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Dynamic Forecasting Behavior by Analysts: Theory and Evidence 
 
 

Abstract 
 
 

We examine the dynamic forecasting behavior of investment analysts in response to their prior 
performance relative to their peers within a continuous time/multi-period framework. Our model 
predicts a U-shaped relationship between the boldness of an analyst's forecast, that is, the deviation 
of her forecast from the consensus and her prior relative performance. In other words, analysts who 
significantly out perform or under perform their peers issue bolder forecasts than intermediate 
performers. We then test these predictions of our model on observed analyst forecast data. 
Consistent with our theoretical predictions, we document an approximately U-shaped relationship 
between analysts' prior relative performance and the deviation of their forecasts from the consensus. 
Our theory examines the impact of both explicit incentives in the form of compensation structures 
and implicit incentives in the form of career concerns, on the dynamic forecasting behavior of 
analysts. Consistent with existing empirical evidence, our results imply that analysts who face 
greater employment risk (that is, the risk of being fired for poor performance) have greater 
incentives to herd, that is, issue forecasts that deviate less from the consensus. Our multi-period 
model allows us to examine the dynamic forecasting behavior of analysts in contrast with the extant 
two-period models that are static in nature. Moreover, the model also differs significantly from 
existing theoretical models in that it does not rely on any specific assumptions regarding the 
existence of asymmetric information and/or differential analyst abilities. 
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1. Introduction 

 
We examine the dynamic forecasting behavior of investment analysts in response to their prior 

performance relative to their peers within a continuous time/multi-period framework. Our model 

predicts a U-shaped relationship between the boldness of an analyst's forecast, that is, the deviation 

of her forecast from the consensus, and her prior relative performance. In other words, analysts who 

significantly out-perform or under-perform their peers issue bolder forecasts than intermediate 

performers. We then test these predictions of our model on observed analyst forecast data. 

Consistent with our theoretical predictions, we document an approximately U-shaped relationship 

between deviation of analysts’ forecasts from the consensus and their prior relative performance.  

 Our model relies on two assumptions: an analyst's compensation is convex in her 

performance relative to her peers and faces significant negative career concerns, that is, the risk of 

losing her job for poor relative performance.  These assumptions are consistent with existing 

empirical and anecdotal evidence.  Although data on analysts’ compensation is not available, Wise 

(2000) notes that there are large pay discrepancies between analysts being named to Institutional 

Investor’s All-America research team and those that do not make the team.  Given that Leone and 

Wu (2002) find that Institutional Investor all-stars have superior performance to non-star analysts, this would 

imply convexity in the compensation structures for analysts.  Mikhail, Walther, and Willis (1999) find 

that an analyst is more likely to be fired if her forecast accuracy declines relative to her peers.  

However, they find no association between an analyst’s probability of turnover and absolute 

forecast error.  In other words, this suggests that it is relative, rather than absolute performance, that 

matters.   

 The model we propose and investigate can be briefly described as follows. At each 

forecasting date, an analyst faces the choice between a bold strategy and a conservative strategy. 



 

The analyst's forecast deviates to a greater extent from the consensus forecast under the bold 

strategy than the conservative strategy. The bold and conservative strategies may result from private 

signals received by the analyst or from publicly available information about the firm being covered. 

Under either strategy, the analyst has a nonzero probability of either outperforming or under 

performing the median analyst. The analyst is compensated at the end of each forecasting period 

and her compensation is a convex function of her prior relative performance over some time 

horizon. There is a nonzero probability that the analyst may be fired if her relative performance is 

below an exogenous level. The analyst has inter-temporal preferences for the periodic cash flows 

that comprise her compensation and dynamically chooses the bold or conservative strategy at each 

date to maximize her expected utility. We assume that the analyst has linear preferences purely for 

simplicity.  Our analysis can easily be generalized to incorporate risk aversion. 

 We explicitly solve the analyst's stochastic dynamic optimization problem and show that the 

optimal policy for the analyst can be described as follows: there exist two thresholds of prior 

relative performance such that if the analyst either outperforms the higher threshold or under 

performs the lower threshold, she chooses the bold strategy and if her prior relative performance 

lies between the thresholds, she chooses the conservative strategy. Therefore, the analyst makes a 

bold forecast if she either significantly out-performs or under-performs the median analyst and 

makes a conservative forecast if she is an intermediate performer. 

