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Abstract

This paper derives results for the temporal aggregation of multivariate GARCH processes in the

general vector specification. It is shown that the class of weak multivariate GARCH processes is

closed under temporal aggregation. Fourth moment characteristics turn out to be crucial for the low

frequency dynamics for both stock and flow variables. The framework used in this paper can easily

be extended to investigate joint temporal and contemporaneous aggregation. Discussing causality

in volatility, I find that there is not much room for spurious instantaneous causality in multivariate

GARCH processes, but that spurious Granger causality will be more common however numerically

insignificant. Forecasting volatility, it is generally advisable to aggregate forecasts of the disaggregate

series rather than forecasting the aggregated series directly, and unlike for VARMA processes the

advantage does not diminish for large forecast horizons. Finally, results are derived for the distribu-

tion of multivariate realized volatility if the high frequency process follows multivariate GARCH. A

numerical example illustrates some of the results.
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1 Introduction

Financial time series such as stock prices or exchange rates usually are available on very high frequencies
such as minute by minute. Typically, however, the econometrician uses highly aggregated data such
as daily or weekly returns. This poses the question how the low frequency dynamics depend on the
characteristics of the high frequency process. This is an important general topic in econometrics whenever
the sample frequency does not correspond to the ”natural” frequency, where the natural frequency of
financial time series is so high that the series is often represented by continuous time stochastic processes.

For financial time series in discrete time, the GARCH modelling class has proved to be successful to
describe the volatility. Drost and Nijman (1993) have derived the low frequency parameters if the high
frequency dynamics follows univariate GARCH. However, they also showed that only a weak version of
GARCH is closed under temporal aggregation, that is, GARCH does not explain the conditional variance
but rather the best linear prediction in terms of lagged returns and lagged squared returns. In a univariate
framework, Meddahi and Renault (2003) show that the weak GARCH class can be generalized such that
it deals with multiperiod conditional moment conditions and is still closed under temporal aggregation.
However, it seems difficult to generalize their ideas to the multivariate case since the particular state
space representation they use is only closed in the univariate case.

GARCH models remain the principal volatility model used in econometric practice, and its widespread
implementation guarantees a need for thorough understanding of its theoretical properties. This is even
more so in the multivariate case, since multivariate GARCH models also start to become a standard in
statistical and econometric programming packages. Other multivariate volatility models such as multi-
variate stochastic volatility quickly become intractable in empirical work. Throughout the paper I will
use the so-called vec form of multivariate GARCH, as introduced by Bollerslev, Engle, and Wooldridge
(1988). It nests the so-called BEKK model of Engle and Kroner (1995) that has been introduced mainly
to overcome some practical disadvantages of the vec model. It also nests the factor ARCH models intro-
duced by Diebold and Nerlove (1989) and Engle, Ng, and Rothschild (1990), as well as the orthogonal
GARCH model of Alexander (2001) and its generalization by van der Weide (2002). However, it does not
nest the constant conditional correlation (CCC) model of Bollerslev (1990) or its extension, the dynamic
conditional correlation (DCC) model of Engle (2002). Due to their nonlinear character, it will be difficult
to derive aggregation results for both of these models. For a recent review of the various multivariate
GARCH specifications, see Bauwens, Laurent and Rombouts (2003).

This paper extends the results of Drost and Nijman (1993) to the multivariate case. Mainly, I show
that the class of weak multivariate GARCH processes is closed under temporal aggregation and provide
formulae how to to obtain the low frequency dynamics for a given high frequency process. I make use of
some well known aggregation results of VARMA models. However, there are important differences that
occur in multivariate GARCH models compared to VARMA models. This is mainly due to the fact that
in GARCH models it is not the second order process, i.e. the squared returns, that is aggregated but the
returns themselves. This creates cross-products and therefore additional noise in the aggregated series.
The variance and auto-covariance of this additional noise affects the dynamics of the aggregated series.
Distinguishing between stock and flow variables, there appears a major difference between univariate and
multivariate GARCH processes: Whereas in the univariate case only the aggregated flow variable process
depends on the fourth moment characteristics, so does also the aggregated stock variable process in the
multivariate case.

Further to the derivation of the low frequency dynamics, I discuss some issues related to causality in
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volatility. In VARMA processes, Breitung and Swanson (2002) investigate the phenomenon of spurious
instantaneous causality, that is, instantaneous causality of the low frequency process that is solely induced
by temporal aggregation without any causal relationship at the high frequency. For multivariate GARCH
processes, I show that such misleading causality can be ruled out whenever there is a nonzero conditional
correlation between the series, or if the dimension is not larger than two. Spurious Granger causality, i.e.
uni- or bi-directional causality, is of more practical relevance, since if the parameter matrices of the high
frequency process are diagonal (i.e. no Granger causality), those of the low frequency will in general not
be diagonal. However, as measures for causality suggest, this spurious Granger causality is typically much
smaller than the instantaneous causality. All Granger causality in volatility disappears as the series is
more and more aggregated. Moreover, the normalized series converges to a multivariate Gaussian white
noise series with increasing aggregation level.

For the prediction of volatility, it is no surprise that the method that predicts the disaggregate process
and then aggregates the forecasts has a smaller mean square prediction error than the method that directly
predicts the aggregated series. In the VARMA framework this has been demonstrated e.g. by Lütkepohl
(1987). However, whereas in VARMA models the two methods become identical when the prediction
horizon increases, this is not the case for multivariate GARCH processes. The reason is the additional
noise terms, mentioned above, in the aggregated series which are absent in the aggregation of VARMA
processes.

Finally, I try to build a link to the increasing literature on so-called realized volatilities, that is,
aggregation of the high-frequency (typically intra-day) second order process to obtain a measure rather
than a model for the low frequency volatility, see e.g. Andersen et al. (2003). Based on results of Breitung
and Swanson (2002), it can be shown that if the high frequency process follows multivariate GARCH,
then the multivariate realized volatility process for finite but large aggregations can be approximated by
a VMA(1) process.

The paper is organized as follows. Section 2 introduces the notation, some definitions and preliminary
results such as the fourth moment structure of multivariate GARCH processes. Section 3 derives the main
results of the paper, where I distinguish between the cases of stock and flow variables. Section 4 discusses
the causality in volatility and Section 5 the prediction of volatility. Finally, Section 6 derives results for
realized volatility, and Section 7 concludes. Throughout the paper I use a numerical example to illustrate
the results. Proofs of the theorems are given in the appendix.

2 Preliminaries

To begin with, the notion of vector white noise is at the core of most multivariate stochastic processes,
but it is often defined in three alternative ways. In the context of modelling the conditional mean the
exact notion of white noise has not been of much interest and importance. For the study of temporal
aggregation of multivariate GARCH processes, however, the distinction of these definitions will turn out
to be crucial.

Definition 1 (White Noise) Let {ut, t ∈ ZZ} denote a stochastic vector process of dimension K. We
say that ut is

1. strong white noise, if it is i.i.d. with E[ut] = 0 and E[utu
′
t] = Σu < ∞,

2. semi-strong white noise, if E[ut | Ft−1] = 0 and E[utu
′
t] = Σu < ∞,
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3. weak white noise, if E[ut] = 0, E[utu
′
s] = 0, ∀t 6= s, and E[utu

′
t] = Σu < ∞ and positive definite.

A semi-strong white noise process can be characterized as a martingale difference. Processes that
build on martingale differences are not closed under temporal aggregation, see e.g. Meddahi and Renault
(2003), and it is therefore important to consider the weak white noise process. Before turning to GARCH
processes it is convenient to define three versions of vector autoregressive moving average (VARMA)
processes based on the above white noise notions.

Definition 2 (VARMA) Let {yt, t ∈ ZZ} be a stochastic process given by

yt = ν +
p∑

i=1

Φiyt−i +
q∑

j=0

Θjut−j ,

where ut is a white noise vector process, ν is a K dimensional parameter vector, Φi and Θj are square
parameter matrices of order K, and where we set Θ0 = IK . Then yt is called a

1. strong VARMA(p, q) process if ut is strong white noise,

2. semi-strong VARMA(p, q) if ut is semi-strong white noise, and

3. weak VARMA(p, q) if ut is weak white noise.

VARMA processes are widely known to be closed under temporal aggregation, but in fact this holds
only for weak VARMA processes, see the monograph by Lütkepohl (1987). Analogous to the above
definitions we now consider three versions of multivariate GARCH processes. 1

Definition 3 (Multivariate GARCH) Let εt denote a stochastic vector process with K components
and E[εt | Ft−1] = 0. Now define a positive definite and symmetric matrix Ht such that vech(Ht) = ht

and where the stochastic vector process ht has the representation

ht = ω +
q∑

i=1

Aiηt−i +
p∑

j=1

Bjht−j (1)

where ω = vech(Ω), ηt = vech(εtε
′
t) and N × N parameter matrices Ω, Ai, Bj , with N = K(K + 1)/2.

