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Abstract

This paper is about freedom of choice and rigidity of choice rules as incentive devices. We
study the optimal design of an agent’s freedom of choice when his information is endogenous
and costly to acquire. We show that curtailing the agent’s authority over decision-making
may be optimal even if the agent’s and the principal’s ex post objectives coincide. The agent
is forced to depart from prior optimal choices and to take a clear stance on a matter. Having
the agent choose from extreme options is derived as a second best optimal contract when
his information acquisition technology is ”success enhancing” and use of contingent monetary

compensation infeasible.

Key words: discretion, freedom of action, endogenous information

JEL Classification: D&2

*The paper is a revised version of a Chapter, entitled “Optimal Delegation”, of my 2001 doctoral thesis at the
University of Mannheim. An earlier version of it circulated under the title “On the One-handed Economist”. I
owe special thanks to Martin Hellwig for many discussions and comments. Three anonymous referees and Mark
Armstrong, the editor, provided excellent comments that greatly improved the paper. I also would like to thank Dirk
Bergemann, Jacques Crémer, Mathias Dewatripont, Christian Ewerhart, Sascha Haller, Anke Kessler, Nobuhiro Kiy-
otaki, Christian Laux, Nicolas Melissas, Benny Moldovanu, John Moore, Georg Noldeke, Marco Ottaviani, Daniel
Probst, and the particpants of various seminars. Financial Support of the Swiss National Science Foundation is
gratefully acknowledged. All remaining errors are my own.

Address: Dept.  of Economics, HEC-University of Lausanne, BFSH-1, CH-1015 Lausanne, Switzerland,;

http://www.hec.unil.ch/dszalay; email: dezso.szalay@hec.unil.ch



Winston Churchill: “Should I raise the income tax rate?”

Economist: “Well, on the one hand..., but on the other hand...”

1 Introduction

Decision-makers (principals) often lack information and time to gather information they need to
make accurate decisions. Therefore they rely on others (agents) to gather information in their
stead and provide them with advice, or sometimes even decentralize information acquisition cum
decision making - within certain limits. How should such limits be designed? FEz post, when
information has been acquired, the principal is concerned with restricting possible abuses by the
agent. Fzx ante she wants to motivate the agent to acquire information. We develop a stylized
model that allows to isolate the role of the ez ante concern and to solve for the optimal freedom
of choice relative to this concern.

In our model, a principal needs to decide on a course of action in an uncertain environment.
To improve her decision making she hires an agent to gather information at a private cost and
to select the course of action on her behalf within the limits she specifies. The principal has
carefully screened all potential agents and has hired an agent who has the same preferences over
courses of actions she has for any information he may gather. However, screening among (selfish)
agents cannot eliminate conflicts of interest ex ante. Even when objectives ex post coincide the
agent’s information acquisition is optimal relative to his private marginal value of information but
suboptimal relative to the social value of information because he neglects the value of information to
the principal. Hence, granting unlimited discretion to the agent is efficient ez post but inefficient ez
ante. We establish a sequence of results in this environment. First, restricting the agent’s freedom
of choice can increase his incentive to acquire information. More specifically, if the agent is forced
to depart from the act which is optimal relative to his prior information then he finds it relatively
more attractive to have precise rather than imprecise information. Second, the benefit arising from
the resulting improvement in the quality of information may outweigh the cost arising from the
resulting inefficient use of information ex post. Third, prohibiting the agent from selecting the
prior optimal act is shown to be the optimal restriction on his choice set.

Our theory explains why it is optimal to force economists to give clear answers: they think
harder before they answer. E.g., competition authorities are usually forced to take a clear stance

on whether a proposed merger is detrimental to welfare or not. The answer “On the one hand...,



but...” is not an admissible option. Similarly, jurors and judges have to choose between the
extreme options “guilty” and “not guilty”. The absence of a compromising choice makes them
think harder about whether the accused is indeed guilty or not. The argument applies to situations
of decentralized and centralized decision-making alike. In situations of centralized decision-making
we argue that the principal should commit to not follow the agent’s advice if he recommends the
prior optimal act. To be specific, consider corporate decision-making where a division manager
is in charge of screening projects relative to the status quo. We argue that expected profits may
be higher if headquarters commits to activism and imposes an innovation bias on the firm than
if it adopts a more flexible policy because division managers have more of an incentive to screen
projects. Finally, consider delegated portfolio-management. According to our theory an investor
may benefit from forcing her portfolio-manager to depart from a passive strategy and to take risks.
Having to decide whether to go short or long in an asset the manager has more of an incentive to
gather information about returns.!

The paper belongs to a literature that tries to explain institutions of decision-making as best
responses to problems of asymmetric information. Most closely related in terms of analysis are
Holmstrom (1978, 1984), Armstrong (1994), and Aghion and Tirole (1997). Holmstrom and Arm-
strong have studied how a principal should optimally delegate a task to an agent who is not
trustworthy but has exogenously given, superior information. The optimal form of delegation
trades off the gains arising from the use of the agent’s information against the losses arising from
preference divergence ex post. Aghion and Tirole (1997) discuss the optimal allocation of decision
rights when information is endogenous. Delegating formal decision rights to an agent may be
optimal even though the latter sometimes abuses the freedom of action this provides because the
agent has more of an incentive to acquire information. In contrast to Aghion and Tirole (1997) our
theory predicts that less freedom of action may provide more of an incentive to acquire informa-
tion. The reason is that we take actions as contractible while in Aghion and Tirole (1997) only the

unconstrained right to decide is contractible.? Most closely related in terms of results is Li (2001),

I The application of our theory to portfolio-management is discussed in more detail in a companion paper (Szalay

(2003)).
2Tirole (1999) develops the ”complete contracting” version of the Aghion and Tirole (1997) paper. He discusses

the institution of giving authority to the agent with the principal having ”gatekeeping counterpower”. In this
institutional setting the principal is given the right to exclude certain alternatives a priori. However, his point
is to show that the concept of authority is not an artefact of modelling the problem in an incomplete contracting
framework. To illustrate this idea, he shows that we can find an institution in an incomplete contracting context that

implements the same outcome as the optimal complete contract. Giving authority to the agent with the principal



who explains excessive conservatism in committee decision-making as a contractual response to
free-rider problems in fact-finding. As in the present paper, ex post inefficient decision-making is
used to alleviate the ex ante incentive problem in information acquisition. However, in contrast to
Li we take evidence as nonverifiable. More importantly, Li studies a binary choice problem while
we take the number of alternatives taken in equilibrium as endogenous and derive them as a second
best contract. Dewatripont and Tirole (1999) study a related decision problem. However, they do
not focus on freedom of action as an incentive device but rather explain specialization in informa-
tion acquisition as a best response to incentive problems in information acquisition. Prendergast
(1993) explains why agents are given incentives to second-guess their bosses’ opinions. The ability
to second-guess is evidence (in the contract theoretic sense) in favor of hard work on information
acquisition. In contrast to Prendergast’s model our principal does not acquire information and
gives the agent incentives to come up with information different from hers. Confirming the princi-
pal’s prior information is evidence against hard work on information acquisition. Finally, Demski
and Sappington (1987), and more recently Crémer et.al. (1998a) and Lewis and Sappington (1997)
have studied similar problems of contracting with endogenous information. As the present analysis
these papers study problems of moral hazard in information acquisition followed by an adverse se-
lection problem. The most significant novelty relative to these approaches is our focus on freedom
of choice as an incentive device.?

Before proceeding to the analysis we wish to point to the important modeling choices in the
paper. First, we rely on a strong notion of commitment. Once information is acquired there is
unanimous agreement on the optimal course of action. Hence, principal and agent have an incentive
to renegotiate for an ex post efficient use of information. We assume that no such renegotiation
takes place. Therefore, the theory applies to situations in practice where commitment can be taken
for granted, e.g., to judicial decision-making, for the law cannot be changed in every trial, to firm
policies that are deeply routed in corporate cultures, or to situations where reputation concerns

keep the principal from reneging. When commitment can be taken for granted we show that there

having gatekeeping counterpower is an example of such an institution. This point is distinct from our question of

how to use gatekeeping counterpower optimally.
3See Laffont and Martimore (2002) for a discussion of these models. In such problems contracts must simulta-

neously induce optimal information gathering and truthful revelation of information. Contracts involve additional
distortions relative to the case with exogenous information reflecting the marginal value of information. Further
papers in this vein are Crémer et.al. (1998b), Crémer and Khalil (1992), Laux (2001), and Kessler (1998). Relatedly,
Bergemann and Véliméki (2002) have analyzed the incentives ex post efficient mechanisms provide for information

acquisition.



is value to it arising from the incentive effect it provides. Second, we focus on the case where
the adviser has a partisan objective. That is, we neglect the role of implicit incentives provided
by career concerns as analyzed, e.g., by Prendergast and Stole (1996) or Holmstrém and Ricart-i-
Costa (1986).% Consequently, our theory applies when agents’ concerns for the direct consequences
of courses of actions are relatively more important to them than implicit incentives provided by
career COncerns.

The remainder of this article is organized as follows. Section 2 introduces the model. We first
analyze the case of an agent who is infinitely risk averse so that the use of the transfer scheme is
mute (section 3). In section 4 we study the case where the agent is risk neutral with respect to
money payments. Section 5 discusses extensions of the results in various directions. All proofs are

relegated to the appendix.

2 The model

We consider an agency problem in which the utility of both the principal and the agent depend on

an action, x, as well as on a parameter, 7, according to the specification
Viz,n) =K —m(z,n) (1)

and
Ula,n,a) = a (K = (,1)) (2)
and where V (-, -) is the utility of the principal, U (-,-,-) the utility of the agent, and 7 (z,7) is a

quadratic loss function. More specifically,

(@ —n)* (3)

N =

m (,m) =

The parameter o measures the relative value of information to the agent (see below). We assume
that 0 < a < co. The parameter 7 is assumed to be the realization of a random variable 7, taking

values in an interval [77, 1‘7] . We assume that the distribution of 7 has a density f (n) with full

4Recently, Dessein (2001) has shown that there is value to commitment in the delegation problem arising from
purely informational concerns. Dessein shows that the harm arising from loss of information in noisy communication
a la Crawford and Sobel (1982) is larger than the harm arising from conflicts of interests under delegation when
preference divergence is not too pronounced. De Garidel-Thoron and Ottaviani (2000) extend this comparative

analysis of institutions allowing for a varying degree of strategic sophistication on the part of the receiver.

5 . . . . .
°For a simultaneous consideration of cheap talk and reputational concerns and for a more extensive reference to

these issues, see Ottaviani and Sorensen (2000).



support. The expected value of 7 is pu, o is the strictly positive and finite standard deviation of 7.
The set of a priori feasible actions, z, is {77, n]. For future reference we denote W (z,7n) as the

joint utility of the principal and the agent, i.e.,
W(xﬂ?):U(xan,a)+v($a77):(1+04)(K_7T(9Ua77)) (4)

At the time of contracting both agent and principal know f(n) but neither of them knows the
realization of 7). Between the time the contract is written and the choice of the action z the agent
may perform a location experiment on 7). If the agent exerts effort e the experiment is a success
with probability e and is unsuccessful with probability (1 —e). A successful experiment reveals
the realization of 7 to the agent. If the experiment fails, the agent does not acquire additional
information. Hence, the agent’s effort is success enhancing in the sense of Green and Stokey (1981).
The cost of an experiment that succeeds with probability e is g(e), where g(e) is increasing and
convex, and satisfies the INADA conditions”: g, (e) > 0Ve > 0, gee (¢) > OVe; (ge (€))|,—q = 0
lim._1 g. (¢) = co. The agent’s choice of e is not observable to the principal. If the experiment
is successful the realization of 7) is the agent’s private information. Moreover, the principal does
not observe whether the experiment is a success or not so that his information is soft and can be
forged.

Before the agent performs the experiment the principal commits to a mechanism. She specifies
a message space M so that the agent can send messages m € M to the principal once he has
observed the outcome of the experiment and commits to taking the action z (m) and paying a
transfer ¢ (m, 7 (x (m),n)) to the agent if his message is m and the realized loss is 7 (z (m),n).
We assume that the principal must commit to this mechanism. In particular, she cannot renege
on the choice scheme x (m).

The principal is risk neutral with respect to money income. The agent’s utility is additively
separable in decision dependent utility, (2), utility from money income, and costs of effort. He is
infinitely averse to income risk. He therefore does not respond to monetary incentives and receives
a constant payment, ¢, equal to his outside wage, which is normalized to zero.® The assumption
of infinite risk aversion will be relaxed in section 4.

Consider now the nature of the incentive problem. From (1) and (2) it is obvious that there is

no conflict of interest with respect to the choice of = ex post. However, ex ante the principal and

b Alternative location experiments are discussed in section 5 below.
“Throughout the paper, subscipts denote derivatives of functions.

8This is the standard assumption to justify nonmonetary contracting. We follow Aghion and Tirole (1997) p.6.



the agent disagree on the choice of e. To see this, suppose that information is used efficiently ez
post so that x = 7 is chosen when information 7 is available and x = p is chosen when only prior
information is available. The marginal value of information to the agent is equal to the expected
incremental utility he obtains when information 7 becomes available, “T"z The agent exerts effort
until the marginal cost of effort, ge (€), equals the private marginal value of information. By
contrast, the social value of information includes the value of information to the principal, ”72
Consequently, the agent exerts too little effort from a social perspective if information is used

efficiently ex post. The question is then, whether a commitment by the principal to use information

inefficiently ex post raises ex ante expected welfare?

3 Freedom of Choice as an Incentive Device

By the revelation principle we can think of a contract as specifying a direct, incentive compatible
mechanism. The agent communicates his information to the principal and is given incentives to
be truthful. Given that the principal cannot use monetary transfers, she never can do better than

giving the agent the right to choose an action = out of a closed subset of {17, 7‘7} 2 We let T' denote

the set of closed subsets of {17,7‘7} with typical element I". From this perspective, the principal’s
problem is to choose a closed set ' and a constant payment ¢, with the interpretation that the
agent is free to choose x € T'. We let (1) denote his choice of act if he has precise information

and z (¢) denote his choice of act if his information is coarse. The principal’s problem is'’:

max eEV (x(n),7) + (1 - e) BV (x (¢),7) —t (5)
s.t.
@ (n) € argmax U (z,m, @)V (6)
z(9) € argmax EU (x, 7, ) (7)
EU (z(n),7, @) = EU (z (9) ,7], @) = ge (€) (8)
eEU (z(n) i, a) + (1 —e) EU (x (¢) .7, @) — g(e) +1 =0 (9)

9This was first observed by Holmstrom (1978, 1984) and Green and Stokey (1981). We use the result in the

spirit of Melumad and Shibano (1991).

10Throughout the paper E denotes the expectation operator.



The first term in (5) represents the principal’s expected payoff conditional on a successful infor-
mation acquisition experiment weighted by the probability of success, e. It takes into account (6),
i.e., that the agent will choose his most preferred alternative for each realization of 7) subject to
the restriction I'. The second term is the analogue for the case where the agent chooses x after an
unsuccessful experiment. In this case the incentive compatibility condition on the agent’s choice of
x is (7). (8) is the incentive compatibility condition for the agent’s effort choice. It states that the
agent’s level of effort equates the private marginal value of information to the marginal cost. (9)
states that the agent must be willing to go along with the principal’s contract proposalll. Since
the principal has quasilinear utility and unlimited wealth and the agent is infinitely risk averse, (9)
is binding at the optimum and the principal maximizes expected social surplus subject to incentive
compatibility of the agent’s choices, = and e.

Our first result is that it is optimal to have the agent choose any act he likes, with the possible
exception of acts that are close to the prior optimal act, p. Let I'™™ denote an optimal contract.

Then:

Proposition 1 T'* € T'P where

I’={Terr= .7\ (u—d,pp+d) for alld € [0,min{p—n7—pn}]}

If the principal wants to mitigate the consequences of the agent’s underprovision of effort,
she must (by (8)) increase the marginal value of information to the agent, EU (z(n),7,a) —
EU (x (¢),7, ). She cannot increase EU (x (n), 17, «) relative to the case where the agent has
unlimited discretion, because conditional expected utility conditional on a successful experiment is
maximized if information is used efficiently. Therefore, she must reduce the agent’s expected utility
conditional on experiment failure, i.e., punish him if the experiment fails. Since EU (x (¢),7, &)
is decreasing in the Euclidian distance between the agent’s restricted preferred act, x (¢), and
his unrestricted preferred act, u, the principal can reduce EU (z (¢),7,«) by forcing the agent
to depart from p by A, say. The choice sets she can offer to enforce this departure from g in an
incentive compatible way must contain at least one act with distance A to ¢ and must not contain
any acts closer to p than this act. Contracts in I'? are optimal in this set of incentive compatible
contracts because they minimize on the cost of inflicting a given punishment on the agent. This

is simply because prohibiting the agent from choosing acts with more than distance A to p does

H For simplicity, the coefficient of proportionality on the money term in the agent’s utility is assumed to be equal

to one.



not influence the punishment but prohibits him from choosing the ex post efficient act for some
realizations of 7 if the experiment succeeds. Consequently, the principal removes exclusively a
convex set, containing p, from the agent’s choice set. Finally, an optimal choice set contains the
bounds of the set of feasible acts,  and 77. Removing an extreme policy dramatically reduces the
sensitivity of = (n) with respect to the agent’s information and reduces his incentive to acquire
information. By consequence, the set of removed actions is also symmetric around p. Letting
A* denote an optimal choice of punishment for experiment failure by the principal and letting
I'* = [,7] \ (0 — A%, u+ A*) denote an optimal contract, these arguments show that I'* € T'P.

The principal optimally excludes a convex set from the agent’s choice set regardless of the
distribution of 7. This result contrasts with Holmstrom’s (1984) analysis of delegation contracts
with preference divergence and given information, where convex prohibitions are optimal only if
the distribution F (-) is uniform. The difference is due to the simplicity of our agency problem ex
post as well as the simplicity of the information acquisition technology. Moreover, in our context
the set of optimally prohibited acts is even symmetric, regardless of the distribution F' (). This
is due to the symmetry of the agent’s payoff function. In a more general analysis allowing for
asymmetric utility functions, the optimal contract might well be asymmetric. However, as long
as the information acquisition technology is success enhancing the prohibited set would still be
convex.

By proposition 1, the principal’s problem reduces to choosing the bounds, p + A, of a sym-
metric interval around the mean optimally. Conditional expected losses conditional on the agent’s
information and conditional on incentive compatibility of his choices under contracts of the optimal

structure can be written as

HtA Iz
Pra@.) = 5[ (+dA-nfaF@+g [ (-A-nFe)
and (10)
Br(@(9),) = 500>+ A7)

We therefore simplify our notation and let Ew (A, n) := Em (z (n),7) and E7 (A, ¢) := Em (z (4) ,7) .
The notation for the agent’s expected utility, EU (-, -, «), and joint expected utility, EW (-, -, «),

is simplified accordingly. From (8), the agent’s incentive compatible effort choice is
e(A @) =g [a(Em (A, ¢) — Em(A,1))] (11)

where g, ! (-) exists because g (e) is strictly convex. We next study how the agent’s incentive

compatible effort choice depends on the size of the convex prohibition.



Proposition 2 e (A, «) is strictly increasing in A.

Since the outcome of the experiment is unobservable to the principal, forcing the agent to
depart from the prior optimal choice decreases expected conditional utilities both conditional on
failure and on success. However, the reduction of the former level of expected utility is always
larger than the reduction of the latter. Conditional on an unsuccessful experiment the agent would
like to choose the prior optimal act with probability one and must deviate by A from this act.
Conditional on a successful experiment the agent’s choice of z is affected only in the event that
n € (p—A,p+ A). Moreover, the induced deviation from the agent’s unrestricted preferred act is
almost surely smaller than A. Therefore the inability to choose can be used to provide incentives.!?

Consider now the optimal choice of A. Using (11) one can write the principal’s problem, (5)

s.t. (6)-(9), as the unconstrained maximization problem
mAaXP (A,a) = EW (A, p, ) + e (A, ) (EW (A, 7, a) — EW (A, ) —g (e (A,e))  (12)

The principal’s optimal choice of A trades off the benefit arising from increasing the expected
precision of the agent’s information against the loss arising from using his information inefficiently
ex post. Let A* denote an optimal solution to problem (12). For prohibitions of infinitesimal size

the benefit may outweigh the cost.

Proposition 3 The principal’s problem has a solution. A* is strictly positive if the function g ()

and the parameters o and o satisfy the inequality

where e (A, @) |a=o = g, * (%‘2) is the level of effort the agent exerts under full freedom of action.

> (1T+a)(1=-e(A,a))]a=o (13)
A=0

The principal’s payoff function is continuous in A so that a maximizer exists. Moreover, as we
show in the appendix, it has a stationary point at A = 0. Consequently, A* > 0 if the stationary
point at zero satisfies the second order condition for a local minimum, which is precisely what (13)
asserts. The benefit of introducing a small restriction around g is that the agent exerts a higher

level of effort so that the probability of a successful experiment is increased. At the margin this

12 Again, it is interesting to contrast our result with Holmstrom’s. He observed that giving more freedom of action
to the agent in the sense of giving him more discretion to choose among extreme options provides the agent with
more of an incentive to acquire information (see Holmstrom (1978) p.98). The same is true for our problem (see
Szalay (2000)). However, in contrast to the case with conflicting interests, there is no reason to prohibit the agent

from choosing extreme actions in the first place.
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benefit accrues only to the principal, because the agent’s choice of effort is optimal relative to his
private value of information. Her benefit is inversely proportional to the curvature of the cost-of-
effort function evaluated at the level of effort the agent is willing to exert under full freedom of
action. The less curved the cost-of-effort function relative to its slope, the better the agent responds
to incentives and the higher the benefit. The cost of introducing a restriction is that information is
used inefficiently so that ex post payoffs are reduced. An infinitesimal restriction has no (first and
second order) effect on EW (A, 7, ) but an (second order) effect on EW (A, ¢, o) . The expected
reduction of joint payoff is equal to (1 + ) (1 — e (A, @))|a=o - A cost-of-effort function satisfying

condition (13) always exists:

Proposition 4 For any positive and bounded « there exists a convex INADA cost function g ()

such that (13) is satisfied. More specifically, let

2

Bos 0<e<e

2
g(e) = B1+ Bae+ B35 for e <e<ey
By+B3[(1—e)In(l—e)+e] ea<e<1

where e = ey is the positive solution to By + B3¢ = —fBsIn (1 —e), and B, and B, are

B2
ﬁoiﬁS ’
chosen such that g (e) is continuous in e. Then, there exist values of the parameters 3, Bs, and

B3, with B3 small relative to By, such that e; < e (A, &) |a=0 < e2 and (13) is satisfied.

For any positive and bounded values of the parameters « and ¢ one may find a cost function
which is close enough to linear around the effort level the agent exerts without extra incentives so
that (13) is indeed satisfied. More precisely think of g (-) as of a second order polynomial around
e (A, a)|a=o and let the second order coefficient go to zero for a fixed first order coefficient. Then,
the response of the agent to the incentive system goes out of bounds while the cost in terms of
the probability of inefficient decision-making ex post remains bounded, because the level of effort
is determined primarily by the fixed first order coefficient.

How large should an optimal prohibition be? To answer this question we must impose more
structure on our model. More specifically, we shall assume for the remainder of this paper that
the cost-of-effort function is a C? function. Until further notice we shall also restrict it to the
multiplicative form g (e) = Bh(e) where [ is a positive parameter and h(e) a convex INADA
function. In this case it is straightforward that the agent’s incentive compatible effort choice under

a contract of the optimal form satisfies

e(85) =t [5En (a0 - Er (a0 (14)

11



Note that the incentive compatible effort level is montone decreasing in 3. Let e (A, %) A= =
ht ((“2—‘5) denote the effort level the agent exerts under full freedom of action. We next investigate

for which values of the parameter § the principal’s net benefit of introducing small restrictions on

the agent’s choice set is positive.

Proposition 5 Let g (e) take a multiplicative form so that

g(e) = Bh(e)

where (3 is a strictly positive parameter and h(e) any conver INADA function which is C? and
satisfies a) lime_,q %ﬂ >2+aand b) :A(% concave in e. Then, for any strictly positive
and bounded values of the parameters o and o, there exists a unique, strictly positive value of 3,

B, such that (13) is satisfied iff 3 € (O,ﬂ/) .

Conditions a) and b) are satisfied by the following INADA cost-of-effort function:
gle)=p((1—e)In(l—e)+e)

Note that the value of the agent’s reponsiveness to incentives does not depend directly on 3
for multiplicative cost-of-effort functions but only indirectly through the dependence of the agent’s
effort choice on 3. In the limit as 3 goes to zero, the agent supplies the socially optimal level of
effort - which equals one in the limit - so that the value of increasing his effort is zero. On the other
hand the cost of increasing his effort choice are also zero because he has precise information with
probability 1 so that he almost surely wants to choose an act different from p. Hence, the left-hand
side and the right-hand side of (13) exactly match and the inequality cannot be satisfied in the
limit as 8 goes to zero. If condition a) holds then the cost-of-effort function displays relatively
little curvature relative to its slope for high effort levels just below 1. If in addition condition b)
holds then the net benefit, defined by the difference between the left-hand and the right-hand side
of (13) is concave in e. Since the agent’s effort and his responsiveness to incentives goes to zero in
the limit as B goes to infinity the net benefit is negative in this limit. Hence, (13) is satisfied if
and only if 8 is small enough.

By direct extension of (12) let P (A, a, %) denote the principal’s payoff function when g (e)
is of the multiplicative form. Let A* denote an optimal solution to the principal’s problem. A*

satisfies the first order condition Pa (A, a, %) la=ax =0, ie.,

) l(a2)
I+a)e(A = |+————5 | (Era(A,¢) — Ena(Ayn) —(14+a)A =0
(B5) o f @) e

12



The principal trades off the marginal benefit from punishing the agent, arising from the ex-
pected increase in precision of the agent’s information, to the marginal cost arising from inef-
ficient use of information. More specifically, the marginal benefit is the sum of the expected
marginal increase in the net social gain from a successful relative to an unsuccessful experiment,
e (A, %) (EWa (A,n) — EWa (A, ¢)), and the marginal increase in the agent’s effort choice multi-
plied by the principal’s net gain from a successful experiment relative to an unsuccessful experiment,
%EVA (A,n) — EVa (A, ¢) . Net marginal benefits accruing to the agent are zero, because
his optimal effort choice equalizes the marginal benefit from acquiring precise information to the
marginal cost. The marginal cost is the welfare loss in case the experiment fails, EWa (A, ¢).
Simple manipulations, using (10) and (14) deliver the more tractable formulation of the first or-

der condition (15). Define A as the smallest local maximizer of the principal’s payoff function.

Formally A = min {A : Pa (A, a, %) =0 and Paa (A, «, %) < 0} .

Proposition 6 Suppose that lim,_.q Mh—i%ﬁ > 2+ « and that %(% is concave in e. Then,
there exists a unique value of the parameter 8, 5, satisfying 3 > 8" > 0 such that A has the
following properties:

i) A tends to zero in the limit as (8 tends to zero. A is increasing in 3 for § € (0,5”] , decreasing
i B for B € (,8”,5/] , and equal to zero for 3> 3.

i) If 3 < 3" then A* = A

By definition, A > 0 iff (13) is satisfied. As 3 is decreased below 3’ A increases first and
then decreases until it attains a value of zero in the limit as 3 goes to zero. This is because the
principal’s marginal benefit arising from a punishment of given size is a concave function of the
agent’s effort choice and because the effort choice under contract A is monotonic in 3 even though
A is nonmonotonic. Economically, as 3 is decreased below 3, the agent reacts better to incentives
and the expected cost of using information inefficiently decreases because the level of effort the
agent exerts for any given contract increases. The assumption of a concave value of responsiveness
implies that the difference between first best level of effort and the level of effort the agent exerts
under full freedom of action is decreasing in 3 for 8 € (0, ,3”] . Therefore, the principal has less
of an incentive to increase the agent’s effort choice and reduces the size of the prohibition if 3 is
decreased. In general, A is a local maximizer. This is because P (A,a, %) is convex in A for
small A if (13) holds which gives rise to the possibility of multiple stationary points. However,
there are decreasing returns to increasing A over and above A for § € (0, ﬁ"] , by essentially the

same argument as above. Therefore, the smallest local maximizier is the unique global maximizer
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in this range.

To summarize this discussion, exposing the agent to extreme options is attractive from the cost
side if the agent’s effort choice under full freedom of action is already quite high. In this case the
agent is almost never forced to make up his mind if his information is coarse. From the benefit side,
extreme options are attractive as an incentive device if the agent responds well to incentives, which
is the case if his effort choice under full discretion is bounded away from the extremes. Under the
conditions we provide the net benefit is largest for some intermediate level of effort.

One may wonder how a influences the principal’s optimal choice of A. Unfortunately results in
this vein are ambiguous. The reason is that o determines at the same time the weight the principal
attaches to the agent’s utility in joint utility and the level of effort the agent is willing to exert for
any contract. This gives rise to sometimes countervailing effects and therefore ambiguous compar-
ative statics. In the remainder of this section we shall therefore drop some of our assumptions to
resolve this ambiguity. As we shall not need the multiplicative form of the cost-of-effort function
for this and the remaining analysis we shall set § =1 and identify the functions g (e) and A (e) in
what follows.

Since e (A, a) is monotone increasing in « our previous results are exactly reversed in any
situation where the weight the principal attaches to the agent’s utility in joint utility does not
depend on «. In particular, this is true if the principal can neglect any costs she inflicts on the

agent.

Proposition 7 Suppose that the agent is already in place, his compensation package determined
by an outside process and let his IR constraint be nonbinding. Suppose further that g (e) is a general
INADA cost function satisfying lime_.q %} > 2 and gg%(% concave in e. Then, the qualitative
features of proposition 6 remain intact with 3 replaced by a~*.

One easily verifies that the first order condition for an optimal solution for the case of a

nonbinding IR constraint is

(<e (A, a) + M) (Era (A, ¢) — Ena (A1) — A) =0

ee (€ (A, )

which makes proposition 6 obvious.

A=A*

Finally, for the case of a binding IR constraint, one may simply assume that the net benefit
of small restrictions is monotonic in «. This amounts to dropping the INADA condition that
lim._.1 g (e) = oo. Clearly this implies that an optimal contract satisfying the first order condition

((15) with 8 =1) must be monotonic in . However, for a high enough the contract eventually
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implements acquisition of precise information with probability 1. In this range of parameter values
the principal can decrease the size of the prohibited set and still implement the same marginal

value of information if « is increased. These results are summarized in the following proposition.

Proposition 8 Suppose the agent’s IR constraint is binding. Suppose further that lim,_1 ge(e) <
oo and let gg%(% be nondecreasing in e'3. Then,

there exist two strictly positive and bounded values of the parameter o, &' and o, (defined explicity
in the appendiz) satisfying o/’ > o > 0, such that

i) A is equal to zero for a < &/, increasing in o for o/ < a < o, and decreasing in o for o > .
it) e (A, o) is monotone nondecreasing in « for all a. e (A, ) is equal to 1 for all a > o”.

iii) If « > o’ then A = A*.

Propositions 7 and 8 lend further support for our earlier conclusions because the qualitative
features of the optimal contract are robust to variations in the model setup. Crucial to this robust-
ness of our comparative statics results is the success enhancing technology. For these technologies
the cost of clear advice is zero for e close to one. Moreover, any regularity condition -which is
consistent with at least one of the boundary conditions of INADA functions - imposed on the value
of the agent’s responsiveness produces the result that the benefit of extreme options outweigh the

cost if the agent’s choice of effort is close to 1.

4 Monetary Sanctions and Motivation

We now turn to the opposite extreme when the agent is risk neutral with respect to income shocks.
In this case results depend crucially on whether performance and messages are contractible or
whether only messages are contractible. In the former case, which has been studied among other
problems by Osborne (1985), it is possible to implement the first best. The solution involves a
transfer that reflects the principal’s payoff, i.e., a transfer scheme ¢ (x (7)) ,n) =t — 7 (z (7)), 7).
Confronted with this transfer the agent has the correct incentive to acquire information as well as
to reveal information truthfully and first best is achieved. The result obtains because the agent has
unlimited wealth (and is risk neutral with respect to money payments). We study the case where

performance is noncontractible. The standard justification for this assumption is that performance

13The property ;A% is possessed by convex power functions, €™, exponentials, exp (e), and products of these
ce
two classes. Sums of (two) powerfunctions e™ +el display the property provided that [n — 1| is small. As an example

2
consider a quadratic cost function and let % = 1. One easily verifies that (13) holds if 1 > o > @
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is observable but not verifiable.!*

By the revelation principle we can restrict attention to direct mechanisms that give the agent
the incentive to tell the truth. The principal’s problem is a straightforward extension of problem
(5) s.t. (6) — (9) with the additional complication that transfers may depend on the agent’s
recommendation. We let {z(n),t(n)} denote the contract tuple offered to the agent in case he
announces that the experiment was a success and that the realization of 7 was 0. {z (¢),t(¢)}
denotes the contract offered to the agent in case he announces that the experiment failed. Formally,
the principal’s problem is:

max (1 —e)E[V (z(¢),n) —t(p)] +eE[V (z(n),n) —tn)] (16)

z(n),t(n),
z($),t(e),e

s.t.

Vi U(x(ﬁ)a%@)‘f‘t(ﬂ) > U(x(¢)7n’a)+t<(/))

(17)

v U(x(ﬁ)a%@)‘f‘t(ﬂ) > U(Mﬁ)a%@‘*‘ﬂﬁ) Vi)
EU (z(¢),0,0) +t(¢)] = E[Ux(®H).7a)+t0)] Vi (18)
EU (x(n).7,a)+tm)] - EU (x(¢),h,0) +t(¢)] = gele) (19)
(L=e)E[U (x(),0, ) +t(9)] +eE[U(x(n),ha)+t(n)] = gle) (20)

The agent is given incentives to announce truthfully the failure of the experiment (18), and to
announce truthfully the true realization of 7 if he knows it rather than any other realization of 7
or that the experiment failed (17). The agent’s effort choice is determined by the marginal value of
information the contract provides (19) and the agent is willing to participate (20). It is immediate

that no contract of this restricted class can implement the first best:
Lemma 2: There exists no contract which is ez post and ex ante efficient.

Ex post efficiency requires that the agent receives the same transfer for all values of 7 he
announces, given that he announces that the experiment was a success. To see this, consider local
incentive compatibility of the agent’s announcement conditional on a successful experiment, i.e.,
a(x (@) —n) %ﬁ@ = %ﬁﬂl. Ez post efficiency requires that the left hand side of this equation is
zero. By consequence the transfer must be flat where it is differentiable. From global incentive

compatibility, one observes that t (7)) must be continuous, because otherwise some types would

MFor a different justification of message contingent contracts in a similar context, see Prendergast (1993).
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have an incentive to misrepresent their types. Since z(¢) = z(p) = p in an ex post efficient
contract, this leaves only one possibility to give the agent more of an incentive to exert effort: to
set t (¢) sufficiently smaller than ¢ (1) . However, if the same decision z is taken for reports ¢ and
1, the agent can always claim to be the type that would receive the higher transfer. But then,
the transfer scheme can’t be used at all to give the agent more of an incentive to exert effort.
Consequently, first best cannot be achieved by any contract and conversely, giving extra incentives
for information acquisition implies a departure from ex post efficient use of information.

By quasilinearity of utilities the agent’s individual rationality constraint is binding at the op-
timum and the principal maximizes joint surplus subject to incentive compatibility of the agent’s
choices. The solution procedure essentially parallels the one presented in section 3. To avoid

duplication we directly present the solution.!?

Proposition 9 Suppose that o € (0,00). Then the principal implements an ex post inefficient

contract. Suppose that 8]5(7]") >0 forn < p and that 6’557") <0 for n > p and that gee. (€) > OVe.
Then, the optimal contract has the following properties:
a) The action x (¢) is ex post efficient. The function x (n) is strictly increasing with a discontinuity

at the mean. There is pooling of types p and ¢. Formally,

r(p) = n
= —v(a £ n) or
z(n) = n—( )f(n) formn<p
() = p
x(n) = n+7(a)—1}57)(n) forn > p.

b) The transfer scheme is decreasing in n for n < u, increasing in n for n > u, and displays a

1514 is equal to 1 if the statement in ® is true, and zero if not. T is the optimal indirect utility level

2
given to type m, u* (77) . One derives it from the binding IR constraint. T = g(e) — AK — (1 —e¢) ATJ+

7 (Lysu—F(n))?
Ay (@) {(1 o) [y Sgn + e [ Lol dn} -
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discontinuity at the mean. Formally,

a F(n)\® "F(2)
t(n) = T+—(7a—) f(wa/ dz form<p
) 2 ") TS Te
" F(2)
t(p) = T-oay(a) dz
) TCG)
o 1—F(77)>2 /’7 Loy — F(2)
t = T+ — a) ——— | +tay(a —t———~2dz forn>
0 S (@ 55L) et [ n>
where
gel€ _ 0'72
v (o) = ——= 2
N y>u—F(n)
Jy Sy
c) e* is uniquely defined by the equation
gcae g2 B a_—2{-_102 _ge(e)
n — 2 o a c(e o? a
7 ot e (22 - g) e Mg 0))|

e=e*
For o smaller than some critical value (defined in the appendiz) e* is optimal in the local sense.

For « large e* is unique and optimal in the global sense.

Figure 1 provides a graphical illustration of the optimal contract. The principal now has a
richer set of incentive instruments at hand to make experiment failure relatively unattractive to
the agent. By (19)the marginal value of information to the agent is increased c.p. if i) the course
of action conditional on experiment failure is distorted away from pu so as to increase the difference
between the agent’s expected utility level conditional on experiment failure and his expected loss
conditional on a successful experiment, and/or if ii) the transfer conditional on experiment failure is
decreased relative to the expected payment conditional on a successful experiment. Moreover, the
choice of action and the transfer, both conditional on experiment failure, are substitute incentive
instruments in the sense that any expected utility level conditional on experiment failure can be
implemented either by a high financial sanction and an efficient choice of act or by a lower sanction
and a distorted choice of act. Therefore, it is not necessary to implement an inefficient choice of
act if the experiment fails in order to give the agent an added incentive to acquire information.

With this enriched set of incentive instruments it is always preferred to use the transfer scheme
rather than the decision scheme to make experiment failure unattractive relative to success, i.e.,

any efficient contract involves x (¢) = u. To see this result observe that any contract must involve
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a) b)

x(n)

(n)

> L

w_—®

Figure 1: Diagram a) is the transfer scheme. The agent’s financial reward is the higher the farther
his type from the mean. Diagram b) depicts the optimal choice function z (). At the mean, the

ex post efficient act is implemented.

pooling of types ¢ and p. These types share the same conditional expected value of 7). There-
fore their preferences over contracts {x (¢),t(¢)} and {x (u),t (@)} coincide for any contract the
principal offers. This pooling property allows us to derive the endogenous ex ante distribution of
types: any type n # p has ex ante likelihood ef (), while type p occurs with ex ante probability
1 —e+ef(u). Therefore the ex ante distribution of types effectively has a mass point at the
mean. It follows that it is infinitely more costly to implement a distorted choice of act conditional
on experiment failure than to distort the decision scheme z () for any type different from u. By
consequence it is always optimal to implement the efficient choice of act conditional on experiment
failure and use the transfer scheme instead of the decision schedule to make experiment failure
relatively unattractive to the agent.

Except in the trivial cases it is now always optimal to give the agent more of an incentive
to acquire information. This is precisely because the optimal contract involves no efficiency loss
in case the experiment fails. Therefore the ex post cost of introducing distortions is smaller by
an order of magnitude than the ex ante gain arising through the beneficial effect on the agent’s
incentive to acquire more information.

Consider now the distorted part of the decision schedule x (7). Let u* = infn|n > p and

w~ =supn|n < p . If the agent is punished financially contingent on experiment failure, the truth
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telling constraint of type ¢ implies that z (u*) and z (#~) must be distorted away from ex post
efficiency. This way, type ¢ is confronted with a choice between the ex post efficient act and a
low transfer if he tells the truth and an inefficient choice of act = (u) (z (u ™)) together with a
relatively higher transfer in case he claims to be of type ™ (1) . By local incentive compatibility
of the contract the distortion spreads out over the whole support of the distribution with the

bounds being an exception. The size of the distortion at a given type 7 reflects a trade-off between

increasing the joint ez post loss and increasing the agent’s marginal information rent.

Under the standard conditions on hazard rates a%% <1 for n < p and a% 1}57()7’) > -1

for n > u, which are equivalent to the stated condition on the density, the contract is strictly
monotonic so that there is no bunching. Moreover, under relatively mild additional conditions
on g (-) and « the principal faces a concave problem with a unique solution for large enough o.
Unfortunately, however, the solution is too involved to allow for a comparative statics analysis.

It is interesting to contrast the optimal contract with properties of contracts found in similar
problems. Our contract does not have the property of no distortion at the top. Instead the
contract has "no distortion at the bottom” and ”distortions at the top a.e.”. With the usual
ordering of types according to ez post efficiency the bottom corresponds to type ¢. The top in
contrast corresponds to all remaining types. The top is undistorted for type p and at the bounds
7 and 7). In the first case this is because there is pooling of types ;1 and ¢. In the later case this is
because the concern for increasing the agent’s marginal information rent is absent at the bounds
of the support. Finally, there is no bunching in the contract.'%

The second best contract does no longer allow for the interpretation that the agent is forced to
depart from the prior optimal choice. In case he announces to not have acquired new information,
the efficient course of action is followed. However, quite similar to the case without transfers,
the principal goes too far in following the agent’s advice for some reports: it is still optimal to
implement x (n) > n for n > p and = (n) < n for n < p, except at the bounds of the support. Some

actions are never taken in equilibrium, as the contract is discontinuous at the mean. However, the

L6 This is interesting from a technical perspective, because Lewis and Sappington (1993) have a result going in the
opposite direction. The reason for this discrepancy is that our agent is benevolent in contrast to theirs. As here, in
their procurement problem, the possibility of ignorance induces a strong desire for implementing the efficient course
of action in case the agent confesses ignorance and the principal is lead to increase the quantity bought towards
the efficient amount . However, this desire runs counter the desire to limit the agent’s informational rents which
induces the principal to buy less than would be efficient. In our problem, there is no conflict between these goals
as the optimal choice is distorted downwards for n < p and upwards for n > p. Consequently, the efficient choice at

the mean is not in conflict with monotonicity in the contract and there is no bunching under the usual conditions.
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set of actions the agent is ”prohibited from taking” is no longer convex but rather consists of two
convex sets separated by the isolated point, p.

We conjecture that similar results could be obtained under different assumptions. For instance
if payoffs were contractible, but the agent had limited liability (e.g., Lewis and Sappington (1997),
Crémer et. al (1998)).17

5 Extensions

One can generalize the insights of the model with infinite risk aversion with respect to money
income in a number of directions.

One may allow for alternative location experiments and let the agent have a normally distributed
prior about the true state of the world, 7, and have him acquire a normally distributed signal, whose
determininistic precision is increasing in effort. Some of our results are robust to this extension
some are not. In particular, when the agent is unable to choose acts in a symmetric, convex set
around the prior optimal act he finds it more attractive to acquire more precise information. To
see why, observe that the agent would like to choose = ex post equal to (or as close as possible
to) his conditional expected value of 1. As is well known for normal location experiments (see,
e.g., deGroot (1970)), the conditional expectation is a weighted average of the prior mean and the
signal, with the weight on the signal being the higher the higher its precision. From the ex ante
perspective the conditional expectation function is itself a normally distributed random variable.
Its variance is the higher the higher the agent’s effort level. On the one hand the signal is more
precise, which tends, c.p., to decrease the variance in the ex ante distribution. On the other hand
the agent puts more weight on the signal relative to the prior in forming the conditional expectation
which tends to increase the variance in the ex ante distribution. For normal location experiments
the second effect dominates the first so that it is the less likely that the agent wants to choose an
act close to the prior optimal act the more effort the agent exerts. By consequence, a higher effort
helps the agent to avoid the punishment so that clear advice can again be used as an incentive

device. Moreover, the principal may benefit from using the incentive instrument. It proves very

L7 As a referee pointed out, first best would be implementable by a Crémer McLean type mechanism if the principal
also acquired information with a certain probability. Then, the principal could give the agent a very low financial
transfer if he announced some type n = n; while in fact his experiment was a failure but the principal’s succeeded
and revealed that n = ny # n,. By consequence, 7T (¢) can be decreased relative to 7 () for all , while z (n) = n is

implemented for all n without giving the agent an incentive to misrepresent his type.
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difficult to characterize the optimal choice set for normal location experiments. The reason is that
the agent’s effort no longer shifts mass away from a mass point but rather from a whole set around
the prior optimal act. The possibilities to provide incentives are much richer than for success
enhancing technologies. Interestingly, in an example we provide, the principal finds it optimal to
force the agent to give clear advice when the agent’s taste parameter, « is low. This shows how
important the success enhancing technology is for our comparative statics results in section 3.

Consider the role of identical preferences ex post. Two points should be made here. First,
the formulation is more general than the case of identical partisan objectives. Our application to
portfolio management (Szalay 2003) makes evident that congruence of ex post objectives arises
naturally in case the agent does not care for performance per se but receives a payment which
is linear in performance.'® Second, one may allow for diverging partisan objectives. In Szalay
(2000) we consider the case where the agent’s bias is not known to the principal, but where the
principal knows that the agent’s preferred act is correlated with hers. If the correlation is large
enough, the principal gains from prohibiting the agent from choosing the prior optimal act. If the
correlation is low the agent’s information is of no use to the principal since he would not use it in
the principal’s interest. Therefore, no extra incentives are provided by banning the prior optimal
act and acts close to it. However, in this case the principal benefits from constraining the agent’s
right to choose extreme acts. The optimal extreme bounds on the agent’s choice set display the
Aghion-Tirole trade-off of initiative versus loss of control.

Finally, in Szalay (2001) we have considered a model where the agent faces the discrete choice
of whether to innovate or not and have shown that our main results are robust with respect to
allowing for discreteness. In particular, we consider the choice between a risky and a safe option,
e.g., a manager choosing between an uncertain innovation and the safe status quo. The manager
screens by exerting effort among innovation paths. Imposing an innovation bias may increase ex
ante expected payoffs although the manager sometimes has to gamble because he puts in more

effort to screen the innovation paths.

6 Conclusion

We have studied freedom of choice as an incentive device. The main point of the present paper is

that the inability to choose can be used to provide incentives for information acquisition. Forced

18See also Stoughton (1993) on this.
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to choose among extreme options, or equivalently, forced to give clear advice, an agent finds it
relatively more attractive to be well informed. A number of applications of this idea are discussed:
judicial decision-making, delegated portfolio management (see our companion paper Szalay (2003)),
and activism in organizations. More generally, our theory applies to situations where there is
perfect commitment to the rules of decision-making and no conflict of interest ex post between the
contracting parties. Moreover, as we have shown in Szalay (2000) the theory can be extended to
cover situations with conflicts of interest ex post. We have not discussed multiagent situations. One
interesting possibility would be to study rules of arbitration, as analyzed, e.g., by Gibbons (1988)
from the perspective of providing incentives to the disputing parties to make reasonable offers,
from the perspective of providing incentives for effort to the arbitrator. Our analysis suggests that
eliminating the possibility for compromise may be good for the arbitrator’s incentive to find out
which of two opposing positions is closer to the truth. We believe this is an interesting avenue for

research and leave it to future work.

7 Appendix A

Proof of Proposition 1. By quasilinearity of payoffs and unlimited wealth the principal
maximizes joint payoff subject to incentive compatibility of the agent’s choices. The principal’s

payoff function can be written as

EW(I((f)),’I~7,O¢)+€(EW(CL‘(77),7~7,O¢)7EW(£L‘((]§),7~7,04))7g(e)

L BU (@ () 7, 0) — BU (2(9) ,71.0)) — g (¢)

= EW (z(¢),0,a) + e

= BW (2(8),7,0) + =200 (¢) — g (¢

where the first equality uses (2) and the second equality uses (8) . We observe that, for a given = (¢) ,
the principal’s payoff is increasing in e because el g, (e) — g (e) is strictly increasing in e. From
(8) one observes that in turn e is strictly increasing in EU (z () , 7, o) for a given EU (x (¢) , 7, ) .
Therefore, taking |z (¢) — p| = A as given an optimal contract solves

max BU (x (n) 1, )

st |2 (@) -l = A
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The solution to this problem is

L = [pa]\(p—Ap+A) for Ac[0,min{p—n7—pn}]
= [+ A7) for A>min{p—n7—p} ifT-p>p—1
= (1, 1 — A] for A>min{p—n7—p} ifT-p<p-—n

It is unique. Suppose not and there are two closed sets that solve this problem. Since both achieve
the same value of the objective they can differ only on measure zero sets. By full support of f ()
measure zero sets are isolated points. But then at least one of the sets is not closed, a contradiction.
Finally, A* < min {y — 1,7 — p} . We shall prove this for the case y —n < 7 — p. The proof of the

reverse case is analogous and omitted. Consider the incremental loss. By straightforward algebra

Ho?+A2) = L "2 (u+ A —y)2dF
Br(@(¢).7) - Ex(e(.p) - = 20 T b Ammram
—3 [l Al — A =n)%dF (n)

= $(c?+ A% - f‘u+A (u+ A —n)2dF (n) else

By straightforward calculus one finds that (02 +A?2)— [ : T2+ A—n)2dF (n) is decreasing convex
in A (with slope zero at A =7 — p). Moreover, one can show that
pt+A Iz
tm &= [ e A—npaP ) - [ (A= nPar )
n o p—A

ptA
> lim A? —/ (n+ A —n)%dF (n)
< n

Hence, the marginal value of information is always higher if the agent has at least one option on
either side rather than when not. m
Proof of Proposition 2. From proposition 1 the difference between expected losses condi-

tional on experiment failure and conditional on success is

(02 +A%) [Tt A= n)PdF () + [i (0 — A= n)%dF (n)

W(Avd)) — Em (Aﬂ?) = 2 9 (21)
and the agent’s effort choice satisfies:
-1 % 2 2y ¢« pra 2 a [* 2
e(da) =g, |57 +A%) -5 (n+A—n)dF(n) -5 (n=A—=n)*dF ()| (22)
2 2 J, 2 Ju-n

By Leibniz’s rule and the inverse function theorem

o HtA M
A (A a) = 9ol {A/ (u+A*n)dF(77)+/ (uAn)dF(n)} (23)

Hence, ea (A, o) > 0 iff A — fﬂ+A (L + A =n)dF (n) + f” (b — A —n)dF (n) > 0. Let now

p+Zt (A):=E[nnepp+ Al and p—Z~ (A) := En|n € [n— A, 1] . Using these definitions
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one can rewrite

ptA g
A/# (u+An)dF(nH/#_A(uAn)dF(n)
=A—(F(u+A)=F(u—A)A+(F(p+A)=F(u)Z*(A)+ (F(u) — F(p—2)Z (4)
> (F(u+A)=F(u) Z" (D) + (F(p) = F(n—2A)) Z~ (A)

>0

where the last inequality is strict if A > 0, because Z1 (A) and Z~ (A) are strictly positive by

construction. m

Proof of Proposition 3. Let

P(8,0) = BW (x(6),7,0) + e=——g. () g (¢

denote the principal’s payoff function. P (A, «) is a continuous function of A. A is chosen from
the interval [O, W= Q] . By Weierstrass’ theorem a continuous function on a compact domain must
attain a maximum. Differentiating P (A, ) with respect to A, using (23) and the envelope theorem,

one obtains

e va)+ 5O g, _ EBr _ N
Pa@.@) = (c0 40+ £ (B a) - Bra () - A+ a) (1

More specifically, using (21), one finds that

s-(e0)) AL A= mdE o) |y

Pr(Ao)=(e()(1+a)+ 2t
A (A @) (<>< A ES) + [ alp—A=mn)dF (n)

and observes that upa%z |a—o = 0. Hence A = 0 is a stationary point. Differentiating a second

time one obtains

Pan (A o) = 1(1+a)+<6(')(1+a)+%
0

(o ge(e))_a
3 ( O+e)+ e <->>> 1 0))

) (Eman (A, ¢) — Eman (An)) (25)

(Ema (A, ¢) — Ena (A,n))?

Using (21) once more

el HtA H
PAA(A,a)_1(1+a)+<e(‘)(1+a)+%> {1/ dF(n)f/ AdF(n)}

o ey A LA L A dE )+ [ A= P ()
+ 5 <e(-) (1+a)+ oe (6(.))> O]
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Evaluating this expression at A = 0 gives

Pan (A, a)‘A:O =-1 (1 + O‘) + (e (A’ a) (1 + a) * %) ’A—O

Hence if Paa (A, @)oo >0, A =0 is a local minimum. =

Proof of Proposition 4. Let

2

60% e<e;
gle)= By + Boe + 855 for e <e<es
By+0B5[(1—e)ln(l—e)+ e e> ey
where e; = =22 and e, is the the positive solution to By + B = —B31In (1 — e) . It is immediate

Bo—Ba
that i) ea € (0,1) for any strictly positive and bounded values of 3, and (5 and ii) that for any

values of By and (4, there exists a 3, large enough such that e; € (0, e2). Moreover, since e; and
eg are independent of 3, and (,, we can choose 3; such that ﬂofj- = By + Byer + ﬂg%i and 3,
such that 8, + Byea + ﬂ;;% = B4+ B3[(1 —e2)In(1 — ez) + ea] . This construction has g (e) and
ge (€) continuous and g, (e) differentiable. For any finite 8, and any positive 35, g (€) is a convex
INADA function.

To ease notation in this proof define é := (e (A, a))|,_, - Suppose, by way of a working hypothesis,

that é € [e1,e2]. Then, from (ge(€))|,_s = %‘2, the parameters 3, andB; must satisfy 8, =

e=é
2 ao? N
ao 8 o —éB3

22~ — é33. To satisfy the working hypothesis, we must have i) that é > e; = 5035:5 = 55,

which is equivalent to G, > %“T"z and ii) ea > é. ea solves %‘2 — €05+ Bzea = —f31In (1 —e2).

One observes that e is decreasing in 83 and that limg, .o ez = 1. Hence, for each value of é one
can take (3, large enough, B4 small enough, and take G, = O‘gz — é034 so that é € [eq, eq] .
Finally, if & € [e1, e2] and By = 22~ — &3, then (13) can be written as
o’ —of, +éfy
B

o2 1
2 1-6

>(1+a)(1—2¢)

which is satisfied for all 85 < ]

_a
14+«

Proof of Proposition 5. Let y(e) = gg“((ee)) — (14 ) (1 —e). We note that lim._,; y () =0:

since lime—1 ge(e) = 00 and gee(e) > 0Ve, ge(e) must be convex for e close to 1; hence, for
e close to 1 gee(€) > egee(e) > ge(e); hence lime_.q ;%% = 0 and hence lim.;y(e) = 0.
Note further that y(e)|._, = — (1 + «), which follows from ge.(e) > OVe. Using the multi-
plicative form we observe that y(e) = :A(% — (I1+a) (1 —e) so that our assumptions imply

y (e) concave in e. Differentiating y with respect to e one obtains %69 =2+4+a)— %hfh(%))ﬁ
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Hence 2u(e(55)) = <(2 +a) - h(e((i%())(lg(y(;)()%%))) ae(;%). Since limg_ge (A, %) =1 and
ce(€(AF
88(—5‘5’@ < 0V3, lime_,q %hfh(%));l > 2+oa implies that limg_,q %ﬂ > (. Hence y (e (A, %)) >

0 for 8 positive but small. Since y (e) is concave in e and e (A, %) monotonic in 3, there exists a

unique value of 3, 3, such that

oo e (5)

hee (e (88)) sy A
Hence (13) is satisfied iff 3 € (0,5'). m
Proof of Proposition 6. A the first and second order condition for an optimum, i.e.

Pa (A, a, %) ’A:é = 0and Paa (A, Q, %) ’A:é < 0. In what follows we use notation Pa (A, a, %) =

Pa (A, a, %) }A:é . By the implicit function theorem

oa_ P (Bes)

EZRN —Pan (A,Oé, %)

(26)

Clearly, — Pan (A, a, %) > 0.

he(e(25)) \ 2 (a5)

a) 0 y
()= (0 (05) G )

Since (1 +a)e+ :CC((Z)) is concave in e, (1+ a)e+ :Cc((i)) is maximized for e” that satisfies 2+ o =

he(€)heee(e
(hcc(e))2
de(—déﬁ’ﬁ < 0. By straightforward differentiation of (11) and some manipulations, using (26), one

and therefore 2 ((1 +a)e+ :A(%) S& e 2 €. Thus, we need to show that

e=e'’

obtains

B o T on op "
2N
1— (e <A,%) +m> (Ema (A, ¢) — Ema (A,n)) >0
2N
1 A (Eman (A, ¢) — Eman (An)) >0

Ena (A ¢) — Ema (A7)

The last equivalence follows from using Pa (A, «Q, %) }A:A = 0 to substitute EWA(A,@%EWA(A’”)

for e (8,5) + % Since (Ema (A,¢) — Era (A1) sy and (Ema (A, ¢) — Ena (A1)

is increasing concave for all A > 0, the result follows. Therefore there is a unique 3" associated to
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e” by the equation ¢’ = e (A, %) .

For (8 small enough A = A*. To see this, consider (25) :

Pan(Ava) = <1+a>+(e<‘><1+a>+%) (Eran (A.6) — Exan (A1)
=X (A,0)
O (N (1t o Ge(e () ) a(Bra (A ¢) — Era (A7)
*ae( ()(+ ”gee(e(‘))) Gee(e 1))
=Y (4,6)

Since the agent’s effort is increasing in A for all A it follows that Y (A, 5) <Oforall A > Aif 8 <
3", Consider next X (A, 3). Using the first order condition, Pa (A, o, %) }A:A =0, and the fact
that Ema (A, ¢)—E7ma (A, n) is increasing concave in A and satisfies (Ema (A, ¢) — E7a (A, )| ag =
0 we observe that X (A, 3) < 0V3. Moreover, X (A, 3) is decreasing in A for A > A if 8 < g,
because 2 (6 ()1 +a)+ gHA(%_l()L)) < 0 for e > e’ and Ema (A, ¢) — Ema (A,n) is increasing

concave in A. m

Proof of Proposition 7. The proof follows from straightforward extensions of the proofs to

propositions 3 and 5. In this case
. e
P(Aaa) =FEV (.’E (d)) 777) + Ege (6)

and

ge (e ()
gee (¢ ()
From Paa (A, a)[p_o one finds that y(e) = gele) _ (1—e). If limey MEMC)QEZ > 2 then

g()()(e) (gcc(e)

Pa(A,a) = (e<-> T ) (Era (A d) — Ena(An) — A (@7)

lime_,1 %@Q < 0. The remainder of the proof is a trivial extension of the proof to proposition

5. m
Proof of Proposition 8.  Define S(A,a) = e(A,a) + ﬁ% and let S(0,q) =
(e (A a) + ;M))A . (13) is satisfied iff S (0,a) > 1. Using eq (A, ) = L gelelBua))

14+a gee(e(A,a)) agec(e(A))
one finds
0 1 ge(e(A )
A = — A
Sa (A, 0) oo <e( ’a)+1+o¢gee(e(A,a))

_ (geleBa) (1 1 L0 (gele@®a)\
N <gee(e(A,a)) (a (1+o¢)2)+1+aae (gee(e(A,a))> o (A, ))

Clearly, our assumptions imply S, (A,a) > 0 for all A. Since (ge (€))],_; < 00 (e(A,@))|a_
tends to 1 as a increases. By continuity there must be some « such that (e (A, «))[5_o < 1 and

S (0,) > 1. By monotonicity of S (0, «) there is a unique o’ such that S (0,o’) =1 and (13) is

28



satified for o > o’.

From (15) with 8 = 1, A satisfies, for interior solutions,

(e g e fay ) (ra @) Bra o) - A‘A_é -

Hence, by Milgrom and Roberts’ (1990) theorem 1, the smallest interior solution is nondecreasing
in a. It is strictly increasing if A > 0. By the arguments above A > 0 over a nonempty range.
By monotonicity this range must be a convex set. Since e (A, «) is increasing in a, the contract
eventually implements e (A, ) = 1. Define o = min{a: e(A, ) =1}. For a > o, the optimal
solution is a corner solution and A is the smallest restriction that implements e (A, ) = 1. Since
e (A, a) is nondecreasing in «, and strictly increasing in « if e (A, «) < 1 the principal optimally

decreases A to keep e (A, «) constant at 1. m

8 Appendix B"”

Lemma B. Problem (16) s.t. (17), (18), (19), and (20)is solved if and only if the following

problem is solved optimally:

(K [ (-5 e =2 ) dr ) = (=0 5 () = +)

@)+ A8 [ e <) (ny = F i+ 25~ g.fe) o)

dz(n)
on

s.t. >0; 2 (n) =z (9)

The proof uses standard arguments. The reader is referred to Szalay (2001). Here, we prove only
the pooling property. Taking (17) and (18) at n = p and rearranging the constraints yields

« «

[ 56t =n2ar @ [ @) —ndF o) = o0~ 7 ()

and

(1) =7 () 2 (@) — ) — 5 (@) - )

9The development of the solution concept builds on Lewis and Sappington (1993) and Crémer, Khalil and

Rochet (1998). Both, Lewis and Sappingtion and Crémer et.al. study modified versions of the procurement problem
originally due to Baron and Myerson. In Lewis and Sappington the adverse selection problem is complicated by the
possibility of ignorance by the agent. The probability of ignorance is taken as exogenous in their model. In Crémer
et.al information acquisition is endogenous. Information acquisition involves a discrete cost and e € {0,1} in their
model so that the agent is in equilibrium either completely informed or completely ignorant. In the present analysis

the adverse selection problem is complicated by the simultaneous presence of both problems.
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Both inequalities can hold simultaneously only if 7(u) = 7 (¢) . But then also z(u) =z (¢). =

Proof of Proposition 9. Problem (M) is solved by a three step sequential maximization
procedure. In step 1 we solve for a constrained optimal function  (|Z,€) taking as given that
the principal implements some x (¢) = Z and e = €. In step 2, we take account of the optimal
solution to step 1 and treat x (¢) as a choice variable, obtaining this way a constrained function
z(n|z(¢),e) and an optimal = (¢ |€). In the final third step e is endogenized which delivers the
optimal function z () and the optimal effort level the principal implements.

Step 1. Abstract from the constraint x (¢) = Z for a second. The standard way to solve this
problem is to neglect the monotonicity constraint and derive the optimal solution by pointwise
maximization. Afterwards one imposes conditions on F (-) so that the pointwise optimum is
monotonic in 7. Anticipating the solution we assume that f () is nondecreasing for n < p and
non-increasing for n > pu.

Consider now the role of the constraint = (¢) = Z. Under our assumptions on hazard rates the
solution to step 1 will be monotonic if not the constraint z (¢) = Z introduces a nonmonoticity.
Distinguish two cases: i) > p and i) T < p.

Case i) : The maximization problem is:

w1+ ) K e [ (<S5l <) dF ) | = (1= ) S (0= P +0%) = ot

(M)

2 @0) ] [ aeln) =) (Wymy = F )+ S = gu(6)  + Lysyn () {al) — 7}

In this problem, & (n) is, for each value of 7 > p, the Kuhn-Tucker multiplier one the constraint
x(n) > Z. The Lagrange multiplier, A (Z, €) , is a function of the imposed parameters. By pointwise

maximization one finds from the first order conditions of (M1):

Az, e) a F(n)

T,e) = 1n-— f 28
z(n|z,€) Ui : Ttaf() or 1 < 4 (28)
_ = A (i'v é) a 1-F (77)
= fi > W
z(n|z,€) maX{:r,n+ : 1ta () orn > p
&?2 is uniquely defined by the incentive constraint:
= 040'2
S 0 o 29)
€ M _a2 F(n)? n a2 (1-F(n)? (@) -
€ n T+a 7o 1+ o) Tra oy A TS, @ =) (L= F(n)dy

. Assume for

AZ,8) o 1-F(7(Z,e))
e 1l+a f(n(z,e))

the moment that Mﬁ < 1. Then, our assumptions on the density imply that the pointwise

In this expression, 7 (Z) is the value of 1 such that = = 7 (z,€) +
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optimum is monotonic in 7. We show in step 3 that Je—l < 1 is true.
Step 2: Substitute (28) into (M1) and replace the parameter Z by the choice variable z (¢). The

objective function is

Ji (g (Aetob) o BN 4 ) — (100 (50) (1 (5) ) dF (1)

14+«
P(z(¢),e-)=eq - e s ormr . tra?
n 14+a z($),e) o (1—F
— Jita(o).0) (F5%) ( TR ) ) dF (n)
e + 1
—(1—-¢) (€(¢) —p)?+(1+a)K —g(e) (M2)
_ ao? _
/ z(nlz(p).€) —n) (1n>u*F(77))d77+T — ge(€)
n
and the maximization problem is
max P (x e,
naxc P (@ () ¢, )
By straightforward calculus
OP (z(9),ée,-)
9z (¢)
—a? 2 x o( 22, CJ z(p,€)
el (Me000) g 2CEEE) 0D (0 41) (2. () - ) dF ()
- _ (7 o (Fm)? (A@(9).8)Y g, 2(3=E2)
Ststoon tea S (ME22) dn ™t
—(A-e)(1+a)(x(d) —p). (30)

To get this expression we used the fact that - by definition - the incentive constraint holds with

equality, i.e. that

A<x<¢>,e>{/"a<x<nx<¢>,e>—n><1n>u—F<n>>dn+%—ge<e>} = 0var (0)

Totally differentiating this identity and using (28) to substitute for x (¢) one obtains an expression

that can be used to simplify JJ_L)P ) More specifically, one finds that
oP E. - n(@(6,8) ) 5
4(;0(256’ b - e {/ 2@ (1 P )~ (1 0) @ (6) ) F ) dn}
14
~(1-91+a)

By definition of 7 (z (¢, €)) we have z (¢) > n+ )‘(m(g’)’é) 1$a 7T ()") for all n € [u, 7 (x (¢))] so that

this expression is strictly negative. Hence the solution to step 2 is

t(fe) = n—AS)ljaﬂg for 1 < (31)
z(ple) = n for n =p
z(nle) = n+)\ie)1ja1f57§n) for n > p.



Step 3: Substitute (31) into the (M2) and replace the parameter € by the choice variable e. The

objective is now

Ple) = (1+a)K—(1—e) <O‘T“> o2

A e o) e

A (e) {/"amne) 1) (L — F (1)) iy + 22~ —ge<e>} (\3)

The maximization problem is max, P (e, -) . By straightforward calculus

OP(e,) a+l , [T _a® (Ne)lpu-F@m)* o te
9 =3 [7<2<1+a>< T ))dF(”) e

e Anwaja) (1@’}@?@)26‘”") 5 P

To find this expression we use again the fact that by definition the incentive constraint holds with

equality for all e, i.e.,

n ao?
7] [ el =) (L = F (1) dn+ 2 = gu(e) § = Ove

n

Using (31) to substitute for z(n), this identity implies that
2
A (6) _ Je (6) - % (32)
n a2 (1, L—F(n))z
¢ (R e ay

Letting é = g, ! ("‘T”z) we find that (%52)‘ ~=0. Hence

OP (e, ") Ca+1l o, 7(72

de ’ . - 2 o ge(e)‘e:é - 9 >0

so that it is optimal to introduce ex post distortions. The optimal effort level satisfies the first

order condition

+a [ gele o 2 +a [ gele fou
Oé+].0_2_g(e) 12 (ga _7) e 104 (ga - g (e) 0
T T T R (Lo —F ()2 TR ((Lyeu—F ()2 ee -
2 fg (A, (n)(n)) )dn f{; (( >y (n)(ﬂ)) )dn i
and the second order condition
1+« (gc(e) _ 0'_2) 2
« « 2 Jee (€

“Yee — — B ee - eee

n F(n) ) g



So that geee (€) > 0 implies that the first order condition is sufficient for a local optimum. From

the first order condition we derive

(gpae _ U_z) B a+10.2 - ge( )
i ( (lysu—Fl(n
Sy (Gaze bl ) ay Lo (_y ~ %) Feg () )|

- =ex*

If gece (€) > 0 then 12 g, (e) > 1 ge(e) > 24152 50 that the right hand side is smaller than one.
o ey mnog ~ - -
Hence v (a) = (#1557 = ],]( P o) )dn < 1 as claimed so that the contract is monotonic
Ul 7)

and the pointwise optimum is the optimal contract.

ge(e) o2
Finally, for a large the effort level is the unique globally optimal effort level. ( ( ez ) ) <
dn

i Un>p—F) 2
fn ()
i z_a_Z) . .
2 2 2 .
s = g . . Hence, for o > A v () is bounded
(y>p—Fm) o (p>p—Fm) ’ (p>p—Fm))
}n n> 1 d77 20(]7 n>u 1 d77 2}77 n> 1) d77
n J(n) J(n) an F(n)

above by 1 so that the prlnmpal s problem is concave in e for any e. m
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