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Abstract

We extend the standard specification of the market price of risk for affine yield models of the term
structure of interest rates, and estimate several models using the extended specification. For most models,
the extended specification fits US data better than standard specifications, often with extremely high
statistical significance. Our specification yields models that are affine under both objective and risk-
neutral probability measures, but is never used in financial applications, probably because of the difficulty
of applying traditional methods for proving the absence of arbitrage. Using an alternate method, we
show that the extended specification does not permit arbitrage opportunities, provided that under both
measures the state variables cannot achieve their boundary values. Likelihood ratio tests show our extension
is statistically significant for four of the models considered at the conventional 95% confidence level, and
at far higher levels for three of the models. The results are particularly strong for affine diffusions with
multiple square-root type variables. Although we focus on affine yield models, our extended market price of
risk specification also applies to any model in which Feller’s square-root process or a multivariate extension
is used to model asset prices.



1 Introduction

The square-root process of Feller (1951) has been used widely in financial economics, appearing in term

structure models such as Cox, Ingersoll, and Ross (1985) and stochastic volatility models of equity prices such

as Heston (1993). The widespread use of this process is undoubtedly due at least in part to its relatively

straightforward analytical properties. In the square-root process, a state variable follows a diffusion in which

both the drift and the diffusion coefficients are affine functions of the state variable itself. Multivariate

extensions of the square-root process have appeared in the term structure literature; see, for example, Duffie

and Kan (1996), Dai and Singleton (2000), and Duffee (2002). Of course, a model for asset prices must specify

not only the stochastic process followed by a set of underlying factors, but also the attitude of investors

towards the risk of those factors; since the pioneering work of Harrison and Kreps (1979) and Harrison and

Pliska (1981), this task is often accomplished by specifying the behavior of the state variable(s) under both an

objective probability measure and an equivalent martingale measure. A common practice is to have the state

variables follow a Feller square-root process under both probability measures, but with different governing

parameters.

This latter objective is normally met by assigning to each state variable a market price of risk process that

is proportional to the square root of that state variable. Since the instantaneous volatility of each state variable

is also proportional to its square root, the product of the market price of risk and volatility is proportional to

the state variable itself. Subtraction of this product from the drift under the objective probability measure

thus results in a drift under the equivalent martingale measure that is also affine. If a process is within the

Feller square-root class under the objective probability measure, this market price of risk specification ensures

that it is within the same class under the equivalent martingale measure as well. A market price of risk that is

inversely proportional to the square root of the state variable would also retain the affinity of the drift under

both measures, but such a market price of risk specification is never used in financial modeling. Cox, Ingersoll,

and Ross (1985) discuss this possibility, and point out that it leads to arbitrage opportunities if the boundary

value of the process can be achieved. The instantaneous volatility of the state variable is zero at the boundary;

however, with this market price of risk specification, the risk premium associated with the state variable does

not go to zero as the volatility approaches zero. Ingersoll (1987) imposes the condition that the risk premium

goes to zero as volatility goes to zero in a similar setting. Bates (1996), in a stochastic volatility model, also

imposes this condition; Chernov and Ghysels (2000), working in a similar setting, discuss the type of market

price specification we propose, but leave unresolved the issue of whether it precludes arbitrage opportunities.

In a recent term structure application, Duffee (2002) specifically avoids this market price of risk specification.

However, whether or not a Feller square-root process can achieve the boundary value depends on the values

of the governing parameters. For some parameter values, the instantaneous volatility of the state variable can

approach zero arbitrarily closely but never actually achieve this value. The market price of risk can then be

arbitrarily large when the state variable takes values near zero, but is always finite. It is not immediately clear

whether arbitrage opportunities exist in this case; we show that they do not.

Although the reason for the avoidance of this market price of risk specification in the existent literature

is not clear, it may be related to the difficulty of proving that it does not offer arbitrage opportunities. It
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is quite difficult to determine whether this specification satisfies conventional criteria, e.g., those of Novikov

or Kazamaki; however, these criteria are sufficient but not necessary to prove that the Girsanov ratio is a

martingale. Using the approach of Cheridito, Filipovíc, and Yor (2003), we show that this market price of

risk specification does not offer arbitrage opportunities, provided certain parameter restrictions are observed.

Using the extended market price of risk specification, we estimate several term structure models, and compare

the results to those obtained using more traditional market price of risk specifications. We find that, for most

models considered, the extended specification results in a significant improvement in the fit of affine yield

models to data on US Treasury securities.

The rest of this paper is organized as follows. In Section 2, we describe a class of multivariate term structure

models driven by square-root processes, and define the admissible change of measure using our extended market

price of risk specification. In Section 3, we show that this specification precludes arbitrage opportunities. In

Section 4, we describe the data and estimation procedure used to estimate and test our specification. In Section

5, we present the results and show that the extended market price of risk specification offers significantly better

fit to the data than standard specifications for most models, especially those with two or more square-root

type state variables. Finally, Section 6 concludes.

2 Models

Throughout, our concern is with affine yield models of the term structure of interest rates, defined as follows.

Definition 1. An affine yield model is a specification of interest rate and bond price processes such that:

1. The instantaneous interest rate rt is an affine function of an N-vector of state variables denoted by Yt:

rt = d0 + dTYt (2.1)

where d0 is a constant and d is an N-vector. We sometimes refer to individual elements of the vector

Yt, using the notation Yt (k) for 1 ≤ k ≤ N .

2. The state variables Yt follow a diffusion process:

dYt = µP (Yt) dt+ σ (Yt) dW
P
t (2.2)

where µP (Yt) is an N-vector, σ (Yt) is an N × N matrix, and WP
t is an N-dimensional standard

Brownian motion under the objective probability measure P .

3. The instantaneous drift (under the measure P ) of each state variable is an affine function of Yt:

µP (Yt) = aP + bPYt (2.3)

for some N-vector aP and some N ×N matrix bP .
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4. The instantaneous covariance between any pair of state variables is an affine function of Yt:£
σ (Yt)σ

T (Yt)
¤
i,j
= αi,j + βT

i,jYt (2.4)

where αi,j is a constant and βT
i,j is an N-vector for each 1 ≤ i, j ≤ N , and

£
σ (Yt)σ

T (Yt)
¤
i,j
denotes

the element in row i and column j of the product σ (Yt)σ
T (Yt).

5. There exists a probability measure Q, equivalent to P , such that Yt is a diffusion under Q:

dYt = µQ (Yt) dt+ σ (Yt) dW
Q
t (2.5)

where µQ (Yt) is an N-vector, WQ
t is an N-dimensional standard Brownian motion under Q, and such

that the drift of each state variable is an affine function of the state vector:

µQ (Yt) = aQ + bQYt (2.6)

for some N-vector aQ and some N ×N matrix bQ.

6. Prices of zero-coupon bonds are conditional expectations of the discounted payoffs under the measure Q:

B (t, T ) = E
Q
t

h
e−

R
T

t
rudu

i
(2.7)

Existence of a process satisfying the second, third, and fourth conditions is treated in a univariate setting

in Feller (1951), and in a multivariate setting in Duffie and Kan (1996). Duffie, Filipovíc, and Schachermayer

(2003) provide a general mathematical characterization of affine processes, including those with jumps; the

diffusions we consider here are special cases. Existence can essentially be characterized as a requirement that

the state vector Yt remain within a region where σ (Yt)σ
T (Yt) is positive semidefinite. More formally, there

must exist constants g1, ..., gm and non-trivial N -vectors h1, ..., hm such that σ (Yt)σT (Yt) is positive definite1

if and only if:

gi + hT
i Yt > 0 (2.8)

for each value of 1 ≤ i ≤ m. We denote the region where this condition is satisfied (for all i) by D, and

the closure of D by D. Note that σ (Yt)σT (Yt) is positive definite in D, positive semidefinite in D, and not

positive semidefinite outside D. Certain conditions must hold on the boundaries of D, to ensure that the state

vector cannot leave the region D. For each value of Yt ∈ D, we must have:

¡
gi + hT

i Yt = 0
¢ ⇒ ¡

hT
i µ

P (Yt) ≥ 0
¢

(2.9)¡
gi + hT

i Yt = 0
¢ ⇒ ¡

hT
i σ (Yt)σ

T (Yt)hi = 0
¢

(2.10)

for each value of i. Intuitively, these two requirements are (1) the drift must not pull the state vector Yt out

of the region D, since σ (Yt)σ
T (Yt) then fails to be positive semidefinite, and (2) the volatility must not allow

1We assume here a non-degeneracy condition, that the instantaneous covariance matrix of the state variables is full rank for

at least some values of the state vector.
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Yt to move stochastically out of D. Of course, we must also have Y0 ∈ D. It is also possible that m = 0, i.e.,

that D is the entire space RN , in which case the restrictions of Equations 2.9 and 2.10 are entirely vacuous.

There are no separate uniqueness criteria; if a solution to Equation 2.2 exists, it is unique.2

In addition to existence and uniqueness, achievement of boundary values is of particular importance when

analyzing our market price of risk specification. Intuitively, within the region D, the drift of the state vector

must not only satisfy the existence condition of Equation 2.9, but must also pull the state vector back toward

the interior of D with sufficient strength to ensure that the boundary cannot be achieved. The univariate

case is treated by Feller (1951) and Ikeda and Watanabe (1981); the multivariate case is more complex, and

is treated in Duffie and Kan (1996). However, possibly after changing the coordinate system, all the models

considered in this paper are such that the region D is of the form (0,∞)M ×RN−M , M = 0, . . . , N , in which

case it is easy to derive sufficient boundary non-attainment conditions from the one-dimensional case. We will

always impose boundary non-attainment conditions, and we will call the first M state variables restricted and

the last N −M unrestricted.

As for possible changes of the coordinate system, note that any transformation

Xt = A+B · Yt (2.11)

for some N -vector A and some non-singular N×N matrix B, of a given affine yield model with state variables

Yt, constitutes another affine yield model that can produce exactly the same short rate processes rt as the

original model. To ensure identification of parameters in estimation, we will impose additional restrictions;

for example, we require that σ (Yt) be diagonal.3

Given a specification of µP (Yt) and σ (Yt) such that a solution to Equation 2.2 exists, we may consider

the existence of an equivalent measure Q by specifying a market price of risk process λ (Yt) which satisfies:

σ (Yt)λ (Yt) = µP (Yt)− µQ (Yt) (2.12)

If the P -measure existence conditions, as described in Equations 2.8 through 2.10, and boundary non-

attainment conditions are satisfied, then σ (Yt) is full-rank for all values of Yt that can be achieved. Then

there exists a unique λ(Yt) satisfying Equation 2.12. However, existence of such a λ (Yt) is sufficient neither

for the existence of the implied probability measure Q, nor for its equivalence to P . However, from Girsanov’s

Theorem, the following condition is sufficient and necessary for both:

EP
t

"
exp

Ã
−1
2

Z T

t

λT (Yu)λ (Yu) du−
Z T

t

λT (Yu) dW
P
u

!#
= 1 (2.13)

Numerous sufficient criteria, such as those of Novikov and Kazamaki (see, for example, Revuz and Yor (1994))

have been developed to show that a given stochastic exponential satisfies Equation 2.13. Dai and Singleton

2Throughout, "existence" should be interpreted as the existence of a weak solution, and "uniqueness" refers to uniqueness in

distribution.
3This normalization is one of several used in Dai and Singleton (2000), although some affine yield models cannot be expressed

in this form. However, we consider only models with three or fewer factors, and only affine yield models with four or more factors

can fail to have a representation with a diagonal σ (Yt) matrix.
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(2000) consider a simple market price of risk specification:

λ (Yt) = σT (Yt)λ (2.14)

where λ is a vector of constants. By construction, this specification ensures that µQ (Yt) is an affine function of

Yt. When σT (Yt) does not depend on Yt, this market price of risk specification satisfies the Novikov criterion

for any time interval [s, t]. The Novikov criterion may also be satisfied for any time interval even when σT (Yt)

does depend on Yt, depending on the values of the model parameters. However, in general, the Dai and

Singleton (2000) market price of risk specification only satisfies the Novikov criterion on [s, t] when t < s+ ε

for some positive ε. The value of ε depends on the model parameters, but not on s or Ys. This form of local

satisfaction of the Novikov criterion, however, is sufficient for satisfaction of Equation 2.13 (see, for example,

Corollary 5.14 in Karatzas and Shreve (1991)).