 The intuition for these results is the following. When the analyst significantly outperforms 

the median analyst, the convexity of her compensation structure induces her to take on the increased 

risk of issuing a bold forecast. On the other hand, if she significantly under performs the median, 

she faces a substantial risk of being fired for poor relative performance. Therefore, she takes on the 

increased risk of the bold strategy to increase the probability that her performance will rise above 



 

the level where she may be fired. At intermediate levels of prior relative performance, the analyst 

trades off the higher expected compensation from choosing the bold strategy for the lower 

probability that her performance may decline below the level where she may be fired from choosing 

the conservative strategy. In general, there exists a nonempty intermediate region of prior relative 

performance where she prefers the conservative strategy. 

 We also show that if the analyst faces little or no risk of being fired, she will always choose 

the bold strategy. This result follows easily from the convexity of her compensation structure. Our 

results have immediate implications for herding by analysts. In particular, they show that 

intermediate performers tend to deviate less from the consensus, that is, herd more than significant 

out-performers and under-performers. Moreover, our result that an analyst always chooses the bold 

strategy if she faces little or no employment risk indicates that the incentive to herd increases with 

employment risk. In particular, this implies that more experienced analysts who face lower 

employment risk herd less than less experienced analysts. This prediction is consistent with the 

empirical results of Hong, Kubik, and Solomon (2000) who examine a sample of stock analysts' 

earnings forecasts and show that younger analysts tend to herd more than older, more experienced 

analysts who face lower employment risk.1  

Our results therefore highlight the impact of both explicit incentives in the form of 

compensation structures and implicit incentives in the form of career concerns on the forecasting 

behavior of investment analysts. Several recent papers have emphasized the importance of career 

concerns in various contexts.  Scharfstein and Stein (1990), Prendergast and Stole (1996) and 

Morris (1997) argue that career concerns may induce corporate and/or fund managers to ignore 

private information and follow the herd or avoid following it when their actions are observable. In 

Scharfstein and Stein (1990), "smart" managers receive correlated information, while "dumb" 
                                                 
1 Chevalier and Ellison (1999) obtain similar results in their empirical investigation of mutual fund managers. 



 

managers receive uncorrelated noise. Thus, a manager who learns that his private information 

differs from that of another manager believes that he is more likely to be "dumb", ignores his 

information and "herds".2  In Prendergast and Stole (1996), managers have private information 

about the precision of their information. A bolder action signals that a young manager knows his 

information to be good, and hence young managers have an incentive to take excessively bold 

actions. Older managers have an incentive to become jaded and do not change their actions a great 

deal from period to period. Zwiebel (1995) proposes a model of the behavior of corporate managers 

where taking an unobserved unconventional action increases the variance of the market's ex post 

assessment of a manager's ability. In a result that is reminiscent of the results that we obtain, 

Zwiebel (1995) shows that average managers prefer the conventional action because it reduces the 

risk of their being fired, while high or low ability managers may prefer unconventional actions. 

 Our paper differs significantly from the above papers in that we focus on investigating the 

dynamic forecasting behavior of analysts in a multi-period/continuous time framework, rather than 

the two-period models examined in the above papers.  Welch (2000), in particular, notes that these 

existing static theories are “designed to explain a steady state in which all analysts herd perfectly, 

not to explain an ever varying time-series of recommendations or a residual difference in opinions 

across analysts.” (pg. 370).   Our dynamic model attempts to address some of these concerns.  

Moreover, in contrast with the above papers, we do not make any specific assumptions about 

whether analysts possess different abilities and whether they receive private signals.  Therefore, our 

results do not rely on the existence of asymmetric information and/or differential abilities, but 

depend only the convexity of compensation in relative performance and the existence of significant 

career concerns.   

                                                 
2 Graham (1999) considers a model patterned after Scharfstein and Stein (1990) to investigate the herding behavior of 
investment newsletters.  Trueman (1994) also proposes a model that demonstrates herding by analysts. 



 

 Using data from the IBES history tapes on individual analysts’ forecasts between 1988 and 

2000, we test the predictions of our model.  Specifically, each quarter we rank analysts into deciles 

based on past forecasting performance calculated over varying time horizons that range from 1 year 

to 3 years.  For each analyst, we calculate boldness as the normalized deviation from the consensus 

as in Hong, Kubik, and Solomon (2000).   We then compute median future boldness for each decile 

of past relative performance.  Consistent with our predictions, we find evidence of a U-shaped 

relation between future boldness and past performance.  It is possible that this U-shaped relation is a 

result of analysts persisting in choosing bold or conservative strategies and not due to dynamic 

alteration of strategies by analysts.  In other words, an analyst who is always bold is more likely to 

take on extreme positions in relative performance.  We control for this possibility in our empirical 

tests, and find that the U-shaped pattern still holds.  As an alternative methodology, we test for the 

U-shaped relation using the Fama-MacBeth (1973) regression methodology.  These tests lead to 

qualitatively similar conclusions. 