Then we say that εt is a

1. strong multivariate GARCH(p, q) process, if ξt = H
−1/2
t εt is an i.i.d. process with mean zero and

variance the identity matrix,

2. semi-strong multivariate GARCH(p, q) process, if Var(εt | Ft−1] = Ht,

3. weak multivariate GARCH(p, q) process, if ht is the best linear predictor of ηt in terms of a constant
and lagged values of ηt, that is

ht = P (ηt | Ht−1) = [P (ηt,1 | Ht−1), . . . , P (ηt,N | Ht−1)]
′

where Ht = sp{1, ηt−τ,1, . . . , ηt−τ,N , τ ≥ 0} denotes the set of all linear combinations of a constant
and ηt−τ,1, . . . , ηt−τ,N .

1Throughout the paper, vec denotes the operator that stacks all columns of a matrix into a vector, and vech denotes the

operator that stacks only the lower triangular part including the diagonal of a symmetric matrix into a vector.
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Note that a strong multivariate GARCH(p, q) process is also semi-strong, and a semi-strong multi-
variate GARCH(p, q) process is also weak, which justifies the terminology.

To establish the analogy to VARMA models, consider the process

ηt = ω +
max(p,q)∑

i=1

(Ai + Bi)ηt−i −
p∑

j=1

Bjut−j + ut, (2)

where ut = ηt − ht and where we set Aq+1 = . . . = Ap = 0 if p > q and Bp+1 = . . . = Bq = 0 if q > p.
Roughly speaking, (2) is a VARMA process if ut is white noise with finite covariance matrix, which we
assume in the following.

Assumption 1 The matrix of fourth moments of εt, i.e., Ση = E[ηtη
′
t], is assumed to be finite, as well

as the matrix Σh = E[hth
′
t].

Note that Assumption 1 implies that Σu = E[utu
′
t] is finite as well, because Σu = Ση −Σh. We now have

the following result.

Lemma 1 1. If {εt} is strong or semi-strong multivariate GARCH(p, q), then {ut} is semi-strong
white noise, which means that {ηt} in (2) follows a semi-strong VARMA(max(p, q), p) process.

2. If {εt} is weak multivariate GARCH(p, q), then {ut} is weak white noise, which means that {ηt} in
(2) follows a weak VARMA(max(p, q), p) process.

It should be emphasized that a strong multivariate GARCH process only permits a semi-strong
VARMA representation for ηt given by (2). The same holds for a semi-strong multivariate GARCH
process, whereas for a weak multivariate GARCH(p, q) process, (2) is only weak VARMA, and Ht is not
necessarily the conditional variance matrix of εt.

In the univariate context, Drost and Nijman (1993) define weak GARCH models as ht being the
projection on a constant and lagged ηt, but also on lagged εt. There are a few reasons for not using their
notion of weak GARCH models here. The orthogonality of the projection error ut w.r.t. lagged εt is not
a necessary requirement to obtain a GARCH model that is closed under temporal aggregation. It is true
that, without further assumption, the weak GARCH model as defined in Definition 3 is not closed under
temporal aggregation of flow variables. It will become clear in the next section that, what is needed
is an assumption on the structure of fourth moments of εt (Assumption 2), but this assumption is also
needed in the stronger version of Drost and Nijman (1993). The reason to use the weaker notion bears
an important advantage: it does not exclude asymmetric models and asymmetric marginal distributions.
To see this, consider the following process,

εt = H
1/2
t ξt ξt ∼ i.i.d.N(0, IK) (3)

h∗t = vech(Ht) = ω + Aηt−1 + A∗ηt−1I(ξt−1,1 < 0) + Bh∗t−1 (4)

which is a multivariate threshold GARCH model. According to Definition 3 this is a weak multivariate
GARCH process with the projection of ηt on Ht−1 given by

ht = P (ηt | Ht−1) = ω + (A + A∗/2) ηt−1 + Bht−1,

which can easily be checked by noting that the projection error, ηt − ht, is orthogonal to ηt−i, i ≥ 1.
Including asymmetric GARCH models is relevant for practical work, where the so-called leverage effect
has attracted a lot of research in the analysis of stock market volatility.

We now turn to the crucial assumption on the fourth moment structure of εt.
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Assumption 2
E[vec(εtε

′
t−i)vec(εtε

′
t−j)] = 0, ∀i, j ≥ 0, i 6= j (5)

A sufficient condition for (5) to hold is that all conditional skewness and co-skewness measures are
zero, i.e., E[ηtε

′
t | Ft−i−1], and that there is no leverage effect, that is, the conditional variance of εt

is conditionally uncorrelated to all lagged εt, E[ηtε
′
t−i | Ft−i−1],∀i ≥ 1. For example, these conditions

are satisfied if εt is a strong GARCH process with spherical distribution of ξt. However, it should be
emphasized that these conditions are not necessary, so that in general conditional skewness and leverage
effect are not excluded by Assumption (5).

The following assumption is needed for covariance stationarity of εt.

Assumption 3 All eigenvalues of the matrix
∑max(p,q)

i=1 (Ai + Bi) have modulus smaller than one.

The multivariate GARCH(p, q) process εt is covariance stationary if and only if Assumptions 1 and 2
hold, see e.g. Engle and Kroner (1995). In that case, the unconditional covariance matrix Σ = Var(εt) is
given by

σ = vech(Σ) =


IN −

max(p,q)∑

i=1

(Ai + Bi)



−1

ω, (6)

where the (N × 1) vector σ contains the K unconditional variances and the K(K − 1)/2 unconditional
covariances of εt.

To derive the autocovariance structure of η it is convenient to work with the pure vector moving
average (VMA(∞)) representation of ηt. From the VARMA representation (2) we obtain

ηt = σ +
∞∑

i=0

Φiut−i, (7)

where the N ×N matrices Φi can be determined recursively by Φ0 = IN ,

Φi = −Bi +
i∑

j=1

(Aj + Bj)Φi−j , i = 1, 2, . . . , (8)

see Lütkepohl (1993, pp. 220). From (7) we see directly that E[ηt] = σ and Var(ηt) =
∑∞

i=0 ΦiΣuΦ′i,
whereas the autocovariance matrix is given by

Γ(τ) = E [(ηt − σ)(ηt−τ − σ)′]

=
∞∑

i=0

Φτ+iΣuΦ′i. (9)

Using the notation Ση = E[ηtη
′
t] and Σh = E[hth

′
t], we can write Σu = Ση − Σh, and Γ(0) = Ση − σσ′.

In Section 3 we will also need the following structure of fourth moments,

Γ̃(τ) = E[D+
Kvec(εtεt−τ )vec(εtεt−τ )′D+,′

K ] (10)

which using Lemma 2 in the appendix is linked to Γ(τ) by

vec(Γ̃(τ)) = GKvec(Γ(τ) + σσ′), (11)
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where the matrix GK is square of order N2 and given by

GK = (D+
K ⊗D+

K)(IK ⊗ CKK ⊗ IK)(DK ⊗DK), (12)

with Dm and Cmn denoting the duplication and commutation matrices, respectively, and where D+
m =

(D′
mDm)−1D′

m.
Assumption 1 implies finiteness of Σu. However, to determine Σu numerically one has to specify

further how ut is generated. For all numerical calculations in this paper I assume that the disaggregate
process is strong multivariate GARCH with innovations ξt = H

−1/2
t εt that belong to the spherical class

of distributions. This is only to obtain numerical values for Σu and is not linked to the validity of the
temporal aggregation results. If other ways are found how to determine Σu for other distributions or even
for not strong multivariate GARCH processes, these could be used here equally well. Thus, to calculate
Σu I assume that the disaggregated process εt is strong multivariate GARCH with innovations ξt whose
distribution belongs to the class of spherical distributions with finite fourth moments. Spherical distri-
butions include the multinormal and multivariate t distributions as special cases. They are characterized
by the fact that the density is a function of ξt only through ξ′tξt. See Fang, Kotz and Ng (1989) for a
monograph on spherical distributions. All moments of spherical distributions containing odd orders are
zero and the marginal distributions (which are all the same) have fourth moments E[ξ4

t,i] that are linked
to the co-kurtosis c = E[ξ2

t,iξ
2
t,j ], i 6= j by E[ξ4

t,i] = 3c. For example, for a multinormal distribution c = 1,
and for a multivariate t distribution with ν degrees of freedom c = (ν − 2)/(ν − 4) if ν > 4. It can be
argued that if the disaggregated process is sampled on a sufficiently high frequency, then it could well
approximate a diffusion process with Wiener innovations (whose distribution over discrete time intervals
is multi-normal).