Duffee (2002) refers to models with the market price of risk specification of Dai and Singleton (2000) as

completely affine, and introduces the more general class of essentially affine models. The only constraint on

the market price of risk specification in essentially affine models can be characterized as follows: if a linear

combination of state variables is restricted, then the market price of risk of that linear combination must

coincide with the completely affine specification. A linear combination of state variables that is unrestricted,

by contrast, can have any market price of risk consistent with affine dynamics under both measures. For

example, in the univariate model:

dYt =
¡
aP + bPYt

¢
dt+ σdWP

t (2.15)

the single state variable is unrestricted, so λ (Yt) can be any affine function of Yt. By contrast, in the univariate

model:

dYt =
¡
aP + bPYt

¢
dt+ σ

p
YtdW

P
t (2.16)

the single state variable is restricted. Consequently, the essentially affine market price of risk for this model

is λ (Yt) = λ
√
Yt for some constant λ (with λ = 0 possible). In other words, λ (Yt) is restricted to ensure

that, if the volatility of any linear combination of state variables approaches zero, the risk premium of that

linear combination also approaches zero. As with the completely affine market price of risk specification, the

essentially affine specification satisfies the Novikov criterion for some finite positive time interval (the size of

which depends on the model parameters, but not on the initial state vector), thereby ensuring satisfaction of

Equation 2.13.

Our market price of risk specification, by contrast, imposes only those restrictions necessary to ensure that

the boundary non-attainment conditions are satisfied under both the P and Q measures. In Section 3, we

show that this requirement is sufficient to ensure that the market price of risk specification satisfies Equation

2.13. Note that the essentially affine specification nests the completely affine market price of risk, and our

specification, which we refer to as the extended affine market price of risk, always nests both the completely

affine and essentially affine specifications. The completely and essentially affine specifications coincide for some
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models, as do the the essentially and extended affine specifications. However, the extended affine specification

is always more general than the completely affine specification.

Affine yield models are treated in a systematic way by Duffie and Kan (1996), although many other models

appearing in the literature, such as Vasicek (1977), Cox, Ingersoll, and Ross (1985), Balduzzi, Das, Foresi,

and Sundaram (1996), and Chen (1996), can be viewed as special cases of the general affine model. Dai

and Singleton (2000) note that for each integer N ≥ 1, there are N + 1 non-nested families of N-factor

affine yield models, and develop a classification scheme, which we use below. Each affine yield model can be

placed into a family, designated AM (N), where N is the number of state variables, and M is the number

of linearly independent βij, 1 ≤ i, j ≤ N . M necessarily takes on values from 0 to N . The AM (N) model

contains M state variables that are restricted. Each of these state variables follows a process similar to the

Feller square-root process, except that the drift of one restricted state variable may depend on the value of

another restricted state variable. The remaining M − N state variables are unrestricted. The unrestricted

state variables jointly follow a process similar to a multivariate Ornstein-Uhlenbeck process, but with two

modifications: both the drift and the variance of an unrestricted state variable may depend on the values of

the restricted state variables.

For now, we take as given that our market price of risk specification is free from arbitrage, and examine in

detail each of the single-factor, two-factor, and three-factor affine yield models to be estimated. In addition

to specifying the dynamics of the state variables under both the P and Q measures and the definition of the

interest rate process, we specify any parameter restrictions needed to ensure existence of the specified process,

and also restrictions needed to ensure restricted state variables do not achieve their boundary values. We also

identify any restrictions needed to make sure that a model has a unique representation.

2.1 Single Factor Models

In a single factor affine yield model, the interest rate process is specified as:

rt = d0 + d1 · Yt (1) (2.17)

for some constants d0 and d1. However, the state variable Yt (1) can follow one of two distinct types of

diffusions, the A0 (1) and A1 (1) models (as per Dai and Singleton (2000)). In the A0 (1) model, Yt (1) follows

a process:

dYt (1) =
£
bP11Yt (1)

¤
dt+ dWP

t (1) (2.18)

where WP
t (1) is a standard Brownian motion under the objective measure P , and bP11 is an arbitrary constant.

Note that this process has no constant term in the drift, and the diffusion coefficient has been normalized

to one. These restrictions are not a loss of generality, but rather a normalization that ensures a unique

representation of the model. Any process with an affine drift and constant diffusion can be transformed into

a process of this type by an affine transformation of the state variable. An observationally equivalent interest

rate model results by making an appropriate change to the d0 and d1 coefficients. Under the measure Q, the
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process Yt (1) can be written as:

dYt (1) =
h
aQ1 + bQ11Yt (1)

i
dt+ dWQ

t (1) (2.19)

where WQ
t (1) is a standard Brownian motion under Q. The process exists for any value of b

P
11; furthermore,

there is no boundary value (i.e., the process Yt (1) can take on any real value). The market price of risk process

is defined by:

Λt = [σ (Yt)]
−1 £

µP (Yt)− µQ (Yt)
¤
= −aQ1 +

³
bP11 − b

Q
11

´
Yt (1) ≡ λ10 + λ11 · Yt (1) (2.20)

In the completely affine models of Dai and Singleton (2000), the λ11 parameter is restricted to be zero. By

contrast, in the essentially affine models of Duffee (2002), the λ10 and λ11 parameters can take any values.

Existence of the measure Q with either the completely affine or essentially affine market price of risk specifi-

cation follows from satisfaction of the Novikov criterion for a finite positive time interval, as discussed above.

For the A0 (1) model, our market price of risk specification coincides with the essentially affine specification,

offering no further generality.

The A1 (1) model is based on the square-root process of Feller (1951). Under this specification, the process

Yt (1) can be expressed as:

dYt (1) =
£
aP1 + bP11 · Yt (1)

¤
dt+

p
Yt (1)dW

P
t (1) (2.21)

where WP
t (1) is a standard Brownian motion under the objective measure P . Note that the squared diffusion

term may be taken to be Yt itself, rather than some affine function of Yt, by an appropriate change of variables,

as described above. Existence of such a process requires only that aP1 ≥ 0. Yt (1) is bounded below by zero;

this state variable cannot achieve its boundary value if 2aP1 ≥ 1. Under the measure Q, the process Yt (1) can

be written as:

dYt (1) =
h
a
Q
1 + b

Q
11 · Yt (1)

i
dt+

p
Yt (1)dW

Q
t (1) (2.22)

whereWQ
t (1) is a standard Brownian motion under the measure Q. The market price of risk process is defined

as:

Λt = [σ (Yt)]
−1 £

µP (Yt)− µQ (Yt)
¤
=

aP1 − a
Q
1p

Yt (1)
+
³
bP11 − bQ11

´
·
p

Yt (1) ≡ λ10p
Yt (1)

+ λ11 ·
p

Yt (1) (2.23)

The completely affine and essentially affine specifications coincide for the A1 (1) model; in both, the λ11

parameter can take any arbitrary value, but the λ10 parameter is restricted to be zero. For each value of λ11,

the Novikov criterion is satisfied for some finite positive time horizon. We permit λ10 to take on any value

such that boundary non-attainment conditions are satisfied under Q as well as P . This requirement can be

expressed as:

λ10 ≤ aP1 −
1

2
(2.24)

7



It is unclear whether this specification satisfies the traditional Novikov and Kazamaki criteria; in Section 3,

we use another method to show that it satisfies Equation 2.13.

2.2 Two Factor Models

Two-factor affine yield models have an interest rate process given by:

rt = d0 + d1 · Yt (1) + d2 · Yt (2) (2.25)

where the process followed by Yt (1) and Yt (2) falls into one of three categories: the A0 (2), A1 (2), and A2 (2)

families. The P -measure dynamics for the A0 (2) model are:

d

 Yt (1)

Yt (2)

 =
 bP11 bP12

bP21 bP22

 Yt (1)

Yt (2)

dt+ d

 WP
t (1)

WP
t (2)

 (2.26)

These dynamics reflect any change of variables necessary to ensure that the matrix σ (Yt) is identity, and the

constant terms in the drifts of the state variables are zero. Even with these normalizations, however, the A0 (2)

representation is not unique, as a new set of state variables can be formed by taking any orthogonal rotation of

the old state variables. Dai and Singleton (2000) choose the identification restriction bP12 = 0, which guarantees

uniqueness whenever the two normalized processes are not independent, i.e., when the normalization does not

also cause the bP21 parameter to be zero. If the normalization causes both bP12 and bP12 to be zero, then a

reordering of the state variable indices is also possible. This method of normalization also precludes b matrices

with eigenvalues that are complex conjugate pairs.4 Under the measure Q, the process followed by Yt is given

by:

d

 Yt (1)

Yt (2)

 =
 a

Q
1

aQ2

+
 b

Q
11 b

Q
12

bQ21 bQ22

 Yt (1)

Yt (2)

 dt+ d

 W
Q
t (1)

WQ
t (2)

 (2.27)

No parameter restrictions are needed to ensure the existence of the process, or of the Q measure. Furthermore,

there are no boundaries, and therefore no boundary non-attainment conditions. The market price of risk

specification is:

Λt = [σ (Yt)]
−1 £

µP (Yt)− µQ (Yt)
¤

(2.28)

=

−
 aQ1

a
Q
2

+
 bP11 − bQ11 bP12 − bQ12

bP21 − b
Q
21 bP22 − b

Q
22

 Yt (1)

Yt (2)

 (2.29)

≡
 λ10

λ20

+
 λ11 λ12

λ21 λ22

 Yt (1)

Yt (2)

 (2.30)

4Depending on the number and the maturities of the bond yields observed, there may be identification issues when some of

the eigenvalues of the slope matrix in the drift are complex. See Beaglehole and Tenney (1991).
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The completely affine market price of risk specifications restricts λ11, λ12, λ21, and λ22 to be zero. The

essentially affine specification relaxes these restrictions, and allows all six market price of risk parameters to

take on arbitrary values. Both of these specifications satisfy the Novikov criterion for a finite positive time

interval, thereby ensuring that the specified Q measure exists and is equivalent to P . For the A0 (2) model,

our specification coincides with the essentially affine market price of risk, offering no further flexibility.

The P measure dynamics of the A1 (2) model are given by:

d

 Yt (1)

Yt (2)

 =

 aP1

0

+
 bP11 0

bP21 bP22

 Yt (1)

Yt (2)

 dt (2.31)

+

 p
Yt (1) 0

0
p

α2 + β21Yt (1)

d

 WP
t (1)

WP
t (2)


where α2 ∈ {0, 1}. Existence of this process requires that aP1 ≥ 0 and β21 ≥ 0. The process Yt (1) is bounded

below by zero; the additional restriction 2aP1 ≥ 1 is needed to ensure that Yt (1) does not achieve the boundary

value. The dynamics under the measure Q for the A1 (2) model are given by:

d

 Yt (1)

Yt (2)

 =

 a
Q
1

a
Q
2

+
 b

Q
11 0

b
Q
21 b

Q
22

 Yt (1)

Yt (2)

dt (2.32)

+

 p
Yt (1) 0

0
p

α2 + β21Yt (1)

 d

 W
Q
t (1)

W
Q
t (2)


Note that both bP12 and bQ12 are constrained to be zero. In the A0 (2) model, the constraint on bP12 is to

ensure identification, and for the essentially affine market price of risk specifications, there is no corresponding

restriction under the Q measure. By contrast, the restriction here is for existence of the process under the

P measure, and for the existence of the Q measure. Intuitively, the drift of Yt (1) cannot depend on Yt (2),

since Yt (2) can take on any value, positive or negative, whereas Yt (1) is nonnegative. A non-zero value for

bP12 would give the drift of Yt (1) the wrong sign sometimes, allowing the process to be pulled onto the wrong

side of the boundary. This restriction must therefore be imposed under both measures.