Our empirical results contribute to the existing literature in that we investigate the 

forecasting behavior of all analysts in response to their prior performance and document, for the 

first time, a non-monotonic U-shaped relationship between the boldness of an analyst's forecast and 

her prior relative performance. Hilary and Menzly (2002) also empirically investigate the 

relationship between boldness and past performance. Consistent with our findings, they report that 

analysts who have performed well in the past tend to issue bolder forecasts. However, they do not 

document that analysts who have performed poorly in the past also issue bolder forecasts. They 

propose a behavioral model based on overconfidence to explain their findings. Our model offers a 

rational explanation for bold forecasting behavior by out-performers and under-performers. Hong et 

al (2002) empirically examine the effect of career concerns on boldness and find that more 



 

experienced analysts are more likely to deviate from the consensus.  From an empirical standpoint, 

we complement their findings by examining and documenting the effect of prior performance on 

analysts’ incentives to deviate from the consensus.3   

The remainder of the paper proceeds as follow.  In Section 2 we present the model. In 

Section 3, we state our main results regarding the optimal forecasting behavior of analysts. In 

Section 4, we present the results of empirical tests of our predictions. Section 5 concludes the 

paper. All detailed proofs are relegated to the Appendix.  

 
2. The Model 

 
 

The primary focus of this paper is the dynamic forecasting behavior of an analyst in response to 

his prior performance relative to his peers. We consider an infinite horizon, multi-period 

framework. The set of forecasting dates is characterized by the set 

{ },...3,2,,0,,2,3....., ∆∆∆∆−∆−∆−≡Γ . The set of forecasting dates is a doubly infinite set to 

emphasize the point that there is no “initial date” in our framework. The fundamental economic 

variable we model is the cumulative forecasting performance, that is, the sum of the forecasting 

errors, for an analyst over a time horizon T . T  is the exogenously specified horizon over which the 

analyst’s performance is evaluated. The actual value of T  does not play an important role in our 

analysis and it may also differ across analysts.4 If )(te  denotes the cumulative forecasting error of 

an analyst at date Γ∈t , and )(tem  denotes the median cumulative forecasting error for all analysts 

over the same time horizon t , then 

(1)  )()()( tetetq m−=  

                                                 
3 Hu et al. (2003) find a similar U-shaped relation between relative risk choices of mutual fund managers in response to 
their prior relative performance. 
4 Empirically, we allow T vary between one and three years.  This does not qualitatively alter the results. 



 

denotes the relative forecasting performance of the analyst at date t . (.)q  is a stochastic process 

with support in ),( ∞−∞ .    The median forecasting error is used as a benchmark purely for 

concreteness. Our theoretical results do not depend on the specific benchmark used. At any date t , 

we assume that an analyst has the choice between adopting a bold strategy or a conservative 

strategy. If he adopts the bold (conservative) strategy, then the change in his relative forecasting 

performance over the next period ∆  is a normally distributed random variable with mean µ  and 

standard deviation )( 21 σσ  with 21 σσ > . Therefore, 

(2)  
Ntqtq
Ntqtq

2

1

)()(
)()(

σµ
σµ

+∆=−∆+
+∆=−∆+

 

under the bold and conservative strategies 1 and 2 respectively. In the above, N  is a standard 

normal random variable.5  

 It is important to emphasize here that the bold and conservative strategies may represent 

either private or publicly observable signals. In other words, our theoretical framework does not 

rely on any specific assumptions regarding the observability of the analysts’ signals on the basis of 

which they make their forecasts. Therefore, asymmetric information is not a crucial ingredient of 

our model although our model is certainly consistent with it. Further, we do not make any specific 

assumptions regarding the abilities of analysts, that is, they may all possess the same ability or have 

different abilities. The fact that neither asymmetric information nor differential analyst abilities 

plays a crucial role in our theoretical analysis makes it significantly different from earlier theoretical 

frameworks that have been applied to examine analyst behavior.6  In all these frameworks, 

asymmetric information and/or differential analyst abilities play important roles.  In summary, the 

nature of the information that analysts possess and the analysts’ forecasting abilities do not affect 
                                                 
5 Since the analyst can only choose either the bold or the conservative strategy at any date, we use the same notation for 
the standard normal random variable without loss of generality. 
6 See, for example, Scharfstein and Stein (1991), Zwiebel (1995), Prendergast and Stole (1996), and Graham (1999) 



 

our model as well as our theoretical results. Ours is a simple rational model of forecasting strategy 

choices by analysts. 