It is straightforward to show that the assumption of spherical innovations with finite fourth moments
implies (5). We therefore use the assumption of sphericity only when the calculation of Σu is of interest,
but the weaker Assumption 2 if the temporal aggregation result is of interest for a given Σu.

Finiteness of fourth moments of ξt is necessary for a finite covariance matrix of ut, Σu, but it is not
sufficient. Recall that Σu = Ση − Σh, so that Σu exists if and only if Ση and Σh exist. The following
simple relationship between Ση and Σh holds under Assumption 3 and spherical distribution of ξt,

vec(Ση) = c(2GK + IN2)vec(Σh), (13)

where GK is given by (12) and c = E[ξ4
t,1]/3, by Theorem 1 of Hafner (2003). Thus, it suffices to consider

the condition for a finite Ση. Theorem 2 of Hafner (2003) states that under spherical innovations, Ση is
finite if and only if all eigenvalues of the matrix

∑∞
i=1(Φi⊗Φi){2cGK +(c−1)IN2} have modulus smaller

than one. In that case, the vectorized matrix of fourth moments of εt is given by

vec(Ση) = c(2GK + IN2)

(
IN2 −

∞∑

i=1

(Φi ⊗ Φi){2cGK + (c− 1)IN2}
)−1

vec(σσ′). (14)

Consequently, we obtain for Σu

vec(Σu) = {2cGK + (c− 1)IN2}
(

IN2 −
∞∑

i=1

(Φi ⊗ Φi){2cGK + (c− 1)IN2}
)−1

vec(σσ′). (15)

Simpler expressions for the often used GARCH(1,1) model are readily available. It should be emphasized
that a correct understanding of the fourth moment structure will turn out to be essential for the study
of temporal aggregation.
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Example 1 To illustrate the results we will use the following bivariate example process throughout the
paper.

εt = H
1/2
t ξt, ξt ∼ i.i.d.N(0, I2), (16)

vech(Ht) = ht =




1
0
1


 +




0.16 0.08 0.01
0 0.12 0.03
0 0 0.09


 ηt−1 +




0.64 0 0
0 0.72 0
0 0 0.81


 ht−1

This process is stationary with maximum eigenvalue of A + B equal to 0.9. Fourth moments are finite as
the maximum eigenvalue of the matrix

∑∞
i=1(Φi ⊗Φi){2cGK + (c− 1)IN2} is 0.8262. The unconditional

covariance matrix is σ = (6.25, 1.875, 10)′, so that ρ = 0.237. The unconditional kurtosis of εt,1 is 4.17,
that of εt,2 is 3.28, and the unconditional co-kurtosis is 1.4. The normal kurtosis and co-kurtosis is 3
and 1 + 2ρ2 = 1.1125, respectively, so there is excess kurtosis and excess co-kurtosis. One issue to be
investigated is how kurtosis and co-kurtosis change when the series is temporally aggregated. Note that
for this example process the conditional variance of the second component of εt is only affected by its own
squared lagged values, and therefore one can speak of absence of causality from the first to the second
component in volatility. Section 4 formalizes this and discusses the impact of temporal aggregation on
causality.

3 Temporal aggregation

In order to keep the notation simple I will only discuss temporal aggregation of multivariate GARCH(1,1)
models. Most empirical applications use models of this order and it is in the tradition of Drost and Nijman
(1993). Thus, in the following I consider the multivariate GARCH(1, 1) model,

ht = ω + Aηt−1 + Bht−1.

We will look at two types of aggregation that are typically used in the case of stock and flow variables. By
far more relevant is the case of flow variables, e.g. when financial returns are under study, whereas stock
variables are easier to analyze. Denote the process εt that is aggregated over m periods by {ε(m)

mt , t ∈ ZZ}
which is then given by

ε
(m)
mt =

{
εmt, stock variables

εmt + εmt−1 + . . . + εmt−m+1, flow variables.

Now denote by η
(m)
mt = vech(ε(m)

mt ε
(m)′
mt ) the vector process that contains the squares and cross-products of

the aggregated process ε
(m)
mt . Since for arbitrary vectors a and b of dimension K, vech(ab′) + vech(ba′) =

2D+
Kvec(ab′), we have

η
(m)
mt =

{
ηmt, stock variables

ηmt + ηmt−1 + . . . + ηmt−m+1 + w
(m)
mt , flow variables.

(17)

where, using the lag operator Lkxt = xt−k,

w
(m)
mt = 2D+

K

{
m−2∑

i=0

Livec(εmtε
′
mt−1) +

m−3∑

i=0

Livec(εmtε
′
mt−2) + · · ·+ vec(εmtε

′
mt−m+1)}

}
(18)
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For example, if m = 2 then w
(2)
2t = 2D+

Kvec(ε2tε2t−1). Each term of w
(m)
mt has expectation zero and due

to Assumption 2 it is uncorrelated with every other term. Thus, it acts as a noise term that is added
to the sum of the high frequency second order process ηt. It turns out that this noise complicates the
analysis of temporal aggregation when compared with VARMA processes where this term is missing.
See however Section 6 for the approach of realized volatility that suppresses this term and thus aims at
aggregating not the returns but rather volatility directly. For later reference and recalling equation (10),
we can calculate the variance matrix of w

(m)
mt , Σ(m)

w say, as

Σ(m)
w = 4

m−1∑

i=1

(m− i)Γ̃(i), (19)

where Γ̃(i) is given by (11).
The proof of Theorem 1 in the appendix shows that the aggregated process η

(m)
mt has the following

VARMA representation,
(IN − (A + B)mL)η(m)

mt = ω(m) + v
(m)
mt , (20)

where

ω(m) =

{
(IN + A + B + . . . + (A + B)m−1)ω, for stock variables
m(IN + A + B + . . . + (A + B)m−1)ω, for flow variables

(21)

and v
(m)
mt is a vector moving average process of order one, that is, it has expectation zero, finite covariance

matrix Σ(m)
v = E[v(m)

mt v
(m)′
mt ], first order autocovariance matrix Γ(m)

v = E[v(m)
mt v

(m)′
m(t−1)], and higher order

autocovariances equal to zero. By convention, the lag operator in (20) that operates on an aggregated
process lags it on the low frequency scale, that is, Lη

(m)
mt = η

(m)
m(t−1).

2 The coefficient matrix of the
autoregressive part is given by (A+B)m, so that under the stationarity assumption 1 this matrix converges
to the zero matrix exponentially fast. However, if the largest eigenvalue of (A + B)m is very close to
unity, then it may require a large aggregation level m for the autoregressive part to become negligible.

The moving average part is more difficult to obtain and depends on the particular type of aggregation.
For the case of stock variables it takes the form

v
(m)
mt =

m∑

i=0

Js
i umt−i (22)

where

Js
0 = IN

Js
i = (A + B)i−1A, i = 1, . . . , m− 1

Js
m = −(A + B)m−1B.

From (22) we obtain immediately the form of the variance and autocovariances of v
(m)
mt ,

Σ(m)
v =

m∑

i=0

Js
i ΣuJs′

i (23)

Γ(m)
v = Js

mΣu. (24)

2Alternatively, one could define Lη
(m)
mt = η

(m)
mt−1 and replace L in (20) by Lm.
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For the case of flow variables the moving average term takes the form

v
(m)
mt =

2m−1∑

i=0

Jf
i umt−i + w

(m)
mt − (A + B)mw

(m)
m(t−1). (25)

The Jf
i matrices are determined as follows:

Jf
0 = IN

Jf
i = IN + A + (A + B)A + · · ·+ (A + B)i−1A, i = 1, . . . , m− 1

Jf
m = {IN + (A + B) + · · ·+ (A + B)m−2}A− (A + B)m−1B

Jf
i = {(A + B)i−m + (A + B)i−m+1 + · · ·+ (A + B)m−2}A− (A + B)m−1B, i = m + 1, . . . , 2m− 2

Jf
2m−1 = −(A + B)m−1B

Note that Jf
i can also be calculated recursively as Jf

i = Jf
i−1 + (A + B)i−1A for i = 1, . . . , m− 1, and as

Jf
i = Jf

i−1 − (A + B)i−m−1A for i = m + 1, . . . , 2m− 1.
From equation (25) we obtain the variance and first order auto-covariance of v

(m)
mt as

Σ(m)
v =

2m−1∑

i=0

Jf
i ΣuJf ′

i + Σ(m)
w + (A + B)mΣ(m)

w (A′ + B′)m (26)

Γ(m)
v =

m−1∑

i=0

Jf
i+mΣuJf ′

i − (A + B)mΣ(m)
w (27)

where Σ(m)
w is the variance matrix of w

(m)
mt given in (19).

The following theorem summarizes the main result.

