(h) for

. S (X e pa W) W,
To(h) = tl( 1,%#t Pst ) ¢

A~ )
Oh

where &fQL = 22;{:1 Ezzl pgtWt2W327 Wt = Ut—i_vﬁ? Ut = Yi_ml,é(‘)(t)v ‘A/;f = UtQ_mQ,é(Xt>7
s = K((X; — X,)/h), and K(-) and 6 are as defined before.

e Using h., construct Hr.

We now can calculate the following test statistic

_ Nip(h*) -2

L; = Li(h") — (4.9)
Vs
For the chosen Hp, we can compute L3 of (3.2) given by
S (S pa W) W,
L} = max ( =1 ( lfét ! ) ! ) (4.10)
heHr Op

In order to compute the rejection rates of the test statistics, one needs to find the corre-
sponding simulated critical values.
We suggest choosing two simulated 5%-level critical values, [ .05 and I3 .05, by using the

following simulation procedure:
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e For the simulation, we start with some initial values 6y and Xj.
e For each t =1,2,...,T, generate the data (X;,Y;) from model (4.1).

e Use the data set {(Y;, X;) : t =1,2,...,T} to estimate 6. Denote the resulting estimate
by 6. For the chosen Hy, compute the statistics LT and L3 given by (4.9) and (4.10).

e Repeat steps 2-3 M = 1000 times and produce M versions of L] and L} denoted by
L3, and L3 for m = 1,2,...,M. Use the M values of L}, and L3, to construct
their empirical bootstrap distribution functions, that is, F(u) = - S0 I(Ly, < u)

for © = 1,2. Use the empirical bootstrap distribution functions to calculate the two

bootstrap simulated critical values, [; o.05 and I3 .05.

For each case where both ¢ and T" are chosen, we can compute the rejection rates. For
calculating the rejection rates when H, is true, one needs to use the data {(X;,Y;)} where
each (X;,Y;) is generated from (4.1). For calculating the rejection rates when H; is true, one
needs to use the data {(X;,Y;)} where each (X;,Y;) is generated from (4.2). The number of
simulations in producing Table 4.1 below was 1000. The detailed results are given in Table
4.1 below.

‘Table 4.1 near here‘

Remark 4.1. (i) First, one needs to point out that before modifying Loy (h) of (2.16) to be
adaptive, we conducted some small sample studies for both L7 (h) and Lop(h). Our studies
showed that Lor(h) was more powerful than L;7(h) uniformly in A. Moreover, Table 4.1 shows
that L3 of (4.10) is more powerful than L} of (4.9) for all the cases under consideration. We
were also trying to compare the power of L} of (3.2) with that of the proposed CGL test
given in (3.1) of Chen and Gao (2003). Because the detailed comparison requires some
very intensive and extremely lengthy computation as well as the implementation of both
the proposed simulation scheme given in §3.1 and the so—called empirical likelihood based
bootstrap simulation procedure proposed in Chen and Gao (2003), we have not been able to
finish the detailed comparison for Example 4.1.

(ii) As can be seen from the first part of Table 4.1, for the standard Normal error the
power can be close to one when 7" = 500 and the value of ¥~! is between 4% and 10%. This
may show that L3 is not only asymptotically optimal but also practically applicable to both
the small and medium sample cases, since the differences between H, and H; were made
deliberately close. We also computed the power of the tests for the case where v» = 1 or
0.25, our small sample results showed that the power of L was already 100% even when
T = 250. In the second part of Table 4.1, we have provided some small sample results for
the case where the error is the normalized exponential random variable. The results show

that the power of L} is uniformly higher than that for the standard N(0,1) case. This may
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show that L3 is capable of capturing the skewness and kurtosis due to the flexible structure

of {e;} allowed in the Simulation Scheme.

As pointed out in Section 2.2, for some cases one may need only to test either the condi-
tional mean or the conditional variance. For the one-sided test case, it would be interesting
to know whether there would be any significant reduction of the power when using L; while
‘H1 was different from Hy only in either the conditional mean or the conditional variance.
In other words, we would be interested to know whether L; would be much more powerful
than either L}, = maxpep,, Lair(h) or Ly, = maxpem,, Loor(h) when testing an one-sided
problem, where Loy (h) and Loor(h) are as defined in (2.13) and (2.18) respectively, and the
choice of Hi7 and Hyp is similar to that for Hr. We have conducted some small sample stud-
ies for L3, L3, and L} for the one-sided test case. The number of simulations in producing
Table 4.1 below was 1000. The detailed results are given in Tables 4.2 and 4.3 below.

‘Table 4.2 near here‘

‘Table 4.3 near here‘

Remark 4.2. (i) Tables 4.2 and 4.3 provide some detailed values for the power of the
simultaneous test and the power of the two one-sided tests when Cor = 0 or Cir = 0.
Our small sample results show that the power of the simultaneous test was just slightly less
powerful than the corresponding one—sided test for both the cases even when the simultaneous
test was used for testing either the conditional mean or the conditional variance. This may
suggest that one can consider testing both the conditional mean and the conditional variance
simultaneously when it is difficult to determine which component (the conditional mean or
the conditional variance) may cause a model specification problem. We observed that the
reduction of the power of the simultaneous test for the case of Cor = 0 was smaller than that
for the case of Cir = 0. We also observed that both the simultaneous and the one-sided
tests for the case of Ci7 = 0 were less powerful than the corresponding tests for the case of
Cor = 0. We have not been able to explain these phenomena, although we think that this
may be due to the increase in variability when testing the conditional variance only. It is
also observed that the sizes of the three tests were all quite close to 5%.

(ii) When comparing the individual values for the power of the simultaneous test with
those for the power of the one-sided tests for the Normal error distribution and the nor-
malized exponential error distribution, we found some kind of superiority of the tests for
the normalized exponential error distribution over those for the Normal error distribution,
although the superiority may not be significant. This finding is similar to that drawn from
Table I of Horowitz and Spokoiny (2001).

5. Conclusion

21



In this paper, we considered the general nonparametric time series regression model (1.1)
and then proposed several model specification test statistics for testing the mean and the
variance under the a—mixing condition. Furthermore, we established the adaptive test. Sev-
eral consistency results about the test power of the test statistics were then developed. The
consistency results extend the main results of Theorems 1-4 of Horowitz and Spokoiny (2001)
from the fixed design case to the a—mixing time series case. The proposed optimal tests were

illustrated through using a simulated example in Section 4.

The results given in this paper can be extended in a number of directions. First, the results
for the short-range dependent time series case can be extended to the long-range dependent
time series case, which is also relevant to some economic and financial data problems. Second,
one can relax the strict stationarity and the mixing condition, as the recent work by Karlsen
and Tjgstheim (2001) indicates that it is possible to do such work without the stationarity

® This part is particularly important for the two reasons: (i) for

and the mixing condition.
the long-range dependent case one needs to avoid assuming both the long-range dependence
and the mixing condition, as they contradict each other; and (ii) some important models are
nonstationary and long-range dependent. See for example, Robinson (1995, 1997), and Gao

(2002). Some of these issues are left for possible future research.
Appendix A

This appendix lists the necessary assumptions for the establishment and the proof of the main

results given in Section 2.
A.1. Assumptions

AsSSUMPTION A.1l. (i) Assume that the process (Xi, Yy) is strictly stationary and a-mizing with
the mizing coefficient a(t) = Cpal defined by

a(t) =sup{|P(ANB) — P(A)P(B)|: A€ Qf,B € Q3

for all s,t > 1, where 0 < Cy < 0 and 0 < «a < 1 are constants, and Qi denotes the o-field
generated by {(X,Y:) 11 <t <j}.