The market price of risk process is given by:

Λt = [σ (Yt)]
−1 £

µP (Yt)− µQ (Yt)
¤

(2.33)

=

 (aP
1 −aQ

1 )√
Yt(1)

+
³
bP11 − b

Q
11

´p
Yt (1)

(−aQ
2 )+(b

P
21−bQ21)Yt(1)+(bP22−bQ22)Yt(2)√

α2+β21Yt(1)

 (2.34)

≡

 λ10√
Yt(1)

+ λ11
p

Yt (1)

λ20+λ21Yt(1)+λ22Yt(2)√
α2+β21Yt(1)

 (2.35)

Previous studies of affine yield models have all imposed some restrictions on the market price of risk parameters

of the A1 (2) model. The completely affine market price of risk allows λ11, λ20 and λ21 to be non-zero, but

9



requires λ20 and λ21 to satisfy β21λ20 = λ21α2, so only two parameters can be chosen independently. In

essentially affine models, all parameters except λ10 can be non-zero.5 Both of these specifications satisfy the

Novikov criterion at least for some finite positive time interval. We permit all parameters to be non-zero,

requiring only that boundary non-attainment conditions for Yt are satisfied under the measure Q. This holds

if:

λ10 ≤ aP1 −
1

2
(2.36)

When λ10 is non-zero, it is unclear whether this specification satisfies the Novikov or the Kazamaki criterion.

The dynamics under the measure P of the A2 (2) model are given by:

d

 Yt (1)

Yt (2)

 =
 aP1

aP2

+
 bP11 bP12

bP21 bP22

 Yt (1)

Yt (2)

 dt+

 p
Yt (1) 0

0
p

Yt (2)

d

 WP
t (1)

WP
t (2)

 (2.37)

with existence constraints aP1 ≥ 0, aP2 ≥ 0, bP12 ≥ 0, and bP21 ≥ 0. Both state variables are bounded below
by zero; boundary non-attainment conditions are 2aP1 ≥ 1 and 2aP2 ≥ 1. The diagonal form of the diffusion

matrix is a result of the normalization procedure; apart from a reordering of indices, each A2 (2) model has a

unique representation. Dynamics under the measure Q are given by:

d

 Yt (1)

Yt (2)

 =
 a

Q
1

a
Q
2

+
 b

Q
11 b

Q
12

b
Q
21 b

Q
22

 Yt (1)

Yt (2)

 dt+

 p
Yt (1) 0

0
p

Yt (2)

d

 W
Q
t (1)

W
Q
t (2)

 (2.38)

The market price of risk process is defined as:

Λt = [σ (Yt)]
−1 £

µP (Yt)− µQ (Yt)
¤

(2.39)

=

 (aP
1 −aQ

1 )+(b
P
11−bQ11)Yt(1)+(bP12−bQ12)Yt(2)√

Yt(1)

(aP
2 −aQ

2 )+(b
P
21−bQ21)Yt(1)+(bP22−bQ22)Yt(2)√

Yt(2)

 (2.40)

≡

 λ10+λ11Yt(1)+λ12Yt(2)√
Yt(1)

λ20+λ21Yt(1)+λ22Yt(2)√
Yt(2)

 (2.41)

Completely affine and essentially affine market price of risk specifications coincide for the A2 (2) model. In

both, only the λ11 and λ22 parameters can be non-zero. This specification satisfies the Novikov criterion for a

finite positive time interval (which depends on the model parameters). By contrast, our specification permits

all six parameters to be non-zero, with only the boundary non-attainment conditions under the measure Q

5 It should be noted that neither Dai and Singleton (2000) nor Duffee (2002) permit α2 = 0.
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restricting their values. These conditions are more complex than in the A1 (2) model:

λ10 ≤ aP1 −
1

2
(2.42)

λ20 ≤ aP2 −
1

2
(2.43)

λ12 ≤ bP12 (2.44)

λ21 ≤ bP21 (2.45)

This specification cannot easily be shown to satisfy either the Novikov and Kazamaki criteria for any finite

positive time interval.

2.3 Three Factor Models

There are four distinct families of three-factor affine yield models: the A0 (3), A1 (3), A2 (3), and A3 (3)models.

In all four, the interest rate process is given by:

rt = d0 + d1 · Yt (1) + d2 · Yt (2) + d3 · Yt (3) (2.46)

Under the A0 (3) model, the state variables follow the process:

d


Yt (1)

Yt (2)

Yt (3)

 =


bP11 bP12 bP13

bP21 bP22 bP23

bP31 bP32 bP33




Yt (1)

Yt (2)

Yt (3)

dt+ d


WP

t (1)

WP
t (2)

WP
t (3)

 (2.47)

An A0 (3) model does not have a unique representation unless additional constraints are imposed, since the

state variables can be changed through orthogonal rotation. Dai and Singleton (2000) use the identifying

restrictions bP12 = 0, bP13 = 0, and bP23 = 0; however, this approach precludes a b matrix with complex

eigenvalues. The dynamics of the state variables under the measure Q can be expressed as:

d


Yt (1)

Yt (2)

Yt (3)

 =



a
Q
1

aQ2

a
Q
3

+


b
Q
11 b

Q
12 b

Q
13

bQ21 bQ22 bQ23

b
Q
31 b

Q
32 b

Q
33




Yt (1)

Yt (2)

Yt (3)


dt+ d


W

Q
t (1)

WQ
t (2)

W
Q
t (3)

 (2.48)

The market price of risk process is defined as:

Λt = [σ (Yt)]
−1 £

µP (Yt)− µQ (Yt)
¤

(2.49)

=

−


a
Q
1

a
Q
2

a
Q
3

+


bP11 − b
Q
11 bP12 − b

Q
12 bP13 − b

Q
13

bP21 − b
Q
21 bP22 − b

Q
22 bP23 − b

Q
23

bP31 − b
Q
31 bP32 − b

Q
32 bP33 − b

Q
33




Yt (1)

Yt (2)

Yt (3)


 (2.50)

≡


λ10

λ20

λ30

+


λ11 λ12 λ13

λ21 λ22 λ23

λ31 λ32 λ33




Yt (1)

Yt (2)

Yt (3)

 (2.51)
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As with the A0 (1) and A0 (2) models, the completely affine market price of risk specification restricts the

slope coefficients to be zero; only λ10, λ20, and λ30 can take on non-zero values. By contrast, the essentially

affine specification allows all twelve market price of risk parameters to be non-zero. Both specifications satisfy

the Novikov and Kazamaki criteria for some positive finite time interval. Our specification coincides with the

essentially affine specification, offering no further generality for the A0 (3) model.

In the A1 (3) model, the state variables follow the process:

d


Yt (1)

Yt (2)

Yt (3)

 =




aP1

0

0

+


bP11 0 0

bP21 bP22 bP23

bP31 bP32 bP33




Yt (1)

Yt (2)

Yt (3)


dt (2.52)

+


p

Yt (1) 0 0

0
p

α2 + β21Yt (1) 0

0 0
p

α3 + β31Yt (1)

d


WP

t (1)

WP
t (2)

WP
t (3)


with α2,α3 ∈ {0, 1}. Existence imposes the restrictions aP1 ≥ 0, β21 ≥ 0, and β31 ≥ 0. The first state variable
is bounded below by zero, and non-attainment of the boundary requires 2aP1 ≥ 1. The dynamics under the
measure Q are:

d


Yt (1)

Yt (2)

Yt (3)

 =




a
Q
1

aQ2

a
Q
3

+


b
Q
11 0 0

bQ21 bQ22 bQ23

b
Q
31 b

Q
32 b

Q
33




Yt (1)

Yt (2)

Yt (3)


 dt (2.53)

+


p

Yt (1) 0 0

0
p

α2 + β21Yt (1) 0

0 0
p

α3 + β31Yt (1)

d


W

Q
t (1)

W
Q
t (2)

W
Q
t (3)


The market price of risk process is given by:

Λt = [σ (Yt)]
−1 £

µP (Yt)− µQ (Yt)
¤

(2.54)

=


(aP

1 −aQ
1 )√

Yt(1)
+
³
bP11 − b

Q
11

´
·pYt (1)

(−aQ
2 )+(b

P
21−bQ21)·Yt(1)+(bP22−bQ22)·Yt(2)+(bP23−bQ23)·Yt(3)√

α2+β21Yt(1)

(−aQ
3 )+(b

P
31−bQ31)·Yt(1)+(bP32−bQ32)·Yt(2)+(bP33−bQ33)·Yt(3)√

α3+β31Yt(1)

 (2.55)

≡


λ10√
Yt(1)

+ λ11 ·
p

Yt (1)

λ20+λ21·Yt(1)+λ22·Yt(2)+λ23·Yt(3)√
α2+β21Yt(1)

λ30+λ31·Yt(1)+λ32·Yt(2)+λ33·Yt(3)√
α3+β31Yt(1)

 (2.56)

Although the λ11, λ20, λ21, λ30, and λ31 parameters can be non-zero in the completely affine specification,

these parameters must also satisfy the constraints α2λ21 = β21λ20 and α3λ31 = β31λ30. The essentially

affine specification relaxes these restrictions, but still requires that the λ10 parameter be zero. We relax this
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constraint also, requiring only that λ10 be such that the boundary non-attainment condition is satisfied under

the measure Q as well. This condition is satisfied if:

λ10 ≤ aP1 −
1

2
(2.57)

When λ10 is not zero, it is unclear whether the Novikov and Kazamaki criteria are satisfied.

The A2 (3) model has dynamics as follows:

d


Yt (1)

Yt (2)

Yt (3)

 =




aP1

aP2

0

+


bP11 bP12 0

bP21 bP22 0

bP31 bP32 bP33




Yt (1)

Yt (2)

Yt (3)


 dt (2.58)

+


p

Yt (1) 0 0

0
p

Yt (2) 0

0 0
p

α3 + β31Yt (1) + β32Yt (2)

d


WP

t (1)

WP
t (2)

WP
t (3)


with α3 ∈ {0, 1}. Existence considerations require aP1 ≥ 0, aP2 ≥ 0, bP12 ≥ 0, bP21 ≥ 0, β31 ≥ 0, and β32 ≥ 0.
The boundary is not attained if 2aP1 ≥ 1 and 2aP2 ≥ 1
The dynamics under the measure Q are given by:

d


Yt (1)

Yt (2)

Yt (3)

 =




a
Q
1

a
Q
2

a
Q
3

+


b
Q
11 b

Q
12 0

b
Q
21 b

Q
22 0

b
Q
31 b

Q
32 b

Q
33




Yt (1)

Yt (2)

Yt (3)


dt (2.59)

+


p

Yt (1) 0 0

0
p

Yt (2) 0

0 0
p

α3 + β31Yt (1) + β32Yt (2)

 d


W

Q
t (1)

W
Q
t (2)

W
Q
t (3)


The market price of risk process is given by:

Λt = [σ (Yt)]
−1 £

µP (Yt)− µQ (Yt)
¤

(2.60)

=


(aP

1 −aQ
1 )+(b

P
11−bQ11)·Yt(1)+(bP12−bQ12)·Yt(2)√

Yt(1)

(aP
2 −aQ

2 )+(b
P
21−bQ21)·Yt(1)+(bP22−bQ22)·Yt(2)√

Yt(2)

(−aQ
3 )+(b

P
31−bQ31)·Yt(1)+(bP32−bQ32)·Yt(2)+(bP33−bQ33)·Yt(3)√

α3+β31Yt(1)+β32Yt(2)

 (2.61)

≡


λ10+λ11·Yt(1)+λ12·Yt(2)√

Yt(1)

λ20+λ21·Yt(1)+λ22·Yt(2)√
Yt(2)

λ30+λ31·Yt(1)+λ32·Yt(2)+λ33·Yt(3)√
α3+β31Yt(1)+β32Yt(2)