Theorem 1 Under Assumptions 1, 2 and 3, the class of weak multivariate GARCH(1,1) processes is
closed under temporal aggregation. By Definition 3, this means that for the aggregated process ε

(m)
mt ,

E[ε(m)
mt | F (m)

m(t−1)] = 0 and h
(m)
mt = P (η(m)

mt | H(m)
m(t−1)), with H(m)

m(t−1) = sp(1, η
(m)
m(t−τ),1, . . . , η

(m)
m(t−τ),N ), and

where
h

(m)
mt = ω(m) + A(m)η

(m)
m(t−1) + B(m)h

(m)
m(t−1), (28)

where ω(m) is given by (21), B(m) is given by the solution to the system of quadratic equations

B(m)Γ(m)
v B(m)′ + B(m)Σ(m)

v + Γ(m)
v = 0, (29)

where the matrices Σ(m)
v and Γ(m)

v are given by (23) and (24) for the case of stock variables and by (26)
and (27) for the case of flow variables, A(m) is given by

A(m) = (A + B)m −B(m), (30)

and where the projection error {u(m)
mt , t ∈ ZZ}, u

(m)
mt = η

(m)
mt − h

(m)
mt , is a weak white noise vector process

with covariance matrix Σ(m)
u with

vec(Σ(m)
u ) = (IN2 + B(m) ⊗B(m))−1vec(Σ(m)

v ). (31)

Using Lemma 1, we immediately obtain the following corollary.
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Corollary 1 The aggregated process η
(m)
mt follows a weak VARMA(1,1) process that can be written as

η
(m)
mt = ω(m) + (A(m) + B(m))η(m)

m(t−1) −B(m)u
(m)
m(t−1) + u

(m)
mt , (32)

Theorem 1 shows how the parameter matrices of the aggregated process can be obtained from the
high frequency process. The matrices Σ(m)

v and Γ(m)
v given by (23) and (24) and by (26) and (27),

respectively, are functions of the matrices A, B, and Σu and thus can be calculated if the high frequency
process is known. As for B(m), (29) is a system of nonlinear equations that can not be solved explicitly.
The analysis of existence and uniqueness of solutions for (29) goes beyond the scope of the present paper,
but is certainly important for future research. In practice any numerical search algorithm will work well.
In all investigated situations with stationary high frequency processes, I found that convergence to a
solution is very fast if the disaggregate process is not too close to the stationarity boundary and not too
close to a white noise process. Also, the solutions were unique under the restriction of invertibility, that
is, all eigenvalues of B(m) smaller than one in modulus.

Note that equation (29) can be directly compared to equation (10) of Drost and Nijman (1993) for
the univariate case. We can vectorize equation (29) and write for the case of stock variables

[
(B(m) ⊗B(m) + IN2)(IN ⊗ (A + B)m−1B) + (IN ⊗B(m))

m∑

i=0

Js
i ⊗ Js

i

]
vec(Σu) = 0 (33)

In the univariate case, Σu (which is linked to the fourth moment structure) is a positive scalar so that it
can be dropped from (33). A solution then just solves the term in squared brackets being zero. In the
multivariate case, however, (33) may hold even if the term in squared brackets is not zero. The implication
of this is that, in general, the low frequency parameters depend on the fourth moment characteristics
even in the case of stock variables. This is different from the univariate case, where this dependence
occurred only for flow variables.

In the following let us look at the case of flow variables, the practically more relevant one. One
interesting aspect of the aggregated series is its fourth moment structure, in particular the kurtosis of
each marginal series. We expect these kurtosis measures to decline eventually towards 3 as m increases.
But it will turn out later that the kurtosis can actually increase for small values of m, before it decreases.
The matrix of fourth moments of the aggregated process is given by

Σ(m)
η = E[η(m)

mt η
(m)′
mt ] = mΣη + Σ(m)

w +
m−1∑

i=1

(m− i) {Γ(i) + Γ(i)′ + 2σσ′} (34)

The first two terms on the right hand side of (34) are the sum of the variances of each individual term
of η

(m)
mt , whereas the third term arises because of the non-zero covariance between ηt and ηt−τ for τ 6= 0

given in (9). This allows to compute the kurtosis and co-kurtosis of the aggregated series. The following
theorem states that excess kurtosis and co-kurtosis disappear under temporal aggregation.

Theorem 2 For the temporally aggregated process ε
(m)
mt = εmt + εmt−1 + · · · + εmt−m+1, conditional

heteroskedasticity, excess kurtosis and excess co-kurtosis disappear asymptotically as m −→∞. Moreover,

m−1/2ε
(m)
mt

D−→ N (0, Σ)

Figure 1 shows the kurtosis and co-kurtosis of the example process (16) as a function of the aggregation
level m. Both kurtosis coefficients converge to 3, whereas the co-kurtosis converges to 1 + 2ρ2 = 1.1125.
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Note however the slow rate of convergence with still substantial excess kurtosis and excess co-kurtosis
at m = 50. Moreover, it is remarkable that both kurtosis and co-kurtosis increase for small m. Thus, a
series may become even more leptokurtic under temporal aggregation, if the aggregation level is small.

From the weak VARMA representation (32) one obtains the weak VMA(∞) representation

η
(m)
mt = σ(m) +

∞∑

i=0

Φ(m)
i u

(m)
m(t−i), (35)

where σ(m) =
(
IN − (A(m) + B(m))

)−1
ω(m), and where the N ×N matrices Φ(m)

i are given by Φ0 = IN

and
Φ(m)

i = (A(m) + B(m))i−1A(m), i = 1, 2, . . . , (36)

4 Causality

There is a substantial literature on the effects of temporal aggregation for causality between time series,
see e.g. Marcellino (1999) for a recent overview and references. The general difficulty in empirical work is
that only data of the temporally aggregated series is available, for which one typically observes contem-
poraneous correlation between the series. The question for the investigator is whether this correlation
stems from a true causal relation of the high frequency series or whether it is a mere artefact of temporal
aggregation. We will address this issue here in the volatility context and show that, again, there are
important differences to the VARMA case.

As is common in econometrics, we use the term causality in the sense of ‘Granger causality’, which
for volatility has been defined by Granger, Robins, and Engle (1984). However, there are at least three
alternative versions of Granger causality, one based on the entire distribution of a variable to be forecast,
another on the conditional expecation, and yet another on optimal linear forecasts. Knowing from Section
3 that temporally aggregated multivariate GARCH processes are only weak multivariate GARCH, we
have to be careful in defining causality in variance, because notions based on conditional expectations
or conditional variances become difficult to check for the aggregated series. Rather, one has to weaken
the concept and use the notion of best linear predictors, but this stands in the tradition of, for example,
Boudjellaba et al. (1992) and Comte and Lieberman (2000). Also, I use the term ‘Granger causality’ for
the case of a causal lag greater than zero (sometimes this is also called ‘directional causality’), whereas I
use ‘instantaneous causality’ for the causal lag being actually zero.

Suppose we are interested in the causality in variance between the first two elements of εt, εt,1

and εt,2. Let us introduce the following notation. Denote the σ-algebra generated by εs,i, s ≤ t,
i, j = 1, 3, 4, . . . , K by F (−2)

t . Moreover, denote by Ht the set of all linear combinations of a constant
and εs,iεs,j , s ≤ t, i, j = 1, . . . , K, by H(−2)

t the set of all linear combinations of a constant and εs,iεs,j ,
s ≤ t, i, j = 1, 3, 4, . . . ,K, and by H(+2)

t the set of all linear combinations of a constant, εs,iεs,j , s ≤ t,
i, j = 1, . . . , K, and εt+1,2εt+1,i, i = 2, . . . ,K.

Definition 4 1. We say that εt,2 Granger causes εt,1 in variance (GCV), denoted by εt,2
GCV→ εt,1 if,

for some h ≥ 1,
Var(εt+h,1 | Ft) 6= Var(εt+h,1 | F (−2)

t ), (37)

2. There is said to be instantaneous causality in variance (ICV) between εt,2 and εt,1, denoted by
εt,1

ICV↔ εt,2 if
Var(εt+1,1 | Ft) 6= Var(εt+1,1 | Ft ∨ σ(εt+1,2)) (38)
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where Ft ∨ σ(εt+1,2) denotes the augmentation of Ft−1 by the information contained in εt,2.

3. We say that εt,2 linearly Granger causes εt,1 in variance (LGCV), denoted by εt,2
LGCV→ εt,1 if, for

some h ≥ 1,
P (ε2

t+h,1 | Ht) 6= P (ε2
t+h,1 | H(−2)

t ), (39)

4. There is said to be linear instantaneous causality in variance (LICV) between εt,2 and εt,1, denoted
by εt,1

LICV↔ εt,2 if
P (ε2

t+1,1 | Ht) 6= P (ε2
t+1,1 | H(+2)

t ) (40)

For weak multivariate GARCH processes it is only possible to investigate linear causality since the
conditional variances are not specified or not known. On the other hand, for semi-strong multivariate
GARCH processes it is well possible to investigate causality, but that would only be relevant for the
high-frequency process. Absence of either of these causality concepts now amounts to zero restrictions on
the parameter matrices. Hafner and Herwartz (2003) give necessary and sufficient conditions for absence
of GCV and LGCV.

In temporally aggregated VARMA models, Breitung and Swanson (2002) have investigated the effect
of so-called spurious instantaneous causality, as first investigated by Renault and Szafarz (1991) and
Renault, Sekkat and Szafarz (1998). This occurs if there is no causality between the disaggregated time
series, but if there is instantaneous causality between the aggregated time series. We adapt this definition
to the volatility case. If there is no causality in volatility (instantaneous or directional) between the series
εt,1 and εt,2, we denote this by εt,1

CV= εt,2, and correspondingly we write εt,1
LCV= εt,2 if there is no linear

causality in volatility (instantaneous or directional) between the series.

Definition 5 1. There is said to be spurious ICV, if εt,1
CV= εt,2, but ε

(m)
mt,1

ICV↔ ε
(m)
mt,2 for some m ≥ 2

and some t ∈ ZZ.

2. There is said to be spurious LICV, if εt,1
LCV= εt,2, but ε

(m)
mt,1

LICV↔ ε
(m)
mt,2 for some m ≥ 2 and some

t ∈ ZZ.

It has sometimes been argued that spurious instantaneous causality can be problematic in empirical
work, since if two aggregated time series are found to show instantaneous causality, it may be because
there is causality between the disaggregated series or because it is induced by temporal aggregation.
Breitung and Swanson (2003) give sufficient conditions to exclude spurious instantaneous causality in
VARMA models. In the volatility case, the following theorem gives a necessary condition for spurious
instantaneous causality.

Theorem 3 If the high frequency process follows strong multivariate GARCH process with Gaussian
innovations, then a necessary condition for spurious LICV between εt,1 and εt,2 is

ht,2 = 0 and K ≥ 3,

where ht,2 is the second component of ht, i.e. the conditional covariance of εt,1 and εt,2.

In the following let us be a bit more loose in terminology and only refer to GCV and ICV when it
could also mean LGCV or LICV. Theorem 3 implies that in empirical work spurious ICV is of much less
relevance than spurious instantaneous causality in the conditional mean, because the two series will in
most cases show some non-zero conditional covariance, be it constant or not. Financial series such as
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stock returns, for example, tend to be positively correlated at high frequencies. So, ICV will be the rule
rather than the exception if high frequency financial series are investigated.

Rather than ICV, it is far more interesting to see whether there is GCV. It turns out that there
may be absence of GCV between the disaggregate series, but presence of GCV between the aggregated
series. This might be called spurious Granger causality in volatility. A sufficient condition for absence
of GCV is that the parameter matrices A and B of the multivariate GARCH model are diagonal. Many
empirical studies have shown that diagonal GARCH models may give good descriptions of the DGP at
many frequencies. This can be due to the fact that even though there may be GCV induced by temporal
aggregation, it is possibly much less important numerically than ICV. To see whether this is the case for
a given multivariate GARCH model, we need measures for the alternative causalities, which we will look
at in the following.

Measures for the causality in variance have been considered by Hafner (2003) based on well known
measures for causality in VARMA models introduced by Geweke (1982). For simplicity, I only consider
the bivariate case in the following, but extensions to causality measures conditional on other variables
follow in analogy to Geweke (1984). Let xt = ε2

t,1 and yt = ε2
t,2. By the results of Nijman and Sentana

(1996), the marginal process εt,1 follows a weak univariate GARCH process and therefore xt has a weak
ARMA(q∗, p∗) representation such as

xt = ωx +
q∗∑

i=1

(αx
i + βx

i )xt−i −
p∗∑

j=1

βx
j wt−j + wt, (41)

where wt = xt − P (ε2
t,1 | H(−2)

t−1 ), ωx, αx
i and βx

j are parameters. Upper bounds for the AR and MA
orders are given by q∗ ≤ 3 and p∗ ≤ 3, respectively, by Corollary 4.2.2 of Lütkepohl (1987) or Nijman
and Sentana (1996). The process wt is univariate weak white noise with variance σ2

w, say. A measure for
GCV from yt to xt is given by

GCVy→x = log
σ2

w

[Σu]11
, (42)

By symmetry, one obtains a causality measure for the reverse causality direction, GCVx→y. Summing up
these unidirectional causality measures, we can define a measure for bidirectional causality as

GCVy↔x = GCVy→x + GCVx→y (43)

A measure for ICV between xt and yt is given by

ICVx↔y = log
Σu,11Σu,33

Σu,11Σu,33 − Σ2
u,13

, (44)

Finally, the measure for linear dependence between xt and yt is denoted by CVx,y. This measure can
be decomposed into the three causality measures:

CVx,y = GCVx→y + GCVy→x + ICVx↔y = GCVy↔x + ICVx↔y. (45)

Now suppose one is mainly interested in the bidirectional GCV measure, GCVy↔x, because, for exam-
ple, one wants to see how important spurious GCV can become. For example, the hypothesis of a diagonal
GARCH model amounts to testing whether this bidirectional measure is zero. For a given multivariate
GARCH process there is no obvious way to find the unidirectional measures GCVy→x and GCVx→y, other
than via determining the univariate GARCH models for the marginal processes, which is straightforward
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but tedious, see Nijman and Sentana (1996). However, there is a simple way to find the bidirectional
measure GCVy↔x, as we will see immediately. The measure for linear dependence can be decomposed in
the frequency domain as

CVx,y =
1
2π

∫ π

−π

log
f11(λ)f33(λ)

f11(λ)f33(λ)− |f13(λ)|2 dλ,

see e.g. Geweke (1982), where f(λ) denotes the spectral density matrix of ηt = vech(εtε
′
t) which is given

by

f(λ) =




∞∑

j=0

Φje
ijλ


Σu




∞∑

j=0

Φje
ijλ



′

. (46)

The bidirectional measure GCVy↔x can now easily be obtained as a residual of equation (45), i.e., by
the difference between CVx,y and ICVx↔y. The advantage of this approach is that f(λ) and therefore
the bidirectional measure can be calculated directly using the representation of the joint process εt. The
alternative way of summing up the two unidirectional measures requires the determination of the marginal
processes εt,1 and εt,2, which is somewhat more involved, see Section 3 of Nijman and Sentana (1996).

The above causality measures can now also be obtained for the aggregated series η
(m)
mt by replacing

Σu in (46) and (44) by Σ(m)
u given in (31) and replacing Φi in (46) by Φ(m)

i given in (36). This gives us
a measure of bidirectional causality in volatility for the aggregated series, defined as

GCV(m)
y↔x = CV(m)

x,y − ICV(m)
x↔y. (47)

Since ∀i ≥ 1, Φ(m)
i → 0 as m → ∞ , the spectral density matrix of the series m−1η

(m)
mt converges

to the limit of m−2Σ(m)
u , U say. For example, by the results of Section 2, this would be given by

vec(U) = (cGK − IN2)vec(σσ′) under the assumption of spherical innovations. Thus, CV(m)
x,y and ICV(m)

x↔y

converge to the same limit given by

lim
m→∞

CV(m)
x,y = lim

m→∞
ICV(m)

x↔y = log
U11U33

U11U33 − U2
13

Using (47), this implies that limm→∞ GCV(m)
y↔x = 0, meaning that all directional Granger causality in

variance disappears eventually as the series is aggregated. This is of course no surprise as it corresponds
to the aggregation results in VARMA processes.

Figure 2 shows the alternative causality measures for the example process (16). Clearly, the bidirec-
tional GCV measure is much smaller here than the ICV measure and also dissipates to zero very quickly.
Note that the bidirectional GCV measure of the disaggregate process (16) is equal to the unidirectional
GCV measure from εt,2 to εt,1, since the matrices A and B are upper triangular, so that there is no GCV
from εt,1 to εt,2. However, the bidirectional GCV measure of the aggregated process incorporates some
causality from εt,1 to εt,2, although smaller than from εt,2 to εt,1. But this is not shown in the figure.

5 Forecasting

Suppose one is interested in the prediction of multivariate volatility of the aggregated series h periods
ahead. That is, given information at time mt one wants to predict the volatility of ε

(m)
m(t+h). Let us only

consider the flow variable case here, so that ε
(m)
m(t+h) = εm(t+h)+εm(t+h)−1+ . . .+εm(t+h−1)+1. Prediction
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of the volatility of ε
(m)
m(t+h) is the same as prediction of η

(m)
m(t+h). One can now build a forecast based on

the VMA(∞) representation of the aggregated series in (35). It is given by

η
(m)
mt (h) = σ(m) +

∞∑

i=0

Φ(m)
h+iu

(m)
m(t−i)

The mean square error of this forecast is given by the matrix

Σa(h) =
h−1∑

i=0

Φ(m)
i Σ(m)

u Φ(m)′
i .

Another possibility is to predict the disaggregated series and then aggregate the forecasts. Based on the
VMA(∞) representation of the disaggregated series in (7), the optimal r-step forecast in a mean square
error sense is given by

ηt(r) = σ +
∞∑

i=0

Φr+iut−i

The forecast for η
(m)
m(t+h) is then given by ηmt(mh) + ηmt(mh− 1) + . . . + ηmt(m(h− 1) + 1). The mean

square error of this forecast is given by

Σd(h) = FΣdm(h)F ′,

where F = (IN , . . . , IN ) is an (N×mN) aggregation matrix, and Σdm(h) is a symmetric, positive definite
(mN ×mN) matrix given by

Σdm(h) =




∑m(h−1)
i=0 ΦiΣuΦ′i

∑m(h−1)
i=0 ΦiΣuΦ′i+1 · · · ∑m(h−1)

i=0 ΦiΣuΦ′i+m−1∑m(h−1)
i=0 Φi+1ΣuΦ′i

∑m(h−1)+1
i=0 ΦiΣuΦ′i · · · ∑m(h−1)+1

i=0 ΦiΣuΦ′i+m−2

...
...

. . .
...∑m(h−1)

i=0 Φi+m−1ΣuΦ′i
∑m(h−1)+1

i=0 Φi+m−2ΣuΦ′i · · · ∑mh−1
i=0 ΦiΣuΦ′i




,

see e.g. chapter 8 of Lütkepohl (1987). There it is also shown that for VARMA models in general
Σd(h) ≤ Σa(h) in the sense that the matrix Σa(h) − Σd(h) is positive semi-definite, and that equality
only holds in special cases such as periodicity with period equal to the aggregation level. An implication
of this result is that the forecasts based on the disaggregated series are superior to the forecasts based on
the aggregated series in terms of forecast precision. On the other hand, both forecasts become equivalent
as the forecast horizon increases, as both mean square error matrices approach the same unconditional
covariance matrix.

For the aggregation of multivariate GARCH processes, however, the difference between both forecasts
turns out to be stronger than for VARMA processes and not dissipating for increasing horizons. The
reason is the additional noise term in the aggregated series, w

(m)
mt . The expectation of this term is zero,

but it has a positive definite covariance matrix Σ(m)
w given by (19). Therefore, the unconditional variance

of η
(m)
mt is larger than that of ηmt + ηmt−1 + . . . + ηm(t−1)+1, and the forecast mean square error matrices

converge to two different levels with increasing horizon. Thus, we have a strict inequality, Σd(h) < Σa(h)
for all h > 0. Asymptotically, the difference is given by

lim
h→∞

Σa(h)− Σd(h) = Σ(m)
w , (48)

where Σ(m)
w is given by (19). As the difference between the two forecasting methods is negligible in

VARMA models for sufficiently large horizons, it turns out to be substantial in multivariate GARCH

15



models. Equation (48) says that in the limit this difference is just given by the variance matrix of the
noise term w

(m)
mt in (18) that was added to the sum of the indivual ηmt in constructing the aggregate

η
(m)
mt . It should be emphasized that this noise term is missing in the aggregation of VARMA processes.

The implication of (48) is that forecasting weekly volatility, for example, by aggregating daily volatility
forecasts will always be better than forecasting the weekly series directly, no matter how large the fore-
casting horizon. This is also the reason why in forecasting volatility one should use the highest frequency
for which data is available, provided that there are no biases coming from microstructure effects, for
example. Recent empirical research has shown that predicting daily volatility of a financial time series
using intra-day returns can substantially improve the precision of forecasts using the daily series only,
see e.g. Andersen et al. (2003). See also Section 6, where this so-called realized volatility is investigated
in the context of multivariate GARCH models.

Figure 3 shows the mean square prediction errors of the two forecasting methods for the example
process (16) with m = 2. In this example, the mean square prediction error can be reduced by almost 50
% for all forecasting horizons by doubling the sampling frequency and using the high frequency data for
prediction.

6 Multivariate realized volatility

There is a growing literature on so-called realized volatilities, see, e.g., Andersen et al. (2003) for an
overview. Realized volatilities are estimates of low-frequency volatilities using high frequency data. For
example, the volatility of a daily return series could be estimated by the sum of squared intra-day returns.
When the sampling frequency goes to infinity, realized volatilities converge to the actual volatility and
are therefore consistent, unbiased estimates of daily volatility. In the multivariate context, the same idea
applies to the vector of squares and cross-products, ηt = vech(εtε

′
t). The aggregation scheme is no longer

ε
(m)
mt = εmt + εmt−1 + . . . + εmt−m+1 but η̄mt = ηmt + ηmt−1 + . . . + ηmt−m+1. Thus, all the cross-terms

that appeared in our previous aggregation scheme η
(m)
mt = vech(ε(m)

mt ε
(m)′
mt ) are absent here.

First, it is clear that for any finite m, η̄mt is an unbiased estimate of the unobservable daily volatility.
It is more efficient than the noisy η

(m)
mt = vech(ε(m)

mt ε
(m)′
mt ) but, for every finite m it is inefficient compared

to h̄mt = hmt + hmt−1 + . . . + hmt−m+1. The practical advantage of using η̄mt is, of course, that no
parametric model of volatility needs to be specified, but a drawback is given by the restriction that m

can not be chosen arbitrarily large. In other words, the time interval between observations can not be
arbitrarily small due to market microstructure effects. If the true volatility process follows multivariate
GARCH, we quantify below the loss of efficiency of η̄mt compared with h̄mt.

To calculate the variance of η̄mt, note that this is just the sum of the variances of the individual terms
ηmt, each one equal to Ση − σσ′, plus the sum of all covariances. This is given by

Var(η̄mt) = m(Ση − σσ′) +
m−1∑

i=1

(m− i) (Γ(i) + Γ(i)′) .

Similarly, we obtain for the variance of h̄mt

Var(h̄mt) = m(Σh − σσ′) +
m−1∑

i=1

(m− i) (Γ(i) + Γ(i)′) , (49)
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m RE1(m) RE2(m) RE3(m)
2 3.2264 4.3470 6.8479
3 2.3839 3.0344 4.4386
4 2.0356 2.5008 3.4832
5 1.8460 2.2121 2.9713
10 1.5075 1.6985 2.0663
20 1.3632 1.4774 1.6745
30 1.3217 1.4127 1.5585
40 1.3030 1.3832 1.5056
50 1.2925 1.3668 1.4763

Table 1: Relative efficiencies according to definition (51) of realized volatilities with respect to the optimal
estimates when the high frequency process is known to be the process given in (16). RE1 is the measure
for the conditional variance of ε

(m)
mt,1, RE2 is the measure for the conditional covariance of ε

(m)
mt,1 and

ε
(m)
mt,2, and RE3 is the measure for the conditional variance of ε

(m)
mt,2.

so that the difference is given by

Var(η̄mt)−Var(h̄mt) = m(Ση − Σh), (50)

which is positive semi-definite. Note that (49) is O(m2) and (50) is O(m), so that the relative difference
between the two variances is O(m−1). In other words, the loss of efficiency of realized volatilities w.r.t.
the model (supposing that this is correctly specified) is diminishing with rate O(m−1). In practice, m

can not increase without bounds, so that the relative efficiency for a given m depends on features such as
the volatility persistence and the correlation. Let us define the relative efficiency of the i-th component of
realized volatility w.r.t. the model as the i-th diagonal element of Var(η̄mt) divided by the corresponding
diagonal element of Var(h̄mt), that is,

REi(m) =
[Var(η̄mt)]ii[
Var(h̄mt)

]
ii

. (51)

Note that REi(m) = 1+O(m−1) so that for m sufficiently large the efficiency loss is negligible. However,
if m can not be chosen arbitrarily large in practice, the efficiency loss may be substantial. For our
example process (16), Table 1 lists the values of REi(m) for selected levels m. Obviously, even at m = 50
the variance of the realized volatility estimator is still 29% higher than that of the optimal one for the
first component of η

(m)
mt . For the other two components the loss is even higher. For their exchange rate

example, Andersen et al. (2003) use a value of m = 48, having half-hourly data for a 24 hours per day
market. They can not choose m much larger because of the problems with interfering microstructure
effects such as bid-ask bounces. The values of REi(m) in Table 1 therefore appear relevant if our example
process can be considered as a typical high frequency process. In such a situation the practitioner has to
weigh the risk of mis-specifying a parametric volatility model for the high frequency process against the
efficiency loss of the nonparametric estimation using realized volatilities.