There is an exogenously specified level of relative performance bq  such that if (.)q  exceeds 

bq , the analyst is fired with some probability )1,0(∈∆α .7 We also assume that the analyst bears 

significant personal costs from being fired. These proportional costs are described by the parameter 

]1,0[∈δ , that is, the analyst loses a proportion δ  of her expected future compensation is he is fired. 

 The analyst is assumed to be risk-neutral and his compensation is assumed to be convex in 

his relative performance. The risk-neutrality of the analyst is assumed purely for simplicity of 

exposition and does not affect our results qualitatively. For analytical tractability, we assume that 

the compensation of the analyst at date t  is given by 

(3)  ))](exp([)( tcqgtC −∆=  where 0,0 >> cg . 

For subsequent notational simplicity, we normalize g  to 1. From (3), we note that as the analyst’s 

performance varies from being very good to very bad, )(tq  varies from being significantly negative 

to becoming significantly positive. The goal of the risk-neutral analyst is to choose his forecasting 

policy ξ  representing his choice between a bold and conservative strategy at every forecasting date, 

in order to maximize his discounted expected compensation. At any date t , his optimal future 

forecasting policy should therefore solve 

(4) 
))]((exp())(()1[(sup

)]())(()1[(sup))((
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7 The assumption that the analyst is not fired with certainty is consistent with the empirical findings of Hong, Kubik, 
and Solomon (2000).   They find that the probability of an analyst getting fired increases with underperformance , but it 
is significantly different from one. 



 

In the above, bτ  denotes the random date at which the analyst is fired. Notice that the 

analyst’s payoff when he is fired is a proportional of his optimal value function ))(( bqv τ  that is his 

maximum expected future compensation. We have incorporated the fact that the analyst’s optimal 

policies are clearly stationary, that is, his decision at any date depends only on his relative 

performance at that date. The subscripts on ξξ Cq ,  denote the dependence of the analyst’s relative 

performance and compensation on the forecasting policy he chooses. β  is the analyst’s constant 

discount rate for future cash flows. We can use standard dynamic programming techniques to obtain 

the following Hamilton-Jacobi-Bellman equation for the analyst’s optimal value function: 

 
)]((11))(exp())(([sup)( 1)(2,1 ∆−∆−∆+∆= =>∆

∆−
=

i
firedqq

ii
i qvcqqvEeqv

b
i δβ

 

In the above, )(∆iq  represents the analyst’s relative performance at the end of the next period if he 

follows strategy i  and his relative performance at the beginning of the period is q . The first term in 

the expectation is the optimal value function at the end of the period, the second term is the 

analyst’s compensation for the period, and the third term represents the proportional personal costs 

he pays if he is fired due to his relative performance being above the threshold level bq .  The 

subscript 1=fired  represents the event that the analyst is fired. Incorporating the exogenous 

probability ∆α  that the analyst is fired when his relative performance is above the threshold, we 

obtain 
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The Continuous Time Framework 

 For analytical tractability, we now make the standard continuous time approximation that is 

valid when the time period between successive dates ∆  is small relative to the time period over 

which the analyst’s forecasting behavior is being investigated. In this case, equation (2) for the 

evolution of the analyst’s relative performance is replaced by 

(5) )()( tdBdttdq iσµ +=  under strategy { }2,1∈i  where (.)B  is a Brownian motion. 

The analyst’s objective in (4) is replaced by 

(6) 
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For subsequent analytical and notational convenience, we re-define the analyst’s optimization 

problem in terms of the process ))(exp()( tqtp −= . Using Ito’s lemma, the evolution of the process 

(.)p  under strategy { }2,1∈i  is given by 

(7) )]()
2

)[(()(
2

tdBdttptdp i
i σµσ +−=  

and the analyst’s objective is to choose his forecasting policy to maximize 

(8) )])(())(()1[(sup))(( c

t

s
b spdsepuEtpu

b

ξ

τ
β

ξ τδ ∫ −+−=  

where (.)u  is the analyst’s optimal value function as a function of qep −= . Notice now that low 

(high) values of (.)p  represent good (bad) relative performances by the analyst. In order to ensure 

that the analyst’s value function is defined, we assume that iµβ > , 2,1=i . 