 (2.62)

In the completely affine market price of risk specification, five of the parameters (λ11, λ22, λ30, λ31, and

λ32) can be non-zero; however, there are only three degrees of freedom, since the restrictions β31β32λ30 =

α3β32λ31 = α3β31λ32 are also imposed. The essentially affine specification relaxes these restrictions, but still
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requires that λ10, λ12, λ20, and λ21 be zero. We further relax these restrictions, and allow all parameters to

take any values such that boundary non-attainment conditions are satisfied under both Q as well as P :

λ10 ≤ aP1 −
1

2
(2.63)

λ20 ≤ aP2 −
1

2
(2.64)

λ12 ≤ bP12 (2.65)

λ21 ≤ bP21 (2.66)

The A3 (3) model has dynamics:

d


Yt (1)

Yt (2)

Yt (3)

 =




aP1

aP2

aP3

+


bP11 bP12 bP13

bP21 bP22 bP23

bP31 bP32 bP33




Yt (1)

Yt (2)

Yt (3)


 dt (2.67)

+


p

Yt (1) 0 0

0
p

Yt (2) 0

0 0
p

Yt (3)

d


WP

t (1)

WP
t (2)

WP
t (3)


Existence considerations require aP1 ≥ 0, aP2 ≥ 0, aP3 ≥ 0, bP12 ≥ 0, bP13 ≥ 0, bP21 ≥ 0, bP23 ≥ 0, bP31 ≥ 0,

and bP32 ≥ 0. All three state variables are bounded below by zero, with boundary non-attainment conditions
2aP1 ≥ 1, 2aP2 ≥ 1, and 2aP3 ≥ 1. Under the measure Q, the state variables follow the dynamics:

d


Yt (1)

Yt (2)

Yt (3)

 =




a
Q
1

a
Q
2

a
Q
3

+


b
Q
11 b

Q
12 b

Q
13

b
Q
21 b

Q
22 b

Q
23

b
Q
31 b

Q
32 b

Q
33




Yt (1)

Yt (2)

Yt (3)


dt (2.68)

+


p

Yt (1) 0 0

0
p

Yt (2) 0

0 0
p

Yt (3)

d


WQ

t (1)

W
Q
t (2)

W
Q
t (3)


The market price of risk process is given by:

Λt = [σ (Yt)]
−1 £

µP (Yt)− µQ (Yt)
¤

(2.69)

=


(aP

1 −aQ
1 )+(b

P
11−bQ11)·Yt(1)+(bP12−bQ12)·Yt(2)+(bP13−bQ13)·Yt(3)√

Yt(1)

(aP
2 −aQ

2 )+(b
P
21−bQ21)·Yt(1)+(bP22−bQ22)·Yt(2)+(bP23−bQ23)·Yt(3)√

Yt(2)

(aP
3 −aQ

3 )+(b
P
31−bQ31)·Yt(1)+(bP32−bQ32)·Yt(2)+(bP33−bQ33)·Yt(3)√

Yt(3)

 (2.70)

≡


λ10+λ11·Yt(1)+λ12·Yt(2)+λ13·Yt(3)√

Yt(1)

λ20+λ21·Yt(1)+λ22·Yt(2)+λ23·Yt(3)√
Yt(2)

λ30+λ31·Yt(1)+λ32·Yt(2)+λ33·Yt(3)√
Yt(3)

 (2.71)

Both the completely affine and essentially affine market price of risk specifications allow only the λ11, λ22,
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and λ33 parameters to be non-zero. By contrast, we allow all twelve market price of risk parameters to be

non-zero, requiring only that, as usual, the boundary non-attainment condition is satisfied under the measure

Q:

λ10 ≤ aP1 −
1

2
(2.72)

λ20 ≤ aP2 −
1

2
(2.73)

λ30 ≤ aP3 −
1

2
(2.74)

λ12 ≤ bP12 (2.75)

λ13 ≤ bP13 (2.76)

λ21 ≤ bP21 (2.77)

λ23 ≤ bP23 (2.78)

λ31 ≤ bP31 (2.79)

λ32 ≤ bP32 (2.80)

As with the other models in which our specification is more general than traditional specifications, it is unclear

whether the Novikov and Kazamaki criteria are satisfied.

3 Absence of Arbitrage

The relation between absence of arbitrage and existence of an equivalent martingale measure is well-known.

The foundational work of Harrison and Kreps (1979) and Harrison and Pliska (1981) has been extended by

many, such as Delbaen and Schachermayer (1994) and Delbaen and Schachermayer (1998). However, the

standard techniques used to demonstrate the existence of an equivalent probability measure do not work well

with our extended market price of risk specification. For example, it is not clear whether the Novikov and

Kazamaki criteria are satisfied. As a restricted state variable approaches its boundary value, the extended

affine specification allows the market price of risk of that state variable to grow (positively or negatively)

without bound. Simply being unbounded is not necessarily a problem; for example, the standard market

price of risk specification in the model of Cox, Ingersoll, and Ross (1985) grows without bound as the interest

rate becomes very large. However, the market price of risk in this model, although unbounded, grows slowly

enough with increasing interest rates to allow application of the Novikov and Kazamaki criteria. The extended

affine market price of risk grows more quickly near the zero boundary than traditional specifications do near

the infinity boundary. We must therefore take another approach, for instance, that of Cheridito, Filipovíc,

and Yor (2003), to demonstrate that our specification precludes arbitrage opportunities.

Theorem 1. Let µP (·), µQ (·), and σ (·) be functions of the form specified in Equations 2.3, 2.6, and 2.4,

respectively, such that both pairs (µP , σ) and (µQ, σ) satisfy the existence conditions 2.8 through 2.10 and

boundary non-attainment conditions. Then the following three statements hold:
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(a) There exists a probability space (Ω,F , P ) containing a Brownian motion (WP
t )t≥0 such that for each

Y0 ∈ D, there exists a stochastic process (Yt)t≥0 on (Ω,F , P ) satisfying:

Yt = Y0 +

Z t

0

µP (Ys)ds+

Z t

0

σ(Ys)dW
P
s , t ≥ 0 (3.1)

(b) The distribution of (Yt)t≥0 under P is unique.

(c) For each T > 0, there exists a measure Q equivalent to P such that:

Yt = Y0 +

Z t

0

µQ (Ys) ds+

Z t

0

σ (Ys) dW
Q
s , t ∈ [0, T ] (3.2)

where (WQ
t )t∈[0,T ] is a Brownian motion under Q.

Proof: See Appendix.

The term structure literature, from the first use of the square-root process in Cox, Ingersoll, and Ross

(1985) until recent work by Duffee (2002), quite explicitly avoids market price of risk specifications that do

not go to zero as the volatility of the corresponding state variable goes to zero. Theorem 1 demonstrates that

this restriction can be relaxed, provided the parameters of the model do not permit attainment of the boundary

under either probability measure. In this case, the market price of risk can become arbitrarily large; however,

since the boundary is not achieved, it always remains finite. If the boundary non-attainment conditions are

satisfied under one of the P or the Q measures, but not the other, then the two measures cannot (obviously)

be equivalent. In this case, the measure under which the boundary cannot be achieved is absolutely continuous

with respect to the measure under which the boundary can be achieved. However, absolute continuity is not

sufficient to preclude arbitrage opportunities.

From Theorem 1, we can construct arbitrage-free models simply by ensuring that the existence and bound-

ary non-attainment conditions are satisfied under both measures. This result allows considerable flexibility,

especially when there are several square-root type state variables in a model. The dynamics of a square-root

type variable (we drop the superscript notation indicating the measure for purposes of this example) in a

canonical affine diffusion are given by:

dYt = (a1 + b11Yt) dt+
p

YtdWt (3.3)

Traditional market price of risk specifications permit only the slope coefficient, b11, to differ under the two

probability measures. Our specification allows both the slope and constant terms, a1 and b11, to differ,

provided 2a1 ≥ 1 under both measures. With two square-root type variables, the dynamics are:

dYt =

 a1

a2

+
 b11 b12

b21 b22

Yt

 dt+

 p
Yt (1) 0

0
p

Yt (2)

d

 Wt (1)

Wt (2)

 (3.4)

Traditional market price of risk specifications permit only b11 and b22 to change under the two measures; our

specification permits all six drift parameters to change, provided b12 ≥ 0 and b21 ≥ 0 (for existence), and
2a1 > 1 and 2a2 > 1 (for boundary non-attainment). The extended affine market price of risk specification
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therefore provides one additional degree of freedom with one square-root type variable, four additional degrees

of freedom with two, nine additional degrees of freedom with three, etc.

4 Estimation Procedure

To determine whether our extended market price of risk specification results in a better fit to US data, we

estimate the parameters of nine affine yield models (all families of affine yield models with three or fewer state

variables) using three different market price of risk specifications: the completely affine specification of Dai and

Singleton (2000), the essentially affine specification of Duffee (2002), and our extended affine specification.

Although our specification always nests the corresponding essentially affine models, and essentially affine

models always nest completely affine models, two of the three specifications sometimes coincide. For any

A0 (N) affine yield model, our specification and the essentially affine specification coincide, and for any AN (N)

affine yield model, the essentially affine and completely affine models are the same. Therefore, although there

are nine different families of models with three market price of risk specifications for each family, there are

only twenty one distinct combinations to be estimated.

Our estimation approach is maximum likelihood, using yields on US Treasury securities from the data

set of McCulloch and Kwon (1993). Apart from its efficiency, use of maximum likelihood estimation makes

it straightforward to calculate likelihood ratio statistics to test the significance of our extension. However,

maximum likelihood estimation in a multifactor setting with a state vector that is not directly observed

presents some challenges that must be overcome.

The state variables of the canonical affine diffusion are not observed directly, but must be extracted from the

observed term structure of bond prices or yields. We denote by y (Yt, t, T ) the time t continuously-compounded

annualized yield of a zero coupon bond maturing at time T , with the value of the state vector equal to Yt. As

per Duffie and Kan (1996), such yields are affine functions of the state vector:
y (Yt, t, T1)

...

y (Yt, t, Tm)

 =


A (T1 − t)
...

A (Tm − t)

+


B1 (T1 − t) · · · BN (T1 − t)
...

. . .
...

B1 (Tm − t) · · · BN (Tm − t)

Yt (4.1)

where y (Yt, t, T ) denotes the time t yield of a zero coupon bond maturing at time T , and A (.) and B1 (.)

through BN (.) are deterministic functions that depend on the parameters of the Q-measure dynamics of the

state variables, and on the parameters of the interest rate process. One is immediately confronted with a

dilemma. If fewer bond prices are observed than state variables in the model, it is not possible to determine

the exact value of the state vector at any particular time. Estimation then becomes a filtering problem; the

likelihood of the next observation depends not only on the currently observed bond prices, but possibly on

the entire history. However, if more bond prices are observed than the number of state variables in the model,

the observed prices will generally be inconsistent with any value of the state vector. The values of the state

variables can normally be inferred from an equal number of bond prices, and the remaining bond prices are

then predicted exactly, without any error. In practice, no dataset ever conforms to a structural model this
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strictly.

It would seem that the ideal solution would be to use a number of bond prices that is equal to the number

of state variables; in this way, for each time series observation of the set of bond yields, the value of the

state vector can be uniquely determined. However, in general, not all of the parameters of the model will be

identified. To take a simple example, consider the A0 (1) model, which is equivalent to the model of Vasicek

(1977). If one observes only the instantaneous interest rate (which we may consider to be the yield on a

zero-maturity zero-coupon bond), we find the interest rate follows the process:

drt =
¡−bP11d0 + bP11rt

¢
dt+ d1dW

P
t (1) (4.2)

The market price of risk parameters (whichever specification we choose) do not affect the observed interest

rate process, and are therefore not identified. The situation does not improve if we observe instead a bond

with maturity greater than zero; in this case, we may identify d0 or a single market price of risk parameter,

but not both. Similarly, even if the simplest market price of risk restriction is chosen (i.e., the completely

affine market price of risk) in an A0 (N) model with N > 1, a single parameter is always unidentified.

One way to overcome this difficulty is to collect data on more bonds than state variables, but to assume

that some of the bond yields are observed with error; see, for example, Pearson and Sun (1994). We take this

approach, assuming that for the AM (N) model, N yields are observed without error, but some additional

bonds are observed with a Gaussian i.i.d. series of errors. The error terms are mean zero, and the error for

each maturity is uncorrelated with those of other maturities. An alternate approach, in which all yields are

considered observed with error, is described in Brandt and He (2002).

We also have need of the transition density of the state vector Yt. This density is needed not only to

calculate the estimates themselves, but also to calculate standard errors of the estimates, and to perform

likelihood ratio tests for the different market price of risk specifications. For four of the nine models we

consider (specifically, the A0 (1), the A0 (2), the A0 (3), and the A1 (1) models), the likelihood function is

known in closed-form. For the five remaining models (i.e., the A1 (2), A2 (2), A1 (3), A2 (3), and A3 (3)

models), the likelihood function is known in closed-form only if additional parameter restrictions are imposed.

These restrictions apply under the objective probability measure (i.e., there is no need to calculate likelihoods

under the equivalent martingale measure), and can be placed into three categories. First, the β parameters

corresponding to the unrestricted state variables in the diffusion matrix must be zero; in other words, the

volatility of an unrestricted state variable must be constant. Second, the drift of an unrestricted state variable

cannot depend on the values of restricted variables. Finally, the drift of one restricted state variable cannot

depend on the value of another restricted state variable. We impose these restrictions in order to allow

estimation, and calculation of likelihood ratio statistics, using the exact closed-form likelihood function. The

estimated models are therefore less general than those that can be estimated using other methods, such as the

method of moments of Dai and Singleton (2000), the quasi-maximum likelihood approach of Duffee (2002),

or the approximate maximum likelihood approach of Aït-Sahalia (2001), as implemented in Aït-Sahalia and

Kimmel (2002). However, the same restrictions are imposed for all market price of risk specifications; since

our purpose is to test different specifications with the data, the likelihood ratio tests are still fair comparisons.
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Parameter restrictions needed to ensure a closed-form likelihood function are imposed under the P measure.

Analogous restrictions under the Q measure would also ensure closed-form bond prices. With the completely

affine market price of risk specification, the one implies the other. However, for the more general market

price of risk specifications we consider, this is not necessarily the case. Consequently, we cannot rely on the

existence of closed-form bond prices. However, one of the main advantages of affine yield models is that, even

when bond prices cannot be found in closed-form, they can be found numerically through very fast algorithms.

Bond prices are solutions to the Feynman-Kac partial differential equation; provided a diffusion is affine under

the Q measure and the interest rate is an affine function of the state variables, this partial differential equation

can be decomposed into a system of ordinary differential equations, which can be solved far more rapidly

than a general parabolic partial differential equation of the same dimensionality.6 We calculate bond prices

numerically, even when the market price of risk specification is sufficiently constrained to allow closed-form

bond prices. Since our purpose is to compare different market price of risk specifications, use of the same

method to calculate bond prices ensures that any differences found are due to the specification itself, and not

the computational method used in the estimation procedure.

As discussed in Duffie and Kan (1996) and as shown in Equation 4.1, bond yields in affine yield models

are affine functions of the state variables; this is the case for all three market price of risk specifications we

consider. Our estimation procedure for an AM (N) model is then as follows. For a particular value of the

parameter vector (in addition to the parameters of the AM (N) model, this vector includes standard deviations

of observation errors for any extra bonds, σN+1 through σK), we numerically calculate the coefficients of

bond yields from Equation 4.1 for N maturities, y (Yt, t, T1) through y (Yt, t, TN ). We use rolling maturities

throughout, i.e., the value of Ti − t is held fixed, not the value of Ti itself. The bond pricing formula, being

affine in Yt, is easily inverted to find the value of the state variables for each time series observation of the N

bond yields. Holding the model parameters fixed, the state variables are given by:

Yt =


B1 (T1 − t) · · · BN (T1 − t)

...
. . .

...

B1 (TN − t) · · · BN (TN − t)


−1 

y (Yt, t, T1)−A (T1 − t)
...

y (Yt, t, TN )−A (TN − t)

 (4.3)

The time series values of Yt (conditional on the current choice of the parameter vector) in hand, we calculate the

joint likelihood of the implied time series of observations of the state vector, using the closed-form likelihood

expressions. If any of the implied values of the restricted components of Yt (i.e., the first M elements in

the AM (N) model) are on the wrong side of the boundary, the joint likelihood of the entire time series is

set to zero.7 Using the change of variables formula, we then calculate the joint likelihood of the time series

of observations of the N bond yields themselves (note that, for a given value of the parameter vector, the

6The numeric tractability of bond pricing depends only on affinity under the measure Q, continuing to hold even if the state

variable dynamics are not affine under P .
7Use of maximum likelihood ensures that the estimated parameter values are consistent with the observed data. Duffee (2002)

points out that not all estimation techniques have this property; the estimated parameter vector for such techniques may imply

that the observed time series of bond yields could not have occurred.
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determinant of the Jacobian matrix does not depend on the values of the state variables):

Ly




y (Yt, t, T1)
...

y (Yt, t, TN)

 |


y (Yt−∆, t−∆, T1 −∆)
...

y (Yt−∆, t−∆, TN −∆)


 =

LY (Yt | Yt−∆)¯̄̄̄
¯̄̄̄
¯


B1 (T1 − t) · · · BN (T1 − t)

...
. . .

...

B1 (Tm − t) · · · BN (Tm − t)


¯̄̄̄
¯̄̄̄
¯

(4.4)

where Ly (·) and LY (·) denote the transition likelihoods for the yield vector and the vector of state vari-
ables Yt, respectively. Finally, we calculate the implied observation errors for the additional bond yields

y (Yt, t, TN+1) , ..., y (Yt, t, TK):
ε (t, TN+1)

...

ε (t, TK)

 =


y (Yt, t, TN+1)

...

y (Yt, t, TK)

− (4.5)




A (TN+1 − t)
...

A (TK − t)

−


B1 (TN+1 − t) · · · BN (TN+1 − t)
...

. . .
...

B1 (TK − t) · · · BN (TK − t)

Yt

 (4.6)

and multiply the likelihood of the time series of the first N bond yields by the likelihood function for these

observation errors (which, as per the previous discussion, are assumed to be Gaussian mean zero and i.i.d.).

The result is the joint likelihood of the panel of bond data, including the maturities assumed to be observed

with error. We repeat this procedure for many values of the parameter vector, until the parameter vector that

maximizes the value of the likelihood function is discovered. Our search procedure is the Nelder-Mead simplex

search.

Many search algorithms perform poorly when there are hard parameter constraints. Particularly trouble-

some in estimation of affine yield models is the boundary non-attainment condition for the restricted state

variables (which are, of course, our primary interest). As shown in Feller (1951), the conditional likelihood of

the square root process (conditional on a past observation) goes to zero near the boundary when the boundary

non-attainment condition is satisfied. When the boundary non-attainment inequality is not satisfied, the like-

lihood either goes to positive infinity near the boundary, or to a finite non-zero value. This strong sensitivity

of the likelihood to small changes in model parameters confuses many search algorithms. Consequently, we

employ several normalizations to the model parameters to make the likelihood depend on them more smoothly.

For example, in the A1 (1) model, we replace aP1 by:

cP1 =
q

aP1 − 0.5 (4.7)

Maximum likelihood estimation is invariant to the particular parameterization chosen, so this change of pa-

rameters does not affect the estimated model. However, despite this convenient normalization, all parameter

estimates, standard errors, etc. are reported in terms of the original model parameters.
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5 Results

The estimated parameters of the nine affine yield models considered are shown in Tables 1 through 9. As

discussed, the extended affine specification is more general than the essentially affine specification of Duffee

(2002) in six of the nine models, but all nine are shown for completeness. For each AM (N) model, we use

N + 4 zero coupon bonds maturing at two year intervals, e.g., for the A1 (2) model, we use the instantaneous

interest rate (i.e., the limiting value of the yield of a zero-coupon bond as the time-to-maturity decreases to

zero) and zero-coupon bond yields with maturities of 2, 4, 6, 8, and 10 years. Each model is estimated with

the completely affine, essentially affine, and extended affine market price of risk specifications. Likelihood

ratio tests comparing the different market price of risk specifications are shown in Table 10.

For the A0 (1), A0 (2), and A0 (3) models, the extended affine market price of risk coincides with the

essentially affine specification. The strong likelihood ratio statistic for the essentially affine specification,

relative to the completely affine specification, for each of these three models confirms the improved fit of the

essentially affine specification found by Duffee (2002). However, our primary interest is in those cases where

the extended specification is strictly more flexible than the essentially affine specification, which is the case

for AM (N) models with M > 0.

When M = 1, the likelihood ratio statistics indicate that the extended specification is statistically signif-

icant at the 95% level only for the A1 (1) model. As shown in Table 1, the completely affine and essentially

affine specifications coincide, and both estimate the aP1 parameter (i.e., the constant term in the drift of the

state variable under the P -measure) very close to its limiting value of 0.5. (Recall that the boundary cannot

be attained if aP1 ≥ 0.5.) Since these two specifications do not allow the aP1 and a
Q
1 parameters to differ, the

state variable dynamics are very close to boundary non-attainment under both measures. By contrast, the

extended affine market price of risk specification allows these two parameters to differ. The estimated value

of aP1 is well above the limiting value of 0.5, whereas a
Q
1 remains very close to 0.5. This finding suggests

that there is some tension between modeling the time series behaviour of the interest rate process and the

cross-sectional shape of the yield curve. The time series behaviour of the interest rate is governed by the

P -measure parameters, and the estimated value of aP1 shows that the drift of the interest rate process is strong

enough near its boundary value to keep the probability of being near the boundary very low. By contrast,

the interest rate will have much greater probability of being near the boundary value under the Q-measure,

which is what is used to price bonds. If only the instantaneous interest rate were used in the estimation, the

a
Q
1 parameter would be unidentified; the difference between aP1 and a

Q
1 is therefore at least partly driven by

the need to match the cross-sectional shape of the yield curve, due to the extra bonds (observed with error)

included in the estimation. The likelihood ratio statistic shows that the extended market price of risk speci-

fication is statistically significant (relative to either the completely affine or essentially affine specification) at

the conventional 95% level; the p-value for the statistic is slightly less than 99%.

The A1 (2) model hardly benefits at all from the extended market price of risk specification. The aP1

parameter estimated very close to the limiting value of 0.5 with both the completely affine and essentially

affine market prices of risk, which constrain a
Q
1 to have the same value. The extended market price of risk

allows the aP1 and a
Q
1 parameters to have different values, but both still estimate very close to the limiting
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value of 0.5. The likelihood ratio of 0.66 from Table 10 shows a lack of statistical significance, and is the

result of very small deviations in the values of aP1 and aQ1 from their essentially affine values (the deviations

are too small to show up in the four decimal places shown in Table 4). The A1 (3) model benefits more

from our extension; with the completely affine and essentially affine specifications, aP1 and aQ1 estimate very

close to 0.5. With the extended affine specification, the aQ1 parameter remains stubbornly at 0.5, but the a
P
1

parameter estimates well away from this limiting value, at 1.67. Most of the other parameters are estimated

at very similar values under the essentially and extended affine specifications. As with the A1 (1) model, the

need to model the time series behaviour of the interest rate process and the cross-sectional shape of the yield

curve appear to conflict. When the aP1 and a
Q
1 parameters are constrained to have the same value, the need to

capture the cross-sectional shape of the yield curve wins the struggle. Allowing the two to be different improves

the fit of the model, but not by very much; note the statistically insignificant likelihood ratio statistic from

Table 10 of 2.27.