There is a second issue concerning standardized residuals using realized volatilities which turns out
to be intimately related to the relative efficiency issue. Standardized residuals are typically obtained by
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H̄
−1/2
mt ε

(m)
mt , where H̄mt is the de-vectorized h̄mt, for the given multivariate GARCH model. Alternatively,

without an assumption on the underlying process, one can define standardized residuals by Υ−1/2
mt ε

(m)
mt ,

where Υmt is the de-vectorized η̄mt. Due to the higher variance of η̄mt compared to h̄mt, the kurtosis of
the residuals standardized by realized volatilities η̄mt will be smaller than that of residuals standardized
by h̄mt. In particular, if the innovation distribution is Gaussian, the kurtosis of the residuals standardized
by realized volatilities is smaller than three, which is also apparent in the empirical results of Andersen
et al. (2003), Table 1. They claim that standardized residuals are close to being Gaussian, but for their
sample of ten years of daily returns on the DM/Dollar exchange rate a value of 2.57 for the kurtosis of
standardized residuals is likely to violate the normality assumption.3 It can also be shown that, using
first order expansions, the negative bias of the kurtosis estimate is directly related to the efficiency loss
expressed by REi(m).

Recently, interest has focused on the distribution of realized volatilities. If the true underlying DGP is
multivariate GARCH and m is sufficiently large, this may be approximated by the asymptotic distribution
of the centered and normalized realized volatilities, which is given in the following theorem.

Theorem 4 Under Assumptions 1 to 3, the asymptotic distribution of realized volatilities for m →∞ is
given by

m−1/2(η̄mt −mσ) D−→ N (0, 2πf(0))

where f(λ) is the spectral density matrix of ηt at frequency λ given in (46). Moreover,

lim
m→∞

Cov(η̄mt, η̄m(t+τ)) =

{ ∑∞
j=1

(∑j
i=0 Φi

)
Σu

(∑∞
i=j+1 Φ′i

)
, τ = 1

0, τ ≥ 2

where Σu is given in (15).

An implication of this theorem is that, for m sufficiently large, the centered and normalized realized
volatilities may be approximated by a multinormal distribution. However, due to the asymmetric nature
of the distribution of volatilities, typically being strongly skewed to the right, it may require very large
values of m before the normality result of Theorem 4 applies. In fact, Andersen et al. (2003) find that
for moderately large m the distribution of foreign exchange realized volatilities can be well approximated
by a log-normal distribution. Further empirical evidence is required to assess how these results depend
on the aggregation level m. Also, one may do Monte Carlo simulations to find the distribution of
m−1/2(η̄mt−mσ) for finite m and a known high frequency process such as (16). This is beyond the scope
of this paper but interesting for future research.

The second result of Theorem 4 implies that the aggregated process η̄mt for large but finite aggregation
levels m can be approximated by a VMA(1) process. This is because Cov(η̄mt, η̄m(t+τ)) is O(m) for τ = 0,
O(1) for τ = 1 and o(1) for τ ≥ 2. That is, for m → ∞ the process converges to white noise since the
autocorrelations tend to zero, but for finite m the first order autocorrelation will be much larger than
higher order autocorrelations. In other words, the vector of realized volatilities can be approximated
by a VMA(1) process for large but finite values of m if the underlying DGP is multivariate GARCH.
Hence, in practice one may directly specify a VMA(1) model for the realized volatilities for finite but

3This can be seen informally by noting that for an i.i.d. Gaussian white noise, the standard error of the kurtosis estimator

is
p

24/n, where n is the sample size. If n = 2500, which roughly corresponds to ten years of daily data, the standard error

takes the value 0.098, so that with an estimate of 2.57 one would reject the null hypothesis of Gaussian white noise at the

95% significance level.
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large aggregation level m. Alternatively, one may even use standard model selection procedures to specify
a VARMA(p, q) model for the realized volatilities.

7 Conclusions and Outlook

The main conclusion of this paper is that the class of weak multivariate GARCH processes is closed
under temporal aggregation and that the dynamics of the aggregated process can be obtained in a
straightforward manner. Although there are many similar results for VARMA processes and univariate
GARCH processes, there are also many differences. To recall just two examples, the aggregated process
of a stock variable does not depend on the kurtosis in the univariate case, but it depends on the fourth
moment structure in the multivariate case. Secondly, the forecasting performance of the method that
directly predicts the aggregated process does not become identical to the optimal procedure for increasing
horizons. Thus, there is a substantial difference between forecasting a VARMA process and the volatility
of a multivariate GARCH process. Concerning realized volatility, it will be important to shed more
empirical light on the multivariate distribution of realized volatilities, for which this paper derives a
theoretical result if the high frequency process is multivariate GARCH.

An important issue that has not been addressed in this paper is the estimation by quasi maximum
likelihood. Usually, the consistency of this method requires that the first two moments of the process are
correctly specified, see e.g. Bollerslev and Wooldridge (1992). However, aggregated GARCH processes
are only weak GARCH, so that the conditional second moment is not correctly specified. In the univariate
case, Drost and Nijman (1993) find that the bias is not strong, whereas Meddahi and Renault (2003) find
it to be strong under empirically more relevant parameter constellations. In the multivariate case, this
is a subject of future research.

Finally, it will be important to bridge the gap to continuous time processes, as was done in the
univariate case by Nelson (1990) and Drost and Werker (1996). This is also left to future research.

Appendix

Lemma 2 Let Γ(τ) = E [(ηt − σ)(ηt−τ − σ)′] and Γ̃(τ) = E[D+
Kvec(εtεt−τ )vec(εtεt−τ )′D+,′

K ]. Then

vec(Γ̃(τ)) = GKvec(Γ(τ) + σσ′), (52)

where the matrix GK is square of order N2 and given by

GK = (D+
K ⊗D+

K)(IK ⊗ CKK ⊗ IK)(DK ⊗DK), (53)

with Dm and Cmn denoting the duplication and commutation matrices, respectively, and where D+
m =

(D′
mDm)−1D′

m.

Proof: Follows by making use of the following results for some square matrices A, B,C, D of order N :
vec(ABC) = (C ′ ⊗ A)vec(B), vec(A ⊗ B) = (IN ⊗ CNN ⊗ IN )(vecA ⊗ vecB), and (AC) ⊗ (BD) =
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(A⊗B)(C ⊗D). Thus,

vec(Γ̃(τ)) = (D+
K ⊗D+

K) vec E
[
vec(εtε

′
t−τ )vec(εtε

′
t−τ )′

]

= (D+
K ⊗D+

K) vec E [(εt−τ ⊗ εt)(εt−τ ⊗ εt)′]

= (D+
K ⊗D+

K) vec E
[
(εt−τε′t−τ )⊗ (εtε

′
t)

]

= (D+
K ⊗D+

K)(IK ⊗ CKK ⊗ IK)E
[
vec(εt−τε′t−τ )⊗ vec(εtε

′
t)

]

= (D+
K ⊗D+

K)(IK ⊗ CKK ⊗ IK)(DK ⊗DK)E [ηt−τ ⊗ ηt]

= GK(Γ(τ) + σσ′),

where GK = (D+
K ⊗D+

K)(IK ⊗ CKK ⊗ IK)(DK ⊗DK), which proves the lemma. Q.E.D.
Proof of Theorem 1

First, the aggregated series ε
(m)
mt is a martingale difference w.r.t the information set F (m)

m(t−1), because

F (m)
m(t−1) ⊂ Fm(t−1) and, by the law of iterated expectations, E[εmt−j | Fm(t−1)] = 0 for j = 1, . . . , m− 1,

and therefore also E[ε(m)
mt | Fm(t−1)] = 0.

To prove the volatility part, I will use so-called macro processes, based on the discussion for VARMA
models in Lütkepohl (1987, Chapter 6). The advantage of this approach is that it allows for considering
temporal and contemporaneous aggregation in a joint framework. The VARMA representation in (2) can
be rewritten as the macro process

A0η̃mt = ω̃ + A1η̃m(t−1) + M0ũmt + M1ũm(t−1) (54)

with the (mN ×mN) matrices

A0 =




IN 0 0 · · · 0
−(A + B) IN 0 · · · 0

0 −(A + B) IN · · · 0
...

...
...

. . .
...

0 0 0 · · · IN




A1 =




0 0 · · · A + B

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0




,

M0 =




IN 0 0 · · · 0
−B IN 0 · · · 0
0 −B IN · · · 0
...

...
...

. . .
...

0 0 0 · · · IN




M1 =




0 0 · · · −B

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0




,

and with the (mN × 1) vectors

ω̃ =




ω
...
ω


 , η̃mt =




ηm(t−1)+1

ηm(t−1)+2

...
ηmt




, ũmt =




um(t−1)+1

um(t−1)+2

...
umt




.

After multiplying both sides of (54) from the left by the inverse of A0 one obtains

A(L)η̃mt = A−1
0 ω̃ + M(L)ũmt (55)
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with

A(L) =




IN 0 · · · −(A + B)L
0 IN · · · −(A + B)2L
...

...
. . .

...
0 0 · · · IN − (A + B)mL




M(L) =




IN 0 · · · −BL

A IN · · · −(A + B)BL

(A + B)A A · · · −(A + B)2BL
...

...
. . .

...
(A + B)m−2A (A + B)m−3A · · · IN − (A + B)m−1BL




,

Now, denoting the block-adjoint of A(L) by A(L)∗, which is given by

A(L)∗ =




IN − (A + B)mL 0 · · · (A + B)L
0 IN − (A + B)mL · · · (A + B)2L
...

...
. . .

...
0 0 · · · IN




,

we can write
A(L)∗A(L) = diag(IN − (A + B)mL),

where diag(X) denotes a block diagonal matrix with matrices X on the diagonal. Multiplying both sides
of (55) from the left by A(L)∗, we obtain

diag(IN − (A + B)mL)η̃mt = A(L)∗A−1
0 ω̃ + Z(L)ũmt, (56)

with Z(L) = A(L)∗M(L). First, note that the constant is given by

A(L)∗A−1
0 ω̃ =




(IN + A + B + . . . + (A + B)m−1)ω
...

(IN + A + B + . . . + (A + B)m−1)ω


 .

Next, the matrix Z(L) determines the moving average term and is given by



IN − (A + B)m−1BL (A + B)m−2AL (A + B)m−3AL · · · AL

A IN − (A + B)m−1BL (A + B)m−2AL · · · (A + B)AL

(A + B)A A IN − (A + B)m−1BL · · · (A + B)2AL
...

...
...

. . .
...

(A + B)m−2A (A + B)m−3A (A + B)m−4A · · · IN − (A + B)m−1BL




.

(57)
The matrices on the block diagonal of Z(L) are all IN − (A + B)m−1BL. The matrices on the j-th
sub-diagonal are all (A + B)j−1A, and the matrices on the j-th super-diagonal are all (A + B)m−j−1AL,
j = 1, . . . , m− 1.

The idea is now to represent temporal aggregation of the process εt as a linear transformation of the
macro process η̃t. Let us define the (N ×mN) transformation matrix F by

F =

{
(0, 0, · · · , IN ), for stock variables

(IN , IN , · · · , IN ), for flow variables
(58)
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Then, by definition of η
(m)
mt in (17), η

(m)
mt = F η̃t for stock variables and η

(m)
mt = F η̃t + w

(m)
mt for flow

variables. Now, multiplying both sides of (56) from the left by F we obtain the following VARMA
representation for the aggregated process,

(IN − (A + B)mL)η(m)
mt = ω(m) + v

(m)
mt , (59)

where

ω(m) =

{
(IN + A + B + . . . + (A + B)m−1)ω, for stock variables
m(IN + A + B + . . . + (A + B)m−1)ω, for flow variables

and

v
(m)
mt =

{
FZ(L)ũmt, for stock variables

FZ(L)ũmt + (IN − (A + B)mL)w(m)
mt , for flow variables

(60)

First, from (59) the coefficient matrix of the autoregressive part is given by (A + B)m. To see what
the moving average part is, one has to determine the matrix FZ(L). In the case of stock variables this
is just the last block-row of Z(L), whereas for flow variables one needs to construct the column-wise
sums of Z(L). From the structure of Z(L) given in (57) one easily finds the expressions given in (22)
and (25), respectively. From these expressions it follows that on the low frequency time scale v

(m)
mt has

a VMA(1) representation since the first order autocorrelation is different from zero whereas all higher
order autocorrelations are zero. Thus, we can write

v
(m)
mt = −B(m)u

(m)
m(t−1) + u

(m)
mt

where u
(m)
mt is a weak white noise vector process with variance matrix Σ(m)

u , say. The variance and
autocovariance matrices of the VMA(1) process v

(m)
mt are given by

Σ(m)
v = Σ(m)

u + B(m)Σ(m)
u B(m)′ (61)

Γ(m)
v = −B(m)Σ(m)

u (62)

which can be reduced to B(m)Γ(m)
v B(m)′ + B(m)Σ(m)

v + Γ(m)
v = 0, which proves (29). The equation for

A(m) in (30) follows by noting that the coefficient matrix of the autoregressive part, A(m) + B(m), in the
representation (32) has to be equal to the corresponding matrix of the representation (59), (A + B)m.
Finally, (31) follows directly by vectorizing (61).

Q.E.D.
Proof of Theorem 2

For all k > 0, limm→∞ Jm+k = 0, and therefore limm→∞ Γv(1) = 0, so that the system of equation
(29) reduces to B(m)Γv(0) = 0. Since Γv(0) is positive definite, this can only hold if B(m) = 0. It follows
that A(m) = 0.

Vectorizing (34) and using (11),

m−2vec
(
Σ(m)

η

)
= m−1vec(Ση) + 2

m−1∑

i=1

m− i

m2
{[2GK + DK ]vec(Γ(i)) + (2GK + IN2)vec(σσ′)}

Notice that the term (2GK + DK)
∑m−1

i=1
m−i
m2 vec(Γ(i)) is O(m−1) and

∑m−1
i=1

m−i
m2 = 1/2+O(m−1). Thus,

m−2vec
(
Σ(m)

η

)
= (2GK + IN2)vec(σσ′) + O(m−1). Now the structure of GK is such that kii(ε̄mt) =

3 + O(m−1) and kij(ε̄mt) = 1 + 2ρ2
ij + O(m−1), see also Hafner (2003). Asymptotic normality follows by
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noting that εt is a martingale difference sequence and applying a multivariate central limit theorem as in
Davidson (1994, Section 25.3). Q.E.D.
Proof of Theorem 3:

First, εt,1
LICV= εt,2 is equivalent to [Σu]13 = 0, by Proposition 2.3 of Lütkepohl (1993, p.40). Now

[Σu]13 = E[ε2
t,1ε

2
t,2]−E[ht,1ht,3]. Under the assumption of conditional normality, the first term is given by

E[ε2
t,1ε

2
t,2] = E[ht,1ht,3 +2h2

t,2] by Theorem 1 of Hafner (2003). Thus, [Σu]13 = 0 is equivalent to ht,2 = 0.

But if ht,2 = 0, εt,1
GCV= εt,2, and K = 2, then the diagonality of the matrices A, B, and Σu implies also

diagonality of the matrices Σ(m)
v and Γ(m)

v , and therefore A(m), B(m), and Σ(m)
u . Thus, if εt,1

LCV= εt,2

and K = 2, then we also have ε
(m)
mt,1

LCV= ε
(m)
mt,2. Hence, spurious LICV can only appear if ht,2 = 0 and

K ≥ 3. Q.E.D.
Proof of Theorem 4:

The aggregated process η̄mt has a weak finite order VARMA representation that is stationary and
invertible. Thus, it also has a linear VMA(∞) representation, for which Breitung and Swanson (2003)
have shown the asymptotic results for m−1Var(η̄mt) and Cov(η̄mt, η̄m(t+τ)), τ ≥ 1. The asymptotic
normality follows similar to Proposition 3.3 of Lütkepohl (1993). The formulae for f(λ) and for Σu have
been derived by Hafner (2003). Q.E.D.

23



References

Alexander, C.O. (2001), Orthogonal GARCH, in Mastering Risk, Volume II, edited by C.O. Alexander,
pp. 21–38, Prentice Hall.

Andersen, T.G., T. Bollerslev, F.X. Diebold and P. Labys (2003). Modelling and forecasting realized
volatility. Econometrica 71, 579–625.

Bauwens, L., S. Laurent, and J.V.K. Rombouts (2003), Multivariate GARCH models: A survey, CORE
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Figure 1: Kurtosis and co-kurtosis of the example process (16) as a function of
the aggregation level m. Solid line: kurtosis of ε

(m)
mt,1, dashed line: kurtosis of

ε
(m)
mt,2, dotted line: co-kurtosis of ε

(m)
mt,1 and ε

(m)
mt,2.
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Figure 2: Causality measures for the example process (16) as a function of the
aggregation level m. Dashed line: the instantaneous causality measure ICV(m)

y↔x,
dotted line: the linear dependence measure CV(m)

y↔x, solid line: the bi-directional
Granger causality measure GCV(m)

y↔x, where x = ε
(m)
mt,1 and y = ε

(m)
mt,2
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Figure 3: Mean square prediction error of forecasting the volatility of ε
(m)
mt,1

with m = 2 as a function of the horizon h. Solid line: Prediction using the
disaggregated process and then aggregating the forecasts. Dashed line: Prediction
of the aggregated process. The values are scaled by the factor m−2.
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