If (.)u  is the optimal value function of the dynamic optimization problem (8), then, as 

mentioned earlier, the analyst’s optimal policy is stationary, that is, his choice of strategy at any 



 

date is not explicitly dependent on time and depends only on the current measure of his relative 

performance p . We denote the analyst’s optimal value function by )( pu . We may use traditional 

dynamic programming arguments analogous to those used in deriving the discrete-time Hamilton-

Jacobi-Bellman equation to write down the following formal Hamilton-Jacobi-Bellman equation for 

u : 

  ]
2
1))((1)(1[sup0 22
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where µσµ −= 2

2
1

ii  . In the dynamic programming framework, the variable p  above represents 

the value of the state variable (.)P  so that the term cp  is the instantaneous rate of compensation of 

the analyst.  

 Hence, in regions where strategy i  is optimal, the value function )( pu  must satisfy the 

system of ordinary differential equations: 
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It can be shown that the general solution to the ordinary differential equations has the form: 

(9) 
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where −+
ii ηη ,  and −+

ii ρρ ,  are the positive and negative roots respectively of the quadratic equations: 
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In order to ensure that the analyst’s value function exists, we assume that her discount rate iµβ >  

and is high enough so that 

(11)  ++ << ii cc ρη , .   

The following lemma collects properties of the roots −+−+
iiii ρρηη ,,,  that will be used frequently. 

Lemma 1 

a) ++++++++ <<<< 22112121 ,,, ρηρηρρηη  

Proof.  In the Appendix. 

We now state (without proof) the following well-known verification theorem for the 

analyst’s optimal value function. 

Proposition 1:  Suppose u  is a function that is differentiable on ),0( ∞  and twice differentiable on 

{ }bp\),0( ∞  satisfying the HJB equation  

]
2
1))((1)(1[sup0 22

2,1 ppipi
c

ppppi uppupuu
bb

σµαδββ ++++−+−= ≤>=  

and ∞<∞→
c

p ppu /)(lim (no bubbles condition). Then u  is the analyst’s optimal value function. 

Proof. See Karatzas and Shreve [1998]. 

This completes the formulation of the model and the mathematical preliminaries. 

 
3. The Analyst’s Optimal Forecasting Policy 

In this section, we explicitly derive the optimal forecasting policies for the analyst for all 

possible pairs of bold and conservative strategies 1 and 2 characterized by the volatility parameters 



 

),( 21 σσ  with 21 σσ >  and his discount rate β  is high enough to ensure that condition (11) is 

satisfied. We show that there exist two levels hl pp ,  with hl pp ≤ of prior relative performance as 

measured by the process (.)p  such that it is optimal for the analyst to choose the conservative 

strategy when his prior performance lies between the thresholds and switch to the bold strategy 

above the threshold hp  and below the threshold lp .  Therefore, the analyst chooses the bold 

strategy when he is either a significant out performer or under performer and the conservative 

strategy when he is an intermediate performer.  We may have hl pp =  in which case the analyst 

always chooses the bold strategy and the switching of strategies is sub-optimal. We provide a 

necessary and sufficient condition for the switching of strategies to be optimal for the analyst. 

The intuition underlying these results is the following. If the analyst is a significant out 

performer, the risk of his getting fired is very low. Therefore, he chooses the bold strategy since it 

increases his expected compensation. On the other hand, if the analyst significantly under performs 

the threshold bp  where he may be fired, he faces significant risk of being fired. He therefore, 

chooses the bold strategy to maximize the probability that his performance may increase above the 

level below bp . At intermediate levels of performance, the analyst trades off the higher expected 

compensation from choosing the bold strategy for the lower employment risk from choosing the 

conservative strategy. In general, there exists an intermediate region of relative performance where 

the analyst prefers the conservative strategy. We now proceed to formalize this intuition. 

Consider the class of policies defined by the trigger r  with rpb ≤ where the analyst always 

chooses strategy 1 for rppp b ≥≤ ,  and strategy 2 for rppb << . It can be shown that the value 

function ru  of such a policy has the following functional form: 



 

(12) 

      

;
)

2
1(

2
1       

;
)

2
1(

2
1       

;
)()

2
1(

2
1

2
11

22
1

2
22

22
2

2
11

22
1

1

22

1

pr
cc

ppD

rpp
cc

ppCpB

pp
cc

ppAu

c

r

b

c

rr

b

c

rr

<
−−+

−=

≤<
−−+

−+=

≤
+−−+

−=

−

−+

+

βσµσ

βσµσ

αδβσµσ

η

ηη

ρ

 

where the coefficients are determined by continuity and differentiability conditions at the points 

rpb ,  and their dependence on the trigger r  is explicitly indicated. Define the differential operators 

2,1;, ' =iLL ii  as follows: 

 ppipiippipii uppuuuLuppuuuL 22'22

2
1)(     ;

2
1 σµαδβσµβ +++−=++−=   

The following propositions completely characterize the optimal policies for the analyst. 