(ii) Assume that P (0 < ming> 0(X;) < maxg>10(Xy) <o00) = 1 and that for all t > 1 and
1<i<A4,

P (Ele}|Q1] = m) =1,

where p; = 0, p2 = 1, us and py are real constants, and Q = o{(Xs41,Ys) : 1 < s <t} is a
sequence of o-fields generated by {(Xs41,Ys): 1 < s <t}.

(iii) Let ¢ = € or ng. In addition,

148

E[|¢T)] < 00 and E [ < 00

CiiGis + Gy

®One also needs to point out that for the continuous—time case, Ait-Sahalia (1999) is applicable to the

nonstationarity case.
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for some small constants o > 0 and 3 > 0, where 2 < | < 4 is an integer, 0 < i; < 4 and
L_yi; <8.

ASSUMPTION A.2. (i) Let {; = ¢ or n; and pi(x) = E[C}| Xy = 2] for 1 <i < 4. Assume that

the following Lipschitz condition is satisfied:

s i +) — pi(w)] < DGl
with v € S (any compact set of R?) and E [|D(Xt)|2+7} < 00 for some small constant v > 0, where
|| - || denotes the Euclidean norm.

(ii) Let Sy be a compact subset of RY. Assume that (-) is a positive weight function supported
on Sy and satisfies 0 < [72(z)dz < C for some constant C. Let Sy = {x € R f(z) > 0} and Sx
be the projection of Sy in Sf.6 Assume that the marginal density function, f(x), of Xi, and that all
the first two derivatives of f(x) and m;(z), i = 1,2, are continuous on R?, inf,cg, ma(z) > Cyp >0
for some constant Cp,, and on Sx the density function f(x) is bounded below by Cy and above by
Cf_l for some Cy > 0, where mi(x) = E[Y| Xy = x| and ma(x) = var[V3| X; = z].

(iii) Let fry ry,.m(-) be the joint probability density of (Xi4r,..., Xi47) (1 <1< 4). Assume

that fr) 7y...7,(+) exists and satisfies the following Lipschitz condition:

’le,TQ,'”,Tl (xl + v, 2+ ’Ul) - le,Tg,m,Tl (ZE’I, ) xl)‘ < DTl,-u,Tl (xla e ,.Z'Z)H’UH

for v € S, where S is any compact subset of R and Dy, .7 (x1,- -+, 2;) is integrable and satisfies
the following conditions
/Dn,---,n (z1,- - ap)||z|[Pde < My < oo,

/DT1,~-'77'1 (xla ) xl)f’ﬁﬂ'g,m,ﬁ (xla e ,.’El)dx < M2 < o0

for some 8 > 1 and constants My > 0 and Mo > 0.

ASsSuMPTION A.3. (i) Assume that the univariate kernel function k(-) is nonnegative, sym-
metric, and supported on [—1,1]. In addition, k(x) is continuous on [—1,1]. This paper considers

usIng
K(%l, ce ,a:d) = H k(l‘z)
(ii) The bandwidth parameter h satisfies that

lim h=0, lim Th®=o0c and lim sup Th*

T—o0 T—o0 T—oo

< 00.

ASSUMPTION A.4. Assume that for any parametric estimator, 0, of 0

—1/2
19555 (Sher [mig(Xe) — mag(Xe)| = Op(T71/2).

6In other words, Sx = Sy N Sy.
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REMARK A.1. Assumptions A.1(i)(ii), A.2(ii) and A.3 and A.4 are novel conditions. Assump-
tions A.1(iii) and A.2(i)(iii) are similar to some parts of Condition (A1) of Li (1999, p.107). All the
conditions are quite natural in this kind of problem. Note that we have not assumed the indepen-
dence between { X} and {e;}. When {X;} and {e;} are independent, Assumption A.1(ii) holds natu-
rally. For this case, model (1.1) becomes a nonparametric ARCH model when X; = (Y;—1,---,Y;_q)
and {e;} is a sequence of i.i.d. random errors. We also have not assumed that the marginal den-
sity of X; has a compact support. Instead, we impose some restrictions on the support of the
weight function 7(-). Assumption A.2 ensures that 0 < infyesy p2(z) < sup,eg, p2(r) < 0o and
0 < infresy pa(z) < sup,eg, p2(z) < co. These two conditions are required to ensure that X~ (z)
exists and that the smallest eigenvalue of ¥7!(z) is positive uniformly in z. Assumption A.4(i) that
requires the v/T-rate of convergence for the parametric case is a standard condition. It holds when

each myg(+) is differentiable in § and @ is an /T —consistent estimator of 6.
A.2. Technical Lemmas

The following lemmas are necessary for the proof of the main results stated in Section 2.
Throughout the rest of this paper, we use f(z;,,...,x;,) to represent the joint density function
Of(Xil,...,Xid) for 1 <ip <...<ig<d.

LEMMA A.1. Suppose that M)} are the o-fields generated by a stationary c-mizing process &;
with the mizing coefficient a(i). For some positive integers m let n; € Mﬁ; where 51 < t1 < 59 <
ty < -+ <ty and suppose t; —s; > T for all i. Assume further that ||n;|[bi = E|n;|P < oo for some
pi > 1 for which Q = ¥'_, p%- < 1. Then

l

] i

=1

!
<101 — D)a(r) DT il lps-
=1

PROOF: See Roussas and Ionnides (1987).

LEMMA A.2. Let & be a r-dimensional strictly stationary and strong mizing (a—mizing) stochas-
tic process. Let ¢(-,-) be a symmetric Borel function defined on R" x R". Assume that for any fixved
x € R", E[¢(&1,z)] = 0 and E[¢(§i,§j)\ﬂg_l] = 0 for any i < j, where Qi denotes the o—field
generated by {& 11 < s < j}. Let ¢t = ¢(€s,&), 0% = var(ds) and o2 = D 1<s<t<T o2,. For some
small constant 0 < 6 < 1, let

My =  max max{Emmm“é, / rqwjk\”@dP(@)dP(fj,&)},

1<i<j<k<T

MT21 = lgi%fgiSTmaX {E|¢ik¢jk2(1+5)a/ ¢2k¢]k|2(1+6)dp(§z)dp(£j,fk)} ,

Mrgy =  max max{ / |pix 2T AP (&, €5)dP (&), / |¢ik¢jk|2<1+5>dP(5Z-)dP(@)dP(fw},

1<i<j<k<T
Mrs= max _ El¢uw¢|®>, Mrs= max {max/|¢1i¢‘k|2(l+6)dp}a
lsi<j<ksT ’ l<ijk<or ¢ © ’

1,7,k different
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where the mazximization over P in the equation for Mry is taken over the four probability mea-

sures P(&1,6,&5,&), P(&1)P (&, &5,8), P(&)P(&i,)P(&iys&is), and P(&)P(&)P (&) P (&), where

(i1,12,13) is the permutation of (i,j, k) in ascending order;
2(1+5)}

dP(&j)dP(ﬁk)} ;

Mrs1 = 1§iI<I;E?2ST max {E ‘/ Gik Pk PikPikdP (&)
2(1+9)

Mrsy =  max maX{/ ‘/¢ik¢jk¢ik¢jkdp(§i)

1<i<j<k<T

2

Mp¢= max FE ’/@k%kdp(fz)

1<i<j<k<T

Assume that all the Mf.s are finite. Let

1 1 1 1
_ 2 1+6 2 2(1+49) 2 2(1+9) 2 3
My = max {T M TAME TP M, T MTG}

and
1 1 1 1
Ny = max {T%M;Sf‘” LT3 MG T2 M2, T2 M } .
If limp_ o % =0, then as T — o0
T
1
— Y o6&, &) —p N(0,1). (A1)

OT 1<s<i<T

REMARK A.2. Lemma A.2 establishes central limit theorems for degenerate U-statistics of
strongly dependent processes. The lemma extends and complements some existing results for the
f—mixing case. See for example, Lemma 3.2 of Hjellvik, Yao and Tjgstheim (1998) and Theorem
2.1 of Fan and Li (1999).

PROOF: See the proof of Lemma B.1 of Gao and King (2001).

Before stating the next lemma, we define and recall the following notation.

1 x—X
Wi(x) = Tth( 3 t) e =Y —mi(Xy), m =€ —ma(Xy),

0ij(@) = E [eif| X, = 2] fori=0,1,2 and so(x) = |So(x)| !

where | A| is the determinant of a matrix A and

Eo(l‘) _ ( 0’20($) 011(117) > '

0'11(1‘) 0'02(56)

For s,t =1,2,..., let
ag; = The / W, (2)Wi(2)o0s (2)s0(2) £~ ()7 (z)da,
byt = Th / W, (2)Wi(@)on ()s0(2) f = ()7 (2)de,
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cst = Th / W, (2)Wi(@)oao(w)so(z) f L () m(w)da,

¢st = Qst€s€t — 2bst6577t + CstMsN,

T T
Nor = Nor(h) =D ¢t

s=1t=1

Without loss of generality, we assume throughout the rest of this paper that

/k:($)dx = /k‘z(az)daz = =1 and / x)dz —/ =1.

LEMMA A.3. Under Assumptions A.1-A.8, we have as T — oo
E[Nor(h)] =2 and var [Nor(h)] = 4h¢K®(0)(1 4 o(1)).
PRrOOF: It follows from Assumptions A.2-A.3 that as T — oo

ay = Thd/Wg(w)a(u(l')So(x)fil(CL’)T['((L‘)d(L‘

B / T;dl@ (x _hXt> oo2()so(x) f~ (@) (x)da
= % (/ Kz(”ﬂ“) 002(X¢)s0(Xe) fHX )T (X)) (1 + o(1)).

Thus, as T — oo
T
>_E anei] = B [o0a(X0)so(X0) S~ (X)w(X0)e; | (1+0(1))
t=1
- [aoxxt)sO(Xt)f—l(Xt) (X0)a20(X0)| (L + (1))
= /0’02 S() 0'20( )d$(1+0(1)).

Similarly, we can obtain that as T — oo

T
S E [eun?] = B [ran(X0)s0(X0) £~ (Xo)m(Xon?] (1 + o(h))
t=1
= B [oa0(X)s0(X2) f*l(Xt)w(Xt)oog(Xt)} (1+ o(h?))
— [ on(@so(@)m(@)on(z)da(1 + o(h)
and

T
~2 3" B [bun}] = —2E |o11(Xo)so(X0) f T (Xo)m(Xa)em] (1 + o(h?))
t=1

— 28 [au<Xt>50<Xt>f—1<Xt>w<Xt>an<Xt>} (1+0()

= —2/011 z)so(z)m(z)dz(1 4 o(h?)).

26

(A.2)

(A.6)



In view of (A.4)-(A.6), we have
T
E [Nor(h)] = > E[¢u]
t=1

= 2/ [020(33)002(30) - a%l(ac)} so(x)m(x)dx = Q/W(x)d:v =

This finishes the proof of the first part of Lemma A.3. For the proof of the second part of
Lemma A.3, let

Then

T T T T
) Z o 22 Z E { §t] = 22 Z E [aseser — 2bspesty + consne)”
t=1s=1 t=1 s=1

1<s,t<T

=2 Z Z E [ gte%f + 4b§tegnt2 + cgtngntz + 2a5tCst€s€4MNsNE — 4astbst€§€t77t - 4bstcstﬁsns?7tz] .

We first look at the main part of o2. Similar to (A.3), we can have

e e () 5 () (552w (1)

ao2(x)so(2) [~ (z)m(2)o02(y)so(y) [~ (y)m (y)dady.

Thus,
E [agte%ﬂ =F {a?tE {egeﬂ(Xs,Xt)]} =F [agtggo(Xs)O'Qo(Xt)}

~ s | [ )o@ @m@)onatisln) ()
E {K (fﬁ —hXS> K (y —th> X <:n —hXt) . (y —hXt> Ugo(Xs)Ugo(Xt)} .

We now have a look at the following component. Using Assumptions A.2 and A.3, we have as
E {K (w —hxs> % (y —th> . (x —hXt) y (y —hxt) UZO(XS)UQO(XO}
://K<$Z—U)K(yZU)K(ﬁ”)K(y;”)m(u)mo(v)f(u,v)dudv
= [ [ () w () 1 () (P = ) et G, vy
St [ [k (50 228 kiR (1

T —

T —

y> o90(x — th)oy(y — sh) f(z — th,y — sh)dsdt

=21 () LV ) ra@)omln) )1+ o),

where L(z) = [ K(z + y)K(y)dy.
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Therefore, as T' — oo

T

S Y Eletéd] = [ [ oot@)so@s @r@onm)nomf mrmrs@()x
s=1t=1
L(x;y>L<y;x> f(z,y)dzdy(1 + o(1)). (A7)
Similarly,

T T
S Y EldEmii] = [ [on@s@)s @@ @r@on@onm)x

s=1t=1

L (”” =y (y - ””) f(z, y)dzdy(1 + o(1)),

_.

~+~
Il

=

vl

jg:jgjzz[bieinf} ::J/L/10%1($)30($)f_&(x)ﬂ($)0%1(y)SO(y)f_1<y)W(y)X

L(””;y L <y;$) Fa, y)dady(1 + o(1)), (A.8)
and

T
Z Z E [astcstesetnsnt - 2astbst€ €M — 2bstcst€sns77t}
s=1t=1

S / / ao0(2)s0(2) f = (@) (2)o0a(y)s0(y) f " (v)w (y)on ()11 (y)

L(m;y)L(y;x> f(z,y)dzdy(1 + o(1)). (A.9)
In view of (A.7)-(A.9), asas T'— oo

a’% = // [0'02(l‘)doz(y)d‘zo(%)O‘zo(y) + 0'%1 (w)a%l(y) - 2020(95)002(y)an(x)on(y)} X

m(2)m(y) T—y y—=
o) Fer g oL (52 ) £ (Y5 S wpdady(1-+ of1)

— 4K (0) ( / 7r2(x)dm> (14 0(1)) (A.10)

using so(z) = (0p2(z)o90(z) — 0hy (x))fl, where K4 denotes the 4-times convolution product of K.
By Lemma A.1 (with n1 = ¢, 12 = ¢ji, [ =2, p; =2(14+0) and Q = 1—i5),

)

E¢irdjk| < 10M1f‘;a1+5 (7 —1),

where My is as defined in Lemma A.2.

Therefore, using the fact that > 22, QT (i) < o0,
1 T 7 5
> Blowopl <0 Y (1- 1) at0) < OPPMIT —ooh). (A1)
1<i<j<k<T i=1

which follows from (A.13)—(A.15) below.
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Equations (A.10) and (A.11) imply

VAR[NOT(h)]:4|: > ovar(da) +2 Y E(¢z‘k¢jk)]

1<s<t<T 1<i<j<k<T
— 4 K@ (0) ( / 7r2(1:)d3:) (14 o(1)).
This finishes the proof of the second part of Lemma A.3.
A.3. Proof of Theorem 2.1

PRrROOF OF THEOREM 2.1(i): To prove Theorem 2.1(i), we first show that as T"— oo

Nor(h) —2

N(0,1).
SN

To apply Lemma A.2; let & = (€4, ¢, X]) and ¢(&s, &) = ¢st defined in (A.2). Let Mp and Np
be defined as in Lemma A.2. We now verify only the following condition listed in Lemma A.2,

maX{MT, NT}

2
Oh

—0 asT — o0 (A.12)

for M1, Mpor, Mps, Mps1, Mpss and Mpg. The others follow similarly.
For the M7 part, one justifies only

1
2 A 1+8
1My

2
o},

— 0 as T — oo.

The others follow similarly.
Let 1t = asteser. 1t follows that for some 0 < d<land 1 <i<j< k<T

£ “wik%kp%} =k [|6ifj5zaz‘kajk’1+ﬂ
< {E [‘6i6j6z|2(1+5)(1+52)} }#«52) {E {|aijaik’(1+6)(1+61)} }ﬁ

< €. {E [Jagya 0+00+8] 50 (A13)

using Assumption A.1(iii), where C¢ is a constant.

SinceO<(51<1and0<52<1satisfyﬁ151+m:1and%<51<

1-0

Trs: We have that

1<C1:(1+5)(1+(52)<2 and 1<C2:(1+5)(1+(51)<2.

Let p(z) = oo2(z)so(x)m(x) f~1(x). Similar to (A.3), we have

anag = (@02 [ [ (T2 k(B ) e (L) K (S ) pwply)dady

= T_Q//K(U)K (u + M) K(v)K (v + XJ;Xk) p(Xi + uh)p(X; + vh)dudv

h
X; ;Xk> I (Xa' . X’“) (1+o(1)).

= T2
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For convenience, we use ( = (2 and ignore the small order o(1) throughout the rest of the proof

of Theorem 2.1(i). For the given 1 < { < 2 and T sufficiently large, we obtain

Mr1y = E|aigaji|*

:T—2c///|p(u)p(v)|<’L (“;Lw)r’L (U;w)‘cf(u,v,w)dudvdw

=202 [ [ [z 4+ ah)p(z + h) € IL@LWIT G+ 2h, + yh, 2)dudydz

= C,T~%h*, (A.14)

using Assumptions A.2 and A.3, where C), is a constant.

Thus, as T" — o0

1
T2 (T-%h2) L
=h ¢ —0. (A.15)

1
T2 LTS
2T11 =C y
o, h
Hence, (A.13)—(A.15) show that (A.12) holds for the first part of Mzi. The proof for the second

part of Mp follows similarly.
Similar to (A.8) and (A.14), we have that as ' — oo

2 2 2 2924
Mr3 = E [Yayjel” = E {aikajkei 6j€k}

= (Tht) R [P OG0 L (T ) 2 (P ) o (Xom (XX

—r [ [ @ (7)1 (Y57) eal@omun ) e p. dudyds
=T *p% / / /pQ(uh + w)p? (vh + w) L*(u) L2 (v) o9 (uh 4+ w) oo (vh + w) g (w)dudvdw

= CT*h?*, (A.16)

using Assumptions A.2-A.3, where p4(z) = Ele}|X].
This implies that as T" — oo

T3/2MI%’3 B CTS/QT—th

— T /2 . Al
2 o cT Y% 0 (A.17)

Thus, (A.16) and (A.17) now show that (A.12) holds for Mps. It follows from the structure of
{1i;} that (A.12) holds automatically for Mzs1, Mrse and My, since Ele;| X;] = 0.

We now start to prove that (A.12) holds for Mro;.

Similar to (A.13), it follows that for some 0 <d < land 1 <i<j<k<T

Mra =E [|¢ik¢jk’2(1+5)} —E [|6i6je%aikajk‘2(1+5)}
L 1
< {E {‘62'6]-6%’2(1—1-5)(1-%53)} }m {E [’aijaik‘z(l-i-d)(l—&-&;)} }W 7
WhereO<53<1and0<54<lsatisfyﬁ+ﬁ:1’

1<C3:(1+5)(1+53)<2 and 1<C4:(1+5)(1+54)<2.
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Similar to (A.14) and (A.15), we obtain that as 7" — oo

T3/2Mﬁ T3/2 2 (h2d) 1/(2¢4) .
2Tzl =C . _C 0
h h T1/2p(1—¢5 )d

using the fact that limy_o, Th? = oo and (1 — (') < 2.
This finally completes the proof of (A.12) for Mpo; and thus (A.12) holds for the first part of
{¢pst}. Similarly, one can show that (A.12) holds for the other parts of {¢s}. Thus, we have shown

that under Hy
Nor(h) —2

Th
The proof of Theorem 2.1(i) therefore follows from (3.6) and Assumptions A.3(ii) and A.4.

— N(0,1) as T — oo. (A.18)

PROOF OF THEOREM 2.1(ii): Note that as T' — oo

. Nirp(h) B Nir(h)
Ny -2 Frmw M) =2 +2 {—Nﬁ(h) 1}
LlT(h) == N = -

g}, [—h — 1} op + op,

Oh

Nir(h) Nyp(h)
Nir(ny (Nir(h) = 2] +2 [Nﬁ(h) - 1}  Nip(h) -2
[;Ld/z -

m—1]0h+ah Oh

(14 0p(1))

using the continuity of Nyr(h) in h. This completes the proof of Theorem 2.1(ii).
PROOF OF THEOREMS 2.2: The proof follows immediately from that of Theorem 2.1.

PROOF OF THEOREMS 2.3: As expected, the proof of Theorem 2.3 is much less complicated
than that of Theorem 2.1. To prove Theorem 2.3, it suffices to show that as T" — oo

ZtT:1 ZST:L# Pst&st
T
\/2 D5 t=1 PaéEt

—D N(O> 1)

under Hy, where & = € + 1.
The main technique is still Lemma A.2. The detailed proof is very similar to that of Theorem
3.1 of Gao and King (2001) for the univariate case. Thus, we shall not provide the detailed proof.

However, it is available upon request.
Appendix B

This appendix lists the necessary assumptions for the establishment and the proof of the main
results given in Section 3.

B.1. Assumptions

Let the parameter set © be an open subset of R?. Let M = {my(-) : § € ©}. For i = 1,2, define

. 2, 3. ..
Vomie(r) = 8m57%(x), Vamig(z) = 85;1899(,:0), and Vimge(r) = ge%ﬁgﬁ whenever these derivatives

exist. For any ¢ x ¢ matrix D, define

|| Dol|

[D[loc = sup ——=,
veERY |UH
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where |[v]|? = X, 02 for v = (v1,...,0,)".

ASSUMPTION B.1. The parameter set © is an open subset of RY for some ¢ > 1. The parametric
family M = {my(-) : 0 € O} satisfies:

(i) For each x € R and i = 1,2, myg(x) is three times differentiable almost surely with respect to
0 € ©. Assume that {G(x)} is a positive and integrable function with E[G(X})] < oo uniformly in
t > 1 such that maxi<;<2 suppee |mip(Xt)|? < G(Xt) and maxi<;<2 suppee ||v§mi9(Xt)H2 < G(Xy)
for j =1,2,3, where for B = {b;;}1<ij<q, ||B|*> = X4, 231'21 b?j. 7

(ii) For eachi=1,2 and 6 € ©, myg(x) is continuous with respect to v € R%. 8

(iii) Assume that there is a finite Ct > 0 such that for every e > 0

inf i (X1 — map (X2 > Cre?
9’9,66}‘151970”28@1%[mze( 1) —me (X1)]” > Cre

holds with probability one (almost surely). °
AssuMPTION B.2. (i) Let Hy be true. Then 6y € © and

Tlggop(\/:ﬂ\a—egn > (1) <e

for any € > 0 and all sufficiently large Cfr,.
(ii) Let Ho be false. Then there is a 0* € © such that

Jim P (VTN - 0| > Cr) <&

for any € > 0 and all sufficiently large CTr,.

(iii) Let {10 :T =1,2,...} be a sequence in © whose limit points, if any, are all in ©. Define
Yy = maep o (Xt) + y/maep  (Xi)er, where {ef} is sampled randomly from the specified distribution
defined in the Simulation Scheme of Section 3.1. Let Or be the estimator of 01 that is obtained
from the data set {Y;", Xy :t=1,2,...,T}. Then

Tlim P (\/THHAT — 0T70H > CL) <e
for any € > 0 and all sufficiently large CT.

ASSuMPTION B.3. (i) Assume that Assumption A.3(i) holds.
(ii) Assume that the set Hp has the structure of (3.2) with hmax > hmin > T~ for some constant
v such that 0 <~y < 1/(d+2), and J2hS

max — 0 as T — oo.

REMARK B.1. Assumptions B.1-B.3 are quite standard in this kind of problem. Assumptions
B.1 and B.2 extend Assumptions 1-2 and 4 of Horowitz and Spokoiny (2001) to the time series

"Note that Condition (i) may not be the weakest set of conditions imposed on {m;y(z)}. For example,
one can modify the corresponding restrictions on {m;e(z)} to: maxi<i<2Supgeg E [mig(Xt)Q] < oo and
maxi<i<2 SUpgcg F [|| vg mig(Xt)Hz} < oo for 1 < j < 3. For this case, the proof of (B.15) and (B.18) below
will become more tedious.

8Note that in Assumption A.2(ii), some smoothness conditions on {m;(x)} have already been imposed.
We therefore do not need to impose similar conditions on {m;g(x)}, as m;(z) = m,g(x) holds for some 6
when Hy holds and m;(z) = mgg(x) + CyrAjr(z) when Hy holds.

9This condition is to ensure that {m;g(x)} is identifiable with respect to 6.
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case. Assumption B.3 is silghtly different from Assumption 6 of Horowitz and Spokoiny (2001).
Actually, we have been unable to verify whether Assumption 6 is necessary for the proof of Lemma
10 in particular. Assumption B.3 holds in many cases. For example, it allows the use of the esti-
mation based optimal value hoptimal = CT ~ma in case it can also be optimal for testing purposes.

Assumption B.3(ii) holds when Amax = (log(T))fgfﬁ for some small € > 0.
B.2. Technical Lemmas

Before stating the necessary lemmas for the proof of the results given in Section 3, we introduce

the following notation.

For .] = 17 27 let € — Y;f - ml(Xt)7 e = 6152 - mQ(Xt)a gt =€+ T,
Ajt(0) = Aj (X, 0) = m;(Xe) — myjo(Xe) = myo, (Xe) — mje(Xe),

m(0) = )\%t(H) + 2e,M1(0), 7w(0) = (m1(0),...,71(0))",
A(0) = M X, 0) = Mie(0) + Aoz (0), A(O) = (M1(0), ..., r(0))7,

T T
Qr(0) = \(60)" PA(6 Z Z Pais(0

HT(@) = Zzpstﬂ's (Bl)

where py = K((X, — X;)/h).

LEMMA B.1. Suppose that Assumptions A.1-A.2 and B.1-B.3 hold.

(i) For every 6 >0

max  sup Qr(6)

< Co?
hEHTHg 00]|<5 T2hd —

in probability, where C' > 0 is a constant.

(ii) For each 6 € O,
. Qr(0) d+1>
lim Pl————>T =1.
T o ()\(Q)TA(H) 2 Th

ProOF: (i) It follows from the definition of Q7(6) that Q7 (0) < ||P||so||N(8)]|?.

In order to prove Lemma B.1(i), one first needs to show that
||P||se < CTh? (B.2)

in probability for some constant C > 0.

It follows from the uniform convergence of f(X;) (see Lemmas A.1 and A.3 of Hirdle, Liang
and Gao 2000) that max;<;<7 ‘f(Xt) - f(Xt)‘ =o0p(1) as T — oc.

This implies that as T" — oo

Xt—XS> ;

1 & 1
1SS Th ;p b T 2 Thd ; ( h 2 f(X) < C

in probability. This finally finishes the proof of (B.2).
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In view of (B.2), in order to prove Lemma B.1(i), it suffices to show that

sup  ||A(0)]]? < CT§> (B.3)
ll0—8ol|<6

in probability.

A Taylor series expansion to m;g(X) —mg,(X¢) and an application of Assumption B.1(i) imply
(B.3). This finishes the proof of Lemma B.1(i).

(ii). To prove Lemma B.1(ii), it suffices to show that as T' — oo
P (MO)A0) > T7h="IN0)"PA(6)) — 0.

In view of the definition of Q7(#), one needs only to show that for any given small € > 0

A(O)TA(0)
P ( -

B0 PAE)] > T‘lh“H) <e

Similar to the proof of Lemma A.3, we can easily calculate that as T' — oo
EN0)PA©)] = T2 / / K> (“

ENO)AO)] =T / 2(x,0) f(2)da. (B.5)

Thus, equations (B.4) and (B.5) imply

A(O)TA(0) L E[XO)"A(0)] B T2Zpd+1
P (E[A(armwﬂ > T ) =T E e Pae) ~ O TR

”> M, AW, 0) f(u, v)dudo = CT?RE(1 + 0(1))  (B.A)

and

<Ch—0

as T — oo. This finally finishes the proof of Lemma B.1(ii).

For simplicity, in the following lemmas and their proofs, we let ¢ = 1. For 1 < i < 2 and
1 < j <3, define
iy (X1,0) = m (xp = L),
LEMMA B.2. Under Assumptions A.1-A.2 and B.1-B.3, we have for any given 6 € © and
,j=1,2
Tl

max h~ %2
heHr

T T
ZZ sté-swz] Xta | - Op(l) (B6)

PROOF: It suffices to show that for any large constant Cy > 0

T T
3 pabstij (X4, 0)

P lT—lJT‘ Y2 max /2
s=1t=1

heHr

> C()]

> CoTJH*ni/?

gZP[

heHr

T T
ZZ stfs¢zg Xt7
=1

2
§ Z CO2T2J th lz Zpstgswlj Xta ‘|

heHr s=1t=1

T T
> Z C TQJThd {ZZE pstésww Xt7 )] +AijT(6)}7 (B7)

heHr s=1t=1
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where )

T T
- ZZE pst€s¢13 Xt, )] .

s=1t=1

T T
z]T [ZZ stfswzg Xty ]

Similar to (A.7) and (A.8), one can show that as T — oo

ET:ET:ELPS,:&% (X1,0))* = T2//K <x;y> o2 (2)03 (y,0) f (x,y)dxdy

s=1t=1
= C(0)T?*h(1 + o(1)) (B.8)

for some function C(0), where Jg(a:) = E[&2|X; = z].

Similar to (A.11), one can show that as 7' — oo
Ay (0) = o(T217). (B.9)

Thus, equations (B.7)—(B.9) complete the proof.

LEMMA B.3. Under Assumptions A.1-A.2 and B.1-B.3, we have as T — o0

T
Z pstét| = O
=1

PROOF: Similar to (B.7), we have for large constant Cp > 0

1J 1/2 max h~%? max

(B.10)
heHr 1<s<T

T
P lT‘lJT_l/2 max h~%? max Zpstft > Cy
1

heHr 1<s<T |

> Cy

ZP t&t

t=1

it

heHr

T
< Z ZP[ 1J—1/2 —d/2

heHT s=1

1 T T T T
CQJTT2 Z e {ZZE {pgtéﬂ T Z Z E[pshpstzgtlgtz]}- (B.11)

hEHT s=1t= s=111£ts

—_

Similar to (B.8), we can have as T' — oo

XT: ZT:E [pgtéﬂ =T? //K2 (a: ; y) o (x) f(z,y)dady = CT?h%(1 + o(1)). (B.12)

s=1t=1

Analogous to (B.9), one can show that as 7' — oo

T
Y D Elpsupssbnbe) = o(T?h). (B.13)

s=1t1#t2
Thus, equations (B.11)—(B.13) complete the proof of (B.10).

LEMMA B.4. Under Assumptions A.1-A.2 and B.1-B.3, we have for eachu >0 andi,j = 1,2,

max sup
heHr |0—00|<T—1/2u

T T
i Z_:Z Pat€a X ( | Oy (112 (B.14)
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under Hy.

PRrROOF: We prove (B.14) for i = j = 1 only. Using a Taylor series expansion to mqg(X;) —
mag, (X:) and Assumption B.1, we have for 6’ between 6 and 6,

Zzpstgs mie(Xt) — mig, (Xt)]

Z Zpstgs)\lt ‘

s=11=1 s=11=1
T T L1 T

<D pabatbnn (X, bo) +3 ZZ Pst€sthra( Xy, 00)| 10 — 6o
s=1t=1 s=1

=1
T T
ZZ Pst€sib11(Xt, 00)| |0 — bo|
s=11=1

T T
ZZ Psi&s13( Xy, 0 ||¢9 Ool” <

12(X¢, 6)

1
~T16 — 6 §:
2 +2 |6 — 6| max Slestis

Hence, (B.6), (B.10), (B.15) and Assumption B.1(i) imply

/
max, [Y13(Xe,0')] . (B.15)

<0, (J/°1'?). (B.16)

max sup
hEHTH@ Oo||<T—1/24

T T
2 z_:z_: stgsAlt

The proof of (B.14) follows from (B.15) and (B.16).

LEMMA B.5. Suppose that Assumptions A.1-A.2 and B.1-B.3 hold. Then for every u > 0,
1,7 =1,2, some h € Hr and as'T — oo

sup
0—6*|<T—1/2u

ZZpstﬁs (X, 6 ‘—Op(QT(H*))~ (B.17)

s=1t=1
under Hi.
PROOF: Similar to the proof of Lemma B.1(ii), in order to prove (B.17), it suffices to show that

sup
|0—0%|<T—1/2y

Z Zpstgs Xt, ‘ - Op(QT)a (318)

s=1t=1

where g7 = E [Qr(0")].
We consider the case of i = 7 = 1 only, as the others follow similarly. Note that

T T T T
ZZ Pst€sA1(Xe, 0)| < ZZ PstésA1(Xt, 0 )’

T T
DY pabstnn (Xe, 0%)

s=1t=1

1
+ ]+§T\«9—9*\2

P12( Xy, 9*)|

T]H 0*]3 max, - max ]¢13 X, 0", (B.19)

Z pst{s

where €' lies between 0 and 6*.
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In view of (B.6), (B.10), (B.19), Assumptions B.1(i) and B.3(ii), in order to prove (B.17), it

suffices to show that for any § > 0 and as T" — oo

T T
P [ Zzpstfs)\l Xtu ) > 5(]T — 0.
s=1t=1
Similar to (B.8) and (B.9), one can show that as ' — oo
T T 2
E [Z > pstésAi(Xe, 9*)] = CT?*h%(1 4 o(1)). (B.20)
s=1t=1

Thus, equations (B.19) and (B.20) imply that as ' — oo

¢

r _ O 4 o(1))

T T
> 5QT] 52q 2 b lz Z astﬁsAl Xt, 9*) qg
T

s=1t=1

T T
ZZ stgs)‘l Xt7 )

using qr = CT?h%(1 + o(1)) given in (B.4) above, where C is a constant independent of T'. Lemma
B.5 is therefore proved.

Before establishing some other lemmas, we introduce the following notation. Let & = € + n,

5 = (517 o 7§T)T7
Nog(h) = €7PE, and Nyp(h) = Nop(h,0) = W PW.

Let pup = E[fip] and 02 = E [63]. Tt can easily be calculated that

— oT2hd(1 + 0(1))/1(2(:,;)@53; - /o—g(y)f2(y)dy = C2T2h4(1 + o(1)),

where ag(:v) = E[¢?| Xy = 2], f(x) is the marginal density of {X;}, and C2 > 0 is a constant.
It follows that
Nar(h,8) = Nao(h) + Qr(0) + I (0) + Rr(6), (B.21)

where Q7(0) and II7(6) are as defined in (B.1) above, and Rr(0) is the remainder term given by
Rr(0) = Nar(h,0) — Nao(h) — Qr(0) — I (0).
Define

Ngo(h) — Up LQT(}Z) NQT(h 9) and LQT(h) NQT(h 9 )

Oh o Oh

Log(h) =

(B.22)

Note that Lyg(h) = Lop(h) when 6* = 6.

Assume that {e}} is as defined in the Simulation Scheme of Section 3.1. Let

q = o(Xp)e; and i = o2(X)[(e])? — 1.
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Let Log(h) be the version of Lag(h) with ¢ = o(X;)e; and 1 = 02(X;)[e? — 1] be replaced with
€ and 1) respectively.

For each t = 1,2,...,T, generate Y;* = m,5(X¢) + (/my5(X¢)ef. Use the data set {¥;", Xy : 1<
t < T} to re-estimate 0. Denote the resulting estimate by 6. Let Lop(h) be the version of Lop(h)
of (B.22) with 6, ¢ and 7, replaced with 6, /Moy (Xe)er and may,(Xe)[(ef)? — 1] respectively.

LEMMA B.6. Suppose that Assumptions A.1-A.2 and B.1-B.3 hold. Then as T — oo
LQT(h) = .Z/QT(h) + 0p(1) and ng(h) = Ego(h) + 0p(1) (323)

uniformly over h € Hrp.
ProoF: The proof of (B.23) follows from Lemmas B.1-B.5.

LEMMA B.7. Suppose that Assumptions A.1-A.2 and B.1-B.3 hold. Then maxucpr, Lop(h) and

maxpeHy I:zo(h) have identical asymptotic distributions under Hy.

PROOF: In view of Lemmas B.1-B.6, in order to prove Lemma B.7, it suffices to show that
maxpe . Loo(h) and maxpep, zgo(h) are asymptotically the same. For h € Hrp, let u; = & or
& = & + 7j;, define

Bpr(ui,...,ur) = (Co Thd/2 Zpstusut . (B.24)
st
Let Br(ui,...,ur) be the sequence obtained by stacking the corresponding Bpp(uq,...,ur).

Let G(-) = Gr(-) be a 3-times continuously differentiable function over R’T. Define

3G (v)

Cr(G) = 3 RS | D000 |

zERIT

The proof of Lemma B.7 is divided into two steps. The first step is to show that

BIG(Br(t,..&)] = E [G(Br(é, ... €r))]| < CoCr(G) St (B.25)

for any 3—-times differentiable G(-), some finite constant Cp, and all sufficiently large 7'
The second step is to use (B.25) to show that Br(&1,...,&r) and BT(él, . 7§~T) have the same

asymptotic distribution.

Throughout the rest of the proof of Lemma B.7, we assume without loss of generality that
0(X¢) = Cy = 1 and replace py in (B.24) with pg(h) = (Th¥?) 1 pg.
We can easily show that

BIGBr(,. . &) - B [G(Br (&, &r))]|
< Z ‘E { (Br( 51,---,§t,§~t+1,"',§~T))} -E [G(BT(&,---,itfl,gt,---,éT))Ha (B.26)

where Br(&1,...,¢r,&rs1) = Br(&,...,&r) and Br(&o,&1, ..., ér) = Br(&y, ..., &r).
We now derive an upper bound on the last term of the sum on the right—hand side of (B.26).
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Let Up_1, Ay and Arp, respectively, denote the vectors that are obtained by stacking

T-1 T-1

Unr =Y, Y, pa(h)sks, AhT—QSTZPsT )Ess AhT—QETZPsT

s=1t=1,#s

Then a Taylor expansion of the last term of the sum on the right-hand side of (B.26) about
&r = Ep = 0 yields

BIGBr(&,.. . &0)] = B [G(Br(&.... . &r1,E0))] | < |E[¢' Ur-1)(Ar = Ar)]|

AT [1anlP) + B [11P]} + HE {5 (1] + B [1r1F]

where G’ and G” denote the gradient and matrix of second derivatives of G, and C17(G) and Cor(G)

are positive constants possibly depending on 7.

Since Assumption A.1(ii) implies

Elérlé, .. éra] = Elérlér, .- &r1] =0,

we have
E [AT —Arlé, ... ,fT_J =0.
Therefore
E(GBr(&,-..&)] — E [G(Br(&,. ... &r-1,ér))]|
< S0 L [1ag?] + £ 1A+ SO L [ag] + £ 1AF]} . Ba2m)

To find an upper bound for the right—hand side of (B.27), let Py be the vector that is obtained
by stacking psr(h) (h € Hr). Let Cy = 4F [¢2] and Cy = 8F [|§T|3}. We then have as T — oo

2
T—1
B ||lA7|P) = 4E |j&r) B || | =4B |lel] - B Y (z m(h)@)
hEHT s=1
T-1 T-1 T-1
=C1 Y. > ED pr(Mpsr(R)E+ D > per(h)per (k)&
keHr heHp s=1 s=1 t=1,t#s
T-1 T-1
=C1 Y Y (k)T ZE[pST (W) + >0 D Elpsr(h)per (k)€
keHr he Hr s=1 t=1,t#s
Z Z (hk) dﬁ///K( ) (u;w>x2f(u,w,x)dudwdx
kEH heHr
+C Z Z (hk) d/2/ /K< > <v_w>$yf(u,v,w,m,y)dudvdwdxdy
keHp heHp k
Z Z h/2g— d/Q///K (x1) ( )(ng(wg+x1h,x2,x3)dx1d$2d3?3
k:EH heHr
+C4 Z Z hk d/2/ /K 1)K (xo)xgxs f(xs + hay, xs + kxe, x3, x4, 5)dx] - - - dws,
keHr heHr
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< CJ2hd

max?

where f(u,w,z) denotes the joint density function of (X, Xp,&s) and f(u,v,w,x,y) denotes the

joint density function of (Xg, Xy, X1, &, &)-
Similarly, we obtain

>, (h

h,keHr

Z h)&sper( )gtﬁmmgum(k)s@]

s, t,u,v=1

T-1 T-1
Z (hk) ™ ( (P2 (h)p2r (k)ES] + Z P (W)pir (k) + 2psr (h)pst (k)per (h)per (k)] £s€t>
1

h,keHr §= s#£t

+ 2 > (hk) ™ “E

h,ke Hp s#£t s#Et#u

/

T-1 T-1
ZP ' (M)psr (k)per (K)E26: + Z Pir(h)per (F)pur (k )fsftgu)

+ 2 Z hk dE( Z psT ptT(k)puT( )va( )£5£t§u§v>

h,keHr sEtAUAY

_ d///KQ( > (u;w>x4f(u,w7x)dudwdx

hkeHT
+ < w> <v ; w> 22y? f(u, v, w, z, y)dudvdwdzdy

hkeHT

u—w v —w v —w .

+ 27,d d/ / ( ) ( )K( )K( )x y° f(u, v, w, x, y)dudvdwdzdy

hkeH T2hk k A B

U —w U —w v —w

+ Z 27d d/ /K2< ) < )K< )J;3yf(u,v,w,x,y)dudvdwdxdy

bkt T?hek ’ b

2 -—w v —w S —w 9

) hdkd/ /K< ) (k>K<k>$yZ

h,k€Hr
X f(u v, w, 8, T, Y, z)dudvdwdsdrdydz

oS g [ [ () () e () e () e

h,keHr

X flu,v,w,s,t,x1, T2, T3, x4)dudvdwdsdtdrdrodrsdy

CJ2h%

max

IN

using Assumptions A.1(iii), A.2(ii) and B.3, where C' > 0 is a constant independent of 7.
This implies that as T" — oo
9y 3/4

E[|[Ar|P] = CoE

~sTé-s Z <i ﬁsT(h)§s> ]

heHr s=1

3/4
Z Pst(h)&sper (h )ftﬁuT(k)fuﬁvT(k)ﬁu]}

s, tyu,v=1

of{s T

heHr keHr

<cC (JThfnax)g/ :
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A similar result holds for F {H[\THE’] Thus

5 3/2
E ||IAr]P] + B [l|A7|P] <20 (Jrhia) ™ (B.28)
Equations (B.27)—(B.28) therefore imply

EIGBr(&,...&0)] = B [G(Br(,.... &)

1 3/2
< COCT(G) (J%hlcrlnax [W + 1] + (JTh;inax) > < COCT(G)‘]Z%h?naX‘

min

This finishes the first step.

Step 2: It suffices to show that for any real x

T—o0

lim {P L{g% Byr (&1, ..., ¢é7) < fv} - P [,{2%}; Bur(&,....ér) < x]} =0

or, equivalently, that

Jim E( II IBur(&,. .. ér) Sﬂ) E( 11 I{BhT(é,---,éT) Sﬂ:})‘ = 0.
o heHy heHp

Assume that G(-) is a nondecreasing and three times continuously differentiable function on the
real line and that it satisfies G(v) = 0 if v < —1 and G(v) = 1 if v > 0. Let d7 = J;>. A simple
calculation shows that

E( IT I[Brr(é,... &) §$]> —E( 11 I[BhT(&,..-fT) S:c})

heHr heHr
Bpr(&, ... 6r) —x [BhT(gb---fT) — ]
<|FE G - F G
(thT { or }) (hg[fT or - )l
+ Z E’G |:BhT(€17'6'7;a€T)x:| —I[BhT(flw-wa)Sm]

heHr

+ E‘G [BhT@l"” . (B.29)

heHy or

r) —w] I [Bur@, ... &) <1

Each term of the summands of the second two sums on the right-hand side of (B.29) is bounded
from above by Jrir = J, L Thus, using (B.26) to bound the first term on the right—hand side of
(B.29) yields

'P L{Iel%}i Bpr(&1, ..., ¢ér) < x} — P [}Erel%};(p BhT(fl, .. ,ET) < CL}

< CoCr(G)JEhd \ + 2771 — 0 (B.30)
as T' — oo. This finally completes the proof of Lemma B.7.

REMARK B.2. As a result of Lemma B.7, we can obtain that both maxycp, I~/20(h) and

maxpe . Loo(h) have identical asymptotic distributions. This result will be used in the proof
of Lemma B.10 below.
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LEMMA B.8. Suppose that Assumptions A.1-A.2 and B.1-B.8 hold. Then for any x > 0,
h € Hr and all sufficiently large T

2

P (igo(h) > :L‘) < exp <—Z> .

PROOF: Similar to the proof of (A.18), we obtain that for any small § > 0 there exists a large
integer Ty > 1 such that for T > Ty

[P(Lan(h) < ) = B(x)| <5,

u2
where ®(z) = \/%—W [f e 7 du.
This implies for any T > Tp and = > 0

2
. 1 oo v 1
using —= [T e~ 2 dv = 3.
V2T 2 v 2
The proof follows by letting 0 < § < (1 — 72) e~ 1 for any z > 0.
For 0 < a < 1, define I, to be the 1 — a quantile of MaXpe [, .Z/Q()(h).

LEMMA B.9. Suppose that Assumptions A.1-A.2 and B.1-B.8 hold. Then for large enough T

la < 2\/10g(JT) — log(a).

PROOF: The proof is trivial and similar to that of Lemma 12 of Horowitz and Spokoiny (2001).

LEMMA B.10. Suppose that Assumptions A.1-A.2 and B.1-B.8 hold. Suppose that

lim P (w > 22;) =1 (B.31)

T—o0 Oh

for some h € Hr, where

I¥ = max <l~a, \/2 log(Jr) + \/2log(JT)> :

Then
Tlim P(L* > 1,) =1.

PRrROOF: By Lemma B.6, L* can be replaced by maxpep, Lor(h). By Lemmas B.6 and B.7, I,
can be replaced by I,. Thus, it suffices to show that

lim P(max Lop(h) > ly) =1,

T—o00 heHr
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which holds if lim7_, s P(EQT(h) > l~a) = 1 for some h € Hy. For any h € Hrp, using Remark B.2

and then Lemma B.5 we have 1°
Far(h) = Lao(h) + LOVIIC) iy o @OV IO oy
Oh Oh
~ 0*)(1 1
= Loo(h) + Qr )(J (1)) + 0p(1). (B.32)
h
On the other hand, condition (B.31) implies that as 7" — oo
P (QT(Q ) « 2[;;) — 0. (B.33)
Th

Observe that

P(Lyr(h) > 1) =P (izT(h) > 1, @r(67) > 2[;) +P (E2T(h) > 1, @r(0") _ 2[;)

Oh
= Lir + Lor.
Thus, it follows from (B.31)—(B.32) that as T' — oo

Iy =P (ﬂgo(h) L Qr(0) +Tr(67) MQT(@*) > 21*;) P (QT(H*) > QZZ)

Oh Oh Oh

>P (i20(h) >l — 2[;;|M > 2[;;) P <M > 2[;) —1 (B.34)
Oh Oh
because Lyg(h) is asymptotically normal and therefore bounded in probability and Iy — 2l~z — —00
as ' — oo.
Because of (B.33), as T — oo
Ly <P (w < 2[;) — 0. (B.35)

Oh

Equations (B.34) and (B.35) complete the proof. B.3. Proofs of Theorems 3.1-3./

PROOF OF THEOREM 3.1: By Lemma B.6, maxjcp, Lar(h) = maxpep, Lar(h) + op(1). By
Lemma B.7, maxpep, i/QT(h) — MaXpeH, f)zo(h) — 0 in distribution as T' — oo. Furthermore,
Lemma B.6 implies maxpep, Lor(h) — maxpep, fLQT(h) — 0 in distribution as T' — oo when Hj
holds. This finishes the proof.

PROOF OF THEOREM 3.4: For the proof of Theorem 3.4, one needs to use the conditions of
Theorem 3.4 to finish the proof. For our case, we don’t need Lemma 14 of Horowitz and Spokoiny
(2001), although it holds in probability in our case. In our proof, we mainly use Lemma B.1(ii). It
follows from Lemma B.1(ii) that for every 6 € ©

lim P (Qr(0) > hTIA0)7A(0)) = 1. (B.36)

T—o0

~ * 2 T *
ONote that the derivation of Tho = Tho + [16n (67)I J‘r/ib*"(e IWie i1 the proof of Lemma 13 of Horowitz and

Spokoiny (2001) should be T = T} + ||bh'(0*)”2+2b;(6*)whe, where T} = L[Wael|*~Nn Thus, in the proof of

Vi Vi
Lemma 13 of Horowitz and Spokoiny (2001), one needs to use their Lemma 10 again.
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In view of (B.36) and the definition of I, in order to verify (B.31), it suffices to show that

lim P (RIA(0)7A(0) > 4i5h??) =1,

T—o0

which follows from the condition of Theorem 3.4 that

2s/(4s+d
Jim P (p(m,./\/l) > Cyy (T713/loglogT) /st )> _1

and the fact that for an absolute constant Cy > 0,

(d+2)(4s+d) (d+2)(4s+d)
Thm .2(2.s+d)
liminf ————— > lim inf —2&

—mm >
T—oo +/loglogT T—oo +/loglogT — 0
using Assumption B.3. This completes the proof of Theorem 3.4.

PROOFS OF THEOREM 3.2-3.3: One can follow the corresponding proofs of Theorems 2-3 of
Horowitz and Spokoiny (2001). For the proofs of Theorems 3.2 and 3.3, one needs only to modify
the proofs of their Theorems 2 and 3 slightly by using the fact that conditions (3.3)—(3.5) now hold
in probability. Alternatively, similar to the proof of Theorem 3.4 above one can use (B.34) and the
fact that conditions (3.3)—(3.5) now hold in probability to complete the proofs.
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Table 4.1. Rejection Rates for the Simultaneous Tests at the 5% level

Normal Error Distribution

Truncation | Observation | Null Hypothesis Is True
T Ly L}
250 0.054 0.060
500 0.063 0.056
Truncation | Observation | Null Hypothesis Is False
v T L L
10 250 0.551 0.723
10 500 0.776 1.000
25 250 0.357 0.533
25 500 0.691 0.866

Normalized Exponential Error Distribution

Truncation | Observation | Null Hypothesis Is True
T Ly L3
250 0.049 0.062
500 0.053 0.058
Truncation | Observation | Null Hypothesis Is False
v T L L5
10 250 0.679 0.887
10 500 0.847 1.000
25 250 0.462 0.667
25 500 0.717 0.933
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Table 4.2. Rejection Rates for Testing the Conditional Mean at the 5% level




Normal Error Distribution

Truncation | Observation | Null Hypothesis Is True
T L Ly,
250 0.052 0.059
500 0.047 0.054
Truncation | Observation | Null Hypothesis Is False
Y T Ly Lo
40 250 0.198 0.267
40 500 0.401 0.478
25 250 0.602 0.667
25 500 0.827 0.866

Normalized Exponential Error Distribution

Truncation | Observation | Null Hypothesis Is True
T L3 L3
250 0.047 0.053
500 0.057 0.049
Truncation | Observation | Null Hypothesis Is False
v T L; L3
40 250 0.362 0.404
40 500 0.617 0.733
25 250 0.643 0.679
25 500 0.933 1.000
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Table 4.3. Rejection Rates for Testing the Conditional Variance at the 5% level

Normal Error Distribution

Truncation | Observation | Null Hypothesis Is True
T L L3,
250 0.052 0.046
500 0.061 0.058
Truncation | Observation | Null Hypothesis Is False
v T L; L
40 250 0.193 0.264
40 500 0.467 0.591
25 250 0.278 0.376
25 500 0.593 0.632

Normalized Exponential Error Distribution

Truncation | Observation | Null Hypothesis Is True
T L3 L3,
250 0.051 0.055
500 0.047 0.059
Truncation | Observation | Null Hypothesis Is False
(s T L Lo
40 250 0.267 0.404
40 500 0.523 0.732
25 250 0.309 0.443
25 500 0.764 0.898
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