When a model includes two or more square-root type variables (i.e., an AM (N) model with M ≥ 2),

the story changes dramatically. In all three such models (A2 (2), A2 (3), and A3 (3)), the extended affine

specification has an extremely strong likelihood ratio statistic, relative to either the completely or essentially

affine specifications. Considering only the essentially affine model as a comparison (note that it coincides

with the completely affine model in two of the three cases), the 95% cutoff values are 9.49, 9.49, and 16.92,

respectively, but the likelihood ratio statistics from Table 10 are 379.33, 178.21, and 355.92, respectively. The

A2 (2) model appears to benefit from two effects. First, the aP2 and a
Q
2 parameters are estimated at different

values; these two parameters are constrained to be the same under the other market price of risk specifications.

Second, the cross-terms in the drift are permitted to be different under the P and Q measures, and are indeed

estimated at different values. Of particular interest is that the d2 parameter estimates very close to zero

with the extended affine specification. Since the two state variables are independent under the P measure,

the second state variable has no influence whatsoever on the P -measure dynamics of the interest rate. In

other words, the interest rate is a Markov process under the P measure. The sole impact of the second state

variable is felt through the Q measure dynamics; here, the second state variable does not affect the interest

rate directly, but rather through its influence on the drift of the first state variable (which, at the estimated

parameter vector, is a affine transform of the interest rate). Often, the canonical state variables of an affine

diffusion do not admit simple interpretations; here, the first is essentially the interest rate, and the second is

a stochastic central tendency variable.

In the A2 (3) model, it is clear that the extended affine specification makes a difference in the estimation.

Under the other specifications, the aP1 and a
Q
1 parameters are estimated at 0.5, and the a

P
2 and a

Q
2 parameters

are estimated at a much higher value. Under the extended affine specification, the a
Q
1 and a

Q
2 parameters

are estimated at 0.5, but the aP1 and aP2 parameters are estimated at higher values. The cross-terms in the

drift between square-root state variables (i.e., bQ12 and b
Q
21) are also estimated at non-zero variables. The net

effect is a large likelihood ratio statistic, more than 18 times as large as the 95% cutoff value. Similarly, in the

A3 (3) model, all three of the constant terms in the drift are estimated at very different values under the two

measures; furthermore, several of the cross-terms in the drift are estimated at non-zero values. The net effect
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is a likelihood ratio statistic more than 21 times as large as the 95% cutoff value.

Thus, among the six models for which the extended market price of risk specification is more general

than the essentially affine specification, a few patterns appear to emerge. In AM (N) models with M = 1,

the extended affine parameter estimates are sometimes different from the essentially affine estimates, but the

differences result in a statistically significant likelihood ratio in only one of the three models. The statistical

significance occurs in the A1 (1) model, which has no unrestricted state variables. The extended affine specifi-

cation is always significant relative to the completely affine specification, but the incremental contribution of

the extended specification over the essential specification is much smaller. In neither of the AM (N) models

with M = 1 and N > M is the extended specification significant.

However, for any AM (N) model with M > 1, the extended affine specification is always highly significant.

The parameter estimates suggest that the ability to have differences between the aPi and a
Q
i parameters,

1 ≤ i ≤ M , is important, but allowing the bPij and b
Q
ij parameters, 1 ≤ i, j ≤ M and i 6= j, also appears to

be important. The essentially affine specification of Duffee (2002) improves the fit of affine yield models to

the data by allowing unrestricted state variables to have more flexible market price of risk specifications. Our

extended affine specification does the same thing for restricted state variables. As shown, the extension is

significant for most of the models, and highly significant for those models with two or more restricted state

variables.

6 Conclusion

We have introduced a new market price of risk specification for affine diffusions, shown that this specification

does not offer arbitrage opportunities, and demonstrated that the new specification provides a better fit to US

term structure data than standard specifications for most affine yield models. Our specification is particularly

important for models with two or more restricted state variables, where likelihood ratio statistics for the

extended specification are typically many times the 95% cutoff values. Although each model is different, it

seems that the additional flexibility offered by our specification helps relieve the tension between matching

the time series behaviour of the interest rate process and matching the cross-sectional shape of the yield

curve. The former is determined by the parameters of the interest rate process under the objective probability

measure; the latter is determined by the parameters under an equivalent martingale measure. Traditional

market price of risk specifications for affine diffusions constrain many of the parameters to be the same under

both measures, so that the same parameters must capture both aspects of interest rate and term structure

behaviour. By contrast, our specification allows the parameters under the two measures to differ essentially

arbitrarily, subject only to existence and boundary non-attainment considerations. Rather than having one

set of parameters do two jobs, we have a separate set of parameters for each task. The increased flexibility

seems to result in a dramatically better fit for some models. Note that our results compare different market

price of risk specifications for the same model (e.g., completely, essentially, and extended affine for the A2 (3)

model), but make no comparisons across families of affine yield models (e.g., A1 (2) vs. A2 (3) model). If

the two models are nested, the likelihood ratio tests we apply could also be applied in this manner, provided
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the data set used is the same for both models (i.e., the same zero coupon bond maturities are used). Such a

comparison is necessarily a test of both the underlying models and the observation error specification.

Our technique is limited neither to term structure applications nor to affine models. Stochastic volatility

models of equity prices, such as Heston (1993), often have a volatility state variable that follows a square-root

type process; our specification can readily be applied to such models, allowing a more flexible treatment of

volatility risk. Similarly, multiple country models of interest rates and exchange rates, such as Brandt and

Santa-Clara (2002), have used square-root type processes, and may also benefit from a more flexible market

price of risk. Furthermore, the proof of absence of arbitrage does not depend in any essential way on the affinity

of the drifts, variances, and covariances of the state variables. What is needed is the existence and uniqueness

in distribution of a process with risk-neutral dynamics implied by the market price of risk specification, and

that the state variables do not achieve their boundary values under either measure. Our technique might

therefore be applied to some non-affine models as well.
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7 Appendix

7.1 Proof of Theorem 1

Theorem 1 is a consequence of Theorem 2.7 in Duffie, Filipovíc, and Schachermayer (2003) and Theorem 2.3

in Cheridito, Filipovíc, and Yor (2003). We present a version of the proof adapted to the affine diffusions

considered in this paper.

Parts (a) and (b) follow from Theorem 2.7 in Duffie, Filipovíc, and Schachermayer (2003). To show (c),

we fix Y0 ∈ D and T > 0. Since the pair (µP (.), σ(.)) satisfies the existence and boundary non-attainment

conditions, the market price of risk:

λ(Yt) = σ (Yt)
−1 £

µP (Yt)− µQ (Yt)
¤
, t ≥ 0 (7.1)

is a well-defined continuous process. Therefore,

Zt = exp

µ
−
Z t

0

λ (Ys)
T
dWP

s −
1

2

Z t

0

λ (Ys)
T
λ (Ys) ds

¶
, t ∈ [0, T ] (7.2)

is a well-defined, positive local martingale with respect to P , and thus also a P -supermartingale. Hence, if we

can show that

EP [ZT ] = 1 (7.3)

then (Zt)t∈[0,T ] is a P -martingale, Q = ZT · P is a probability measure equivalent to P , and by Girsanov’s

theorem, the process:

W
Q
t =WP

t +

Z t

0

λ (Ys) ds, t ∈ [0, T ] (7.4)

is a Brownian motion under Q. Moreover:

Yt = Y0 +

Z t

0

µQ (Ys) ds+

Z t

0

σ (Ys) dW
Q
s , t ∈ [0, T ] (7.5)

and (c) is proved.

It remains to show (7.3). By (a), there exists a stochastic process (Ỹt)t≥0 on (Ω,F , P ) that satisfies

Ỹt = Y0 +

Z t

0

µQ(Ỹs)ds+

Z t

0

σ(Ỹs)dW
P
s , t ≥ 0 (7.6)

and by (b), the distribution of (Ỹt)t≥0 is unique. Since the pair (µQ(.), σ(.)) also satisfies the existence and

boundary non-attainment conditions,

λ(Ỹt) = σ(Ỹt)
−1
h
µP
³
Ỹt

´
− µQ

³
Ỹt

´i
, t ≥ 0 (7.7)

is a well-defined continuous process. For each n ≥ 1, we define the stopping times:

τn = inf {t > 0 | kλ (Yt)k2 ≥ n} ∧ T (7.8)

and

τ̃n = inf
n
t > 0 |

°°°λ³Ỹt

´°°°
2
≥ n

o
∧ T (7.9)
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where kλ (Yt)k2 denotes the Euclidean norm of the vector λ (Yt). These stopping times satisfy:

lim
n→∞P [τn = T ] = lim

n→∞P [τ̃n = T ] = 1 as n→∞ (7.10)

For each n ≥ 1, we define the process:

λn
t = λ(Yt)1{t≤τn}, t ∈ [0, T ] (7.11)

Note that, by construction,
³R t

0
(λn

t )
T
λn
t ds

´
is bounded by n2 · t. For each n, the process satisfies the Novikov

criterion (under the P -measure):

EP

·
exp

µ
1

2

Z t

0

(λn
s )

Tλn
sds

¶¸
≤ exp

µ
n2 · t
2

¶
< +∞ (7.12)

It follows that, for each n ≥ 1, the process defined by:

Zn
t = exp

µ
−
Z t

0

(λn
s )

TdWP
s −

1

2

Z t

0

(λn
s )

Tλn
sds

¶
, t ∈ [0, T ] (7.13)

is a P -martingale, and by (7.10), Zn
T1{τn=T} = ZT1{τn=T} → ZT , P -almost surely, as n→∞. For all n ≥ 1,

Qn = Zn
T · P is a probability measure equivalent to P , and it follows from Girsanov’s theorem that

Wn
t =WP

t +

Z t

0

λn
sds , t ≥ 0 (7.14)

is a Brownian motion under Qn. It is easy to see that:

Yt∧τn
= Y0 +

Z t∧τn

0

µQ(Ys)ds+

Z t∧τn

0

σ(Ys)dW
n
s , t ∈ [0, T ] (7.15)

and it can be deduced from (a), (b) (7.6) and (7.15) that under Qn, the stopped process (Yt∧τn
)t≥0 has the

same distribution as the stopped process (Ỹt∧τ̃n
)t≥0 under P . Therefore:

EP [ZT ] = lim
n→∞EP

£
Zn
T1{τn=T}

¤
= lim

n→∞Qn [τn = T ] = lim
n→∞P [τ̃n = T ] = 1 (7.16)

The first step in this chain of equalities holds because Zn
T = ZT ≥ 0 on the set {τn = T} and the sets {τn = T}

increase to Ω as n →∞, P -almost surely. The second step holds by applying the definition of the measures
Qn; note that Zn

T is the Radon-Nikodym derivative of Qn with respect to P . The third step follows because

the distribution of (Yt∧τn
)t≥0 under Qn is the same as the distribution of (Ỹt∧τ̃n

)t≥0 under P . The last step

follows from (7.10).
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Completely Affine Essentially Affine Extended Affine

Parameter Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.

bP11 −0.008290 0.0020 −0.6295 0.1914 −0.6295 0.1914

a
Q
1 0.1878 0.1969 0.2196 0.0047 0.2196 0.0047

b
Q
11 −0.008290 0.0020 −0.007952 0.0022 −0.007952 0.0022

d0 0.1834 0.8051 0.04739 0.0138 0.04739 0.0138

d1 0.03388 0.0008 0.03457 0.0009 0.03457 0.0009

σ1 0.0105 0.0013 0.0105 0.0013 0.0105 0.0013

σ2 0.0109 0.0043 0.0109 0.0043 0.0109 0.0043

σ3 0.0117 0.0078 0.0117 0.0079 0.0117 0.0079

σ4 0.0123 0.0055 0.0123 0.0056 0.0123 0.0056

Table 1: A0 (1) Model Estimates

This table shows the parameter estimates and standard errors for the A0 (1) model parameters, for the completely
affine, essentially affine, and extended affine market price of risk specifications. The instantaneous interest rate is
assumed to be observed without error; zero-coupon bond yields with maturities 2, 4, 6, and 8 years are assumed to be
observed with error. The essentially affine and extended affine specifications coincide for this model. Note that, for
the completely affine market price of risk specification, the bP11 and b

Q
11 parameters must coincide. For the other two

market price of risk specifications, all parameters can vary independently.
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Completely Affine Essentially Affine Extended Affine

Parameter Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.

aP1 0.5000 0.0020 0.5000 0.0020 1.5675 0.4699

bP11 −0.09740 0.0718 −0.09740 0.0718 −0.3485 0.1183

a
Q
1 0.5000 0.0020 0.5000 0.0020 0.5000 0.0143

b
Q
11 0.008011 0.0018 0.008011 0.0018 0.008168 0.0015

d0 −0.005785 0.0014 −0.005785 0.0014 −0.006401 0.0015

d1 0.01229 0.0004 0.01229 0.0004 0.01228 0.0005

σ1 0.0107 0.0015 0.0107 0.0015 0.0107 0.0014

σ2 0.0110 0.0043 0.0110 0.0043 0.0110 0.0043

σ3 0.0117 0.0071 0.0117 0.0071 0.0117 0.0071

σ4 0.0127 0.0053 0.0127 0.0053 0.0127 0.0053

Table 2: A1 (1) Model Estimates

This table shows the parameter estimates and standard errors for the A1 (1) model parameters, for the completely
affine, essentially affine, and extended affine market price of risk specifications. The instantaneous interest rate is
assumed to be observed without error; zero-coupon bond yields with maturities 2, 4, 6, and 8 years are assumed to be
observed with error. The completely affine and essentially affine specifications coincide for this model. Note that, for
the completely affine and essentially affine market price of risk specifications, the aP1 and a

Q
1 parameters must coincide.

For the extended affine market price of risk specification, all parameters can vary independently.
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Completely Affine Essentially Affine Extended Affine

Parameter Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.

bP11 −0.02620 0.0010 −0.1270 0.0724 −0.1270 0.0724

bP21 1.4373 0.0862 −0.1497 0.4486 −0.1497 0.4486

bP22 −2.0809 0.0539 −6.0648 0.5001 −6.0648 0.5001

a
Q
1 0.001899 0.1618 0.6524 0.1242 0.6524 0.1242

a
Q
2 0.9379 0.1652 0.7854 0.2090 0.7854 0.2090

b
Q
11 −0.02620 0.0010 0.02777 0.1065 0.02777 0.1065

b
Q
12 0.0000 0.0000 −1.5078 0.1735 −1.5078 0.1735

b
Q
21 1.4373 0.0862 0.07417 0.1558 0.07417 0.1558

b
Q
22 −2.0809 0.0539 −2.0804 0.1086 −2.0804 0.1086

d0 0.1017 0.1175 0.05520 0.0223 0.05520 0.0223

d1 −0.1903 0.0010 0.01454 0.0022 0.01454 0.0022

d2 0.03010 0.0006 0.02877 0.0013 0.02877 0.0013

σ1 0.0026 0.0002 0.0026 0.0002 0.0026 0.0002

σ2 0.0040 0.0009 0.0040 0.0009 0.0040 0.0009

σ3 0.0048 0.0012 0.0047 0.0012 0.0047 0.0012

σ4 0.0053 0.0008 0.0053 0.0008 0.0053 0.0008

Table 3: A0 (2) Model Estimates

This table shows the parameter estimates and standard errors for the A0 (2) model parameters, for the completely
affine, essentially affine, and extended affine market price of risk specifications. The instantaneous interest rate and a
zero-coupon bond yield with maturity of 2 years are assumed to be observed without error; zero-coupon bond yields
with maturities 4, 6, 8, and 10 years are assumed to be observed with error. The essentially affine and extended affine
specifications coincide for this model. Note that, for the completely affine market price of risk specification, the slope
coefficient parameters in the drift must coincide (i.e., bP11 and b

Q
11 are the same, b

P
21 and b

Q
21 are the same, and bP22 and

b
Q
22 are the same). Furthermore, for the completely affine market price of risk specification, the b

Q
12 parameter is held

fixed at zero. For the other two market price of risk specifications, all parameters can vary independently.
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Completely Affine Essentially Affine Extended Affine

Parameter Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.

aP1 0.5000 0.0132 0.5000 0.0159 0.5000 0.1313

bP11 −0.04895 0.0185 −0.006282 0.0364 −0.01579 0.0402

bP22 −3.1846 0.1062 −5.1792 0.4927 −5.5356 0.5146

a
Q
1 0.5000 0.0132 0.5000 0.0159 0.5000 0.0472

a
Q
2 1.1235 0.1261 0.006282 0.0749 0.1008 0.1018

b
Q
11 −0.009747 0.0007 −0.01221 0.0008 −0.01209 0.0011

b
Q
21 0.0000 0.0000 0.08122 0.0065 0.07361 0.0069

b
Q
22 −3.1846 0.1062 −2.7386 0.0914 −2.7574 0.0943

d0 −0.003683 0.0010 0.008901 0.0013 0.007483 0.0017

d1 0.004171 0.0001 0.003147 0.0001 0.003244 0.0001

d2 0.03429 0.0006 0.03536 0.0009 0.03575 0.0009

σ1 0.0027 0.0002 0.0026 0.0002 0.0026 0.0002

σ2 0.0041 0.0009 0.0040 0.0009 0.0040 0.0009

σ3 0.0049 0.0013 0.0048 0.0013 0.0048 0.0013

σ4 0.0054 0.0009 0.0054 0.0009 0.0054 0.0009

Table 4: A1 (2) Model Estimates

This table shows the parameter estimates and standard errors for the A1 (2) model parameters, for the completely
affine, essentially affine, and extended affine market price of risk specifications. The instantaneous interest rate and a
zero-coupon bond yield with maturity of 2 years are assumed to be observed without error; zero-coupon bond yields
with maturities 4, 6, 8, and 10 years are assumed to be observed with error. The bP21 and β21 parameters (not shown)
are held fixed at zero, to ensure that the likelihood function is known in closed-form. Note that, for the completely affine
and essentially affine market price of risk specifications, the aP

1 and a
Q
1 parameters must coincide. For the completely

affine market price of risk specification, the b
Q
21 parameter must be zero, and the bP22 and b

Q
22 parameters must be the

same. For the extended affine market price of risk specification, all parameters can vary independently.
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Completely Affine Essentially Affine Extended Affine

Parameter Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.

aP1 0.5000 0.0134 0.5000 0.0134 0.5000 0.0205

aP2 23.8020 2.5332 23.8020 2.5332 1.0596 0.5037

bP11 −0.01582 0.0283 −0.01582 0.0283 −0.03024 0.0364

bP22 −3.3520 0.0955 −3.3520 0.0955 −0.3384 0.1119

a
Q
1 0.5000 0.0134 0.5000 0.0134 0.5000 0.0264

a
Q
2 23.8020 2.5332 23.8020 2.5332 1.5794 0.3229

b
Q
11 −0.01055 0.0007 −0.01055 0.0007 −0.01638 0.0013

bQ12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0030

b
Q
21 0.0000 0.0000 0.0000 0.0000 0.6141 0.0828

b
Q
22 −2.9839 0.0935 −2.9839 0.0935 −2.3233 0.0632

d0 −0.1045 0.0032 −0.1045 0.0032 −0.001148 0.0004

d1 0.004179 0.0001 0.004179 0.0001 0.0000 0.0002

d2 0.01416 0.0005 0.01416 0.0005 0.01600 0.0014

σ1 0.0026 0.0002 0.0026 0.0002 0.0026 0.0002

σ2 0.0041 0.0009 0.0041 0.0009 0.0040 0.0009

σ3 0.0049 0.0013 0.0049 0.0013 0.0048 0.0013

σ4 0.0054 0.0009 0.0054 0.0009 0.0054 0.0009

Table 5: A2 (2) Model Estimates

This table shows the parameter estimates and standard errors for the A2 (2) model parameters, for the completely
affine, essentially affine, and extended affine market price of risk specifications. The instantaneous interest rate and a
zero-coupon bond yield with maturity of 2 years are assumed to be observed without error; zero-coupon bond yields
with maturities 4, 6, 8, and 10 years are assumed to be observed with error. The completely affine and essentially
affine specifications coincide for this model. The bP12 and bP21 parameters (not shown) are held fixed at zero, to ensure
that the likelihood function is known in closed-form. Note that, for the completely affine and essentially affine market
price of risk specifications, the aP1 and a

Q
1 parameters must be the same, the a

P
2 and a

Q
2 must be the same, and the b

Q
12

and b
Q
21 parameters must be zero. For the extended affine market price of risk specification, all parameters can vary

independently.

33



Completely Affine Essentially Affine Extended Affine

Parameter Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.

bP11 −0.01011 0.0005 −0.1039 0.0751 −0.1039 0.0751

bP21 0.1439 0.0257 −0.6327 0.2245 −0.6327 0.2245

bP22 −0.7529 0.0098 −1.3658 0.2133 −1.3658 0.2133

bP31 0.4950 0.2829 0.5795 0.8522 0.5795 0.8522

bP32 3.9866 0.2834 2.4831 0.9190 2.4831 0.9190

bP33 −5.7304 0.4626 −10.0865 0.8606 −10.0865 0.8606

aQ1 −0.01129 0.1645 0.8649 0.2566 0.8649 0.2566

a
Q
2 0.08620 0.1763 0.4579 0.2492 0.4579 0.2492

a
Q
3 1.8387 0.2660 1.6581 0.5755 1.6581 0.5755

b
Q
11 −0.01011 0.0005 0.1227 0.1373 0.1227 0.1373

b
Q
12 0.0000 0.0000 0.3250 0.2301 0.3250 0.2301

bQ13 0.0000 0.0000 −2.2892 0.5540 −2.2892 0.5540

b
Q
21 0.1439 0.0257 −0.04854 0.1109 −0.04854 0.1109

b
Q
22 −0.7529 0.0098 −0.1039 0.1124 −0.1039 0.1124

b
Q
23 0.0000 0.0000 −1.2278 0.6599 −1.2278 0.6599

b
Q
31 0.4950 0.2829 0.7670 0.5363 0.7670 0.5363

bQ32 3.9866 0.2834 1.7919 0.5438 1.7919 0.5438

b
Q
33 −5.7304 0.4626 −5.7782 0.6560 −5.7782 0.6560

d0 0.1921 1.0999 0.05687 0.9800 0.05687 0.9800

d1 0.005479 0.0012 0.01517 0.0022 0.01517 0.0022

d2 0.002673 0.0006 0.003323 0.0034 0.003323 0.0034

d3 0.03178 0.0006 0.02922 0.0015 0.02922 0.0015

σ1 0.0009 0.0001 0.0009 0.0001 0.0009 0.0001

σ2 0.0015 0.0003 0.0015 0.0003 0.0015 0.0003

σ3 0.0021 0.0006 0.0021 0.0005 0.0021 0.0005

σ4 0.0027 0.0004 0.0027 0.0001 0.0027 0.0001

Table 6: A0 (3) Model Estimates

This table shows the parameter estimates and standard errors for the A0 (3) model parameters, for the completely
affine, essentially affine, and extended affine market price of risk specifications. The instantaneous interest rate and
zero-coupon bond yields with maturities of 2 and 4 years are assumed to be observed without error; zero-coupon bond
yields with maturities 6, 8, 10, and 12 years are assumed to be observed with error. The essentially affine and extended
affine specifications coincide for this model. Note that, for the completely affine market price of risk specification, the
slope coefficient parameters in the drift must coincide (i.e., bP11 and b

Q
11 are the same, b

P
21 and b

Q
21 are the same, b

P
22 and

b
Q
22 are the same, b

P
31 and b

Q
31 are the same, b

P
32 and b

Q
32 are the same, and bP33 and b

Q
33 are the same). Furthermore, for

the completely affine market price of risk specification, the bQ12, b
Q
13, and b

Q
23 parameters are held fixed at zero. For the

other two market price of risk specifications, all parameters can vary independently.
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Completely Affine Essentially Affine Extended Affine

Parameter Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.

aP1 0.5000 0.0760 0.5000 0.0016 1.6996 1.7843

bP11 0.006502 0.0290 0.007257 0.0293 −0.04448 0.0443

bP22 −0.8101 0.0115 −0.9360 0.1582 −0.9365 0.1590

bP32 3.7680 0.2418 2.3237 0.9206 2.3240 0.9182

bP33 −5.3422 0.4280 −10.1202 0.8247 −10.1214 0.8276

a
Q
1 0.5000 0.0760 0.5000 0.0016 0.5000 0.0037

aQ2 0.1029 0.1747 −0.006028 0.1781 −0.006462 0.1780

a
Q
3 1.6953 0.2429 0.6346 0.2762 0.6333 0.2764

b
Q
11 0.001355 0.0009 0.0007466 0.0009 0.0007563 0.0004

b
Q
21 0.0000 0.0000 0.03244 0.0056 0.03243 0.0052

b
Q
22 −0.8101 0.0115 0.09181 0.1012 0.09229 0.1016

bQ23 0.0000 0.0000 −2.3721 0.5571 −2.3737 0.5569

b
Q
31 0.0000 0.0000 0.02886 0.0090 0.02887 0.0089

b
Q
32 3.7680 0.2418 1.7566 0.5066 1.7568 0.5066

b
Q
33 −5.3422 0.4280 −5.4517 0.5008 −5.4530 0.5015

d0 −0.006662 0.0057 0.01285 0.0058 0.01280 0.0057

d1 0.002203 0.0001 0.001401 0.0002 0.001401 0.0001

d2 0.002878 0.0012 0.01212 0.0028 0.01212 0.0028

d3 0.03220 0.0006 0.03049 0.0015 0.03049 0.0015

σ1 0.0009 0.0001 0.0009 0.0001 0.0009 0.0001

σ2 0.0016 0.0003 0.0016 0.0003 0.0016 0.0003

σ3 0.0021 0.0006 0.0021 0.0006 0.0021 0.0006

σ4 0.0027 0.0004 0.0027 0.0005 0.0027 0.0005

Table 7: A1 (3) Model Estimates

This table shows the parameter estimates and standard errors for the A1 (3) model parameters, for the completely
affine, essentially affine, and extended affine market price of risk specifications. The instantaneous interest rate and
zero-coupon bond yields with maturities of 2 and 4 years are assumed to be observed without error; zero-coupon
bond yields with maturities 6, 8, 10, and 12 years are assumed to be observed with error. The bP21, b

P
31, β21, and β31

parameters (not shown) are held fixed at zero, to ensure that the likelihood function is known in closed-form. When
these restrictions are imposed, the model becomes unidentified; consequently, we also impose the identifying restriction
that bP23 is held at zero. Note that, for the completely affine and essentially affine market price of risk specifications,
the aP

1 and a
Q
1 parameters must coincide. For the completely affine market price of risk specification, the b

Q
21, b

Q
23, and

b
Q
31 parameters must be zero. Furthermore, b

P
22 and b

Q
22 must be the same, b

P
32 and b

Q
32 must be the same, and bP33 and

b
Q
33 must be the same. For the extended affine market price of risk specification, all parameters can vary independently.
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Completely Affine Essentially Affine Extended Affine

Parameter Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.

aP1 0.5000 0.0216 0.5000 0.0854 1.8105 2.1392

aP2 4.7456 1.2803 5.8672 1.6413 1.1125 0.7500

bP11 0.006696 0.0277 0.006640 0.0279 −0.04556 0.0468

bP22 −0.7885 0.0756 −0.8637 0.0635 −0.1449 0.0754

bP33 −10.6479 0.7426 −9.4848 0.7239 −9.5140 0.7271

a
Q
1 0.5000 0.0216 0.5000 0.0854 0.5000 0.1469

aQ2 4.7456 1.2803 5.8672 1.6413 0.5000 0.4848

a
Q
3 2.1224 0.2926 −122.9010 615.5 43.1382 1093.2

b
Q
11 0.0006241 0.0004 0.0003567 0.0009 −0.007533 0.0218

b
Q
12 0.0000 0.0000 0.0000 0.0000 0.01383 0.0776

b
Q
21 0.0000 0.0000 0.0000 0.0000 0.1899 0.0326

bQ22 −0.7258 0.0092 −0.7842 0.0014 −0.6989 0.0233

b
Q
31 0.0000 0.0000 1.7500 8.8798 −11.7418 296.95

b
Q
32 0.0000 0.0000 18.8626 94.707 73.2124 1853.8

b
Q
33 −10.6479 0.7426 −210.0525 1061.8 −982.7415 2491.9

d0 −0.06960 0.0048 −0.04242 0.0045 −0.0005266 0.0021

d1 0.002186 0.0001 0.001890 0.0001 0.0002631 0.0001

d2 0.01026 0.0007 0.006159 0.0005 0.006020 0.0005

d3 0.04344 0.0011 0.03333 0.0012 0.03327 0.0013

σ1 0.0009 0.0001 0.0009 0.0001 0.0009 0.0001

σ2 0.0016 0.0003 0.0016 0.0002 0.0016 0.0003

σ3 0.0021 0.0006 0.0021 0.0005 0.0021 0.0006

σ4 0.0027 0.0004 0.0027 0.0004 0.0027 0.0005

Table 8: A2 (3) Model Estimates

This table shows the parameter estimates and standard errors for the A2 (3) model parameters, for the completely
affine, essentially affine, and extended affine market price of risk specifications. The instantaneous interest rate and
zero-coupon bond yields with maturities of 2 and 4 years are assumed to be observed without error; zero-coupon bond
yields with maturities 6, 8, 10, and 12 years are assumed to be observed with error. The bP12, b

P
21, b

P
31, b

P
32, β31, and

β32 parameters (not shown) are held fixed at zero, to ensure that the likelihood function is known in closed-form.
Note that, for the completely affine and essentially affine market price of risk specifications, the aP

1 and a
Q
1 parameters

must coincide, as must the aP
2 and a

Q
2 parameters; furthermore, the b

Q
12 and b

Q
21 parameters must be equal to their

counterparts under the P measure (which, as noted above, are held fixed at zero). For the completely affine market
price of risk specification, the bQ31, b

Q
32, and b

Q
33 parameters must be equal to their counterparts under the P measure,

bP31, b
P
32, and bP33. For the extended affine market price of risk specification, all parameters can vary independently.
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Completely Affine Essentially Affine Extended Affine

Parameter Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.

aP1 0.5000 0.1360 0.5000 0.1360 1.7844 2.2275

aP2 1464.3 98.049 1464.3 98.049 712.3582 159.75

aP3 4.7175 1.2308 4.7175 1.2308 1.2243 0.8465

bP11 0.02147 0.0042 0.02147 0.0042 −0.04316 0.0469

bP22 −10.4489 0.2046 −10.4489 0.2046 −8.9894 0.7412

bP33 −0.7886 0.0758 −0.7886 0.0758 −0.1973 0.0880

aQ1 0.5000 0.1360 0.5000 0.1360 0.5000 226.97

a
Q
2 1464.3 98.049 1464.3 98.049 3624.5 351.30

a
Q
3 4.7175 1.2308 4.7175 1.2308 0.5213 131.85

b
Q
11 0.0006452 0.0012 0.0006452 0.0012 −0.002986 0.0198

b
Q
12 0.0000 0.0000 0.0000 0.0000 0.0000014 1.4400

bQ13 0.0000 0.0000 0.0000 0.0000 0.00000013 0.6456

b
Q
21 0.0000 0.0000 0.0000 0.0000 0.0006549 0.8943

b
Q
22 −10.2775 0.1894 −10.2775 0.1894 −45.9946 5.3708

b
Q
23 0.0000 0.0000 0.0000 0.0000 20.9368 4.3427

b
Q
31 0.0000 0.0000 0.0000 0.0000 0.1507 0.0288

bQ32 0.0000 0.0000 0.0000 0.0000 0.001383 0.8366

b
Q
33 −0.7259 0.0093 −0.7259 0.0093 −0.6902 0.3884

d0 −0.5910 0.0196 −0.5910 0.0196 −0.3045 0.0207

d1 0.002186 0.0002 0.002186 0.0002 0.0001764 0.0002

d2 0.003720 0.000005 0.003720 0.000005 0.003839 0.0002

d3 0.01032 0.0007 0.01032 0.0007 0.007424 0.0007

σ1 0.0009 0.0001 0.0009 0.0001 0.0009 0.0001

σ2 0.0016 0.0003 0.0016 0.0003 0.0016 0.0003

σ3 0.0021 0.0006 0.0021 0.0006 0.0021 0.0006

σ4 0.0027 0.0005 0.0027 0.0005 0.0027 0.0005

Table 9: A3 (3) Model Estimates

This table shows the parameter estimates and standard errors for the A3 (3) model parameters, for the completely
affine, essentially affine, and extended affine market price of risk specifications. The instantaneous interest rate and
zero-coupon bond yields with maturities of 2 and 4 years are assumed to be observed without error; zero-coupon
bond yields with maturities 6, 8, 10, and 12 years are assumed to be observed with error. The completely affine and
essentially affine specifications coincide for this model. The bP12, b

P
13, b

P
21, b

P
23, b

P
31, and bP32 parameters (not shown)

are held fixed at zero, to ensure that the likelihood function is known in closed-form. Note that, for the completely
affine and essentially affine market price of risk specifications, the a

Q
1 , a

Q
2 , and a

Q
3 parameters must be equal to their

P -measure counterparts, aP
1 , a

P
3 , and aP

3 . Furthermore, the b
Q
12, b

Q
13, b

Q
21, b

Q
23, b

Q
31 and b

Q
32 parameters must be equal to

their counterparts under the P measure (which, as noted above, are held fixed at zero). For the extended affine market
price of risk specification, all parameters can vary independently.37



Ess. Aff. vs. Comp. Aff. Ext. Aff. vs. Comp. Aff. Ext. Aff. vs. Ess. Aff.

Model DF Cutoff LR DF Cutoff LR DF Cutoff LR

A0 (1) 1 3.84 13.76 1 3.84 13.76 0 − −
A1 (1) 0 − − 1 3.84 6.55 1 3.84 6.55

A0 (2) 4 9.49 63.13 4 9.49 63.13 0 − −
A1 (2) 2 5.99 84.69 3 7.82 85.35 1 3.84 0.66

A2 (2) 0 − − 4 9.49 379.33 4 9.49 379.33

A0 (3) 9 16.92 85.79 9 16.92 85.79 0 − −
A1 (3) 6 12.59 99.02 7 14.07 101.29 1 3.84 2.27

A2 (3) 3 7.82 199.64 7 14.07 377.85 4 9.49 178.21

A3 (3) 0 − − 9 16.92 355.92 9 16.92 355.92

Table 10: Likelihood Ratio Statistics

This table shows likelihood ratio statistics for the different nested market price of risk specifications within each of the
nine affine yield models considered. The first column lists the model under consideration. The next three columns
contain information on the likelihood ratio of the completely affine yield market price of risk specification, relative to
the essentially affine specification, which nests the completely affine specification. The following three columns contain
analogous information for the completely affine specification relative to the extended affine specification, which nests
both the other specifications. The last three columns compare the essentially affine specification to the nesting extended
affine specification. For each comparison, the column labeled DF lists the additional degrees of freedom contained in
the nesting model. The column labeled Cutoff contains the 95% chi-squared cutoff value for a likelihood ratio statistic
with degrees of freedom corresponding to the number in the DF column. The column labeled LR contains the actual
likelihood ratio statistic. The hypothesis that the restrictions included in the less flexible model are valid is rejected if
the quantity in the LR column is greater than the quantity in the Cutoff column. Six of the 27 comparisons considered
are degenerate, in that the restricted and nesting models coincide. In these six cases, the DF column contains the value
0, and the Cutoff and LR columns are not filled in.
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