Proposition 2:  Suppose  

(13) 0|)(2 >+ += bb pp
c

p puL  

There exist a threshold level of relative performance bpp >*  such that if 

a) *, pppp b ≥≤ , it is optimal for the analyst to choose the bold strategy 1 and if 

b) *pppb << , it is optimal for the analyst to choose the conservative strategy 2. 

Proof.  In the Appendix. 

Condition (13) of the proposition is therefore a sufficient condition for the analyst to choose the 

conservative strategy 2 in some region of prior relative performance. Intuitively, the condition 

expresses the fact that the employment risk of the analyst and the difference between the risks of the 

bold and conservative strategies are high enough to ensure that it is optimal for the analyst to choose 



 

the conservative strategy when his prior performance is “close” to the threshold bp . The following 

proposition shows that condition (13) is also necessary for the optimality of switching to the 

conservative strategy in some region of prior performance.  

Proposition 3. Suppose 

(14) 0|)(2 ≤+ += bb pp
c

p puL  

Then the optimal policy for the analyst is to always choose the bold strategy. 

Proof.  In the Appendix. 

 If condition (14) is satisfied, the employment risk of the analyst and/or the difference in the 

risks of the two strategies is low enough that it is sub-optimal for the analyst to deviate from the 

bold strategy. 

 The results of the above propositions imply that it is either always optimal for the analyst to 

choose strategy 1 or there exists a non-empty intermediate region ],[ *ppb  of prior performance 

where the analyst optimally chooses strategy 2.  If the analyst chooses strategy 2, he deviates less 

from the median analyst than if he chooses strategy 1.  Suppose now that strategy 1 represents a 

private noisy signal for the analyst and strategy 2 represents the herding strategy. In this setting, our 

results imply that when the analyst is a significant out performer or under performer, he trusts his 

private signal whereas if he is an intermediate performer, he chooses to herd. We would like to 

emphasize again that our model does not make any specific assumptions about whether the analyst 

receives private signals. Hence, our result that significant out performers and under performers 

deviate more significantly in their forecasts from the median than intermediate performers does not 

depend on whether there is asymmetric information and/or the analysts possess different forecasting 

abilities.  Our model and results depend on two main assumptions:  an analyst’s compensation is 

convex in her relative performance and faces significant career concerns. 



 

 

4. Empirical Results 

Data Description: 

In order to test the above propositions on past forecast accuracy and boldness, we collect forecasts 

from the IBES Detailed History database over the period 1988 to 2000.  The Detailed History 

database tracks the identity of the analyst issuing the forecast, her employer, the date of the forecast, 

and the actual value of her forecast.  This dataset also allows us to identify and track each analyst 

across time, even if they switch investment.   

In order to construct our measures of forecast accuracy and forecast boldness, we use the 

ranking methodology introduced in Hong, Kubik, and Solomon (2000).  The procedure is as 

follows.  We use the I/B/E/S data to construct a quarterly performance measure based on an 

analyst’s forecast accuracy.  We define Fi,j,t as the most recent earning-per-share forecast of 

quarterly earnings issued by analyst i on stock j in quarter t.  Our measure of analyst i’s accuracy for 

firm j in year t is the absolute difference between her forecast and the realized earnings-per-share of 

the firm, Aj,t:  

tjtji AFerrorforecast ,,, −=   

We then sort the analysts who cover a firm in a quarter based on their forecast errors given above. 

We then assign a ranking based on this sorting:  the best analyst receives a rank of one, the second 

best analyst receives a rank of two, and so on.  In the case of ties, we assign each analyst the 

midpoint value of the ranks that they take up.  Since the maximum rank an analyst can receive for a 

firm depends on the number of analysts who cover the firm, we scale an analyst’s rank by the 

number of analysts who cover the firm.  The formula for this score measure is: 
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where number of analystsj,t is the number of analysts who cover the firm in a given quarter.8  We 

then calculate the average score for each analyst over the previous four, eight, and 12 quarters.  

Higher overall scores correspond to better analyst performance.   

We use a similar procedure to construct a measure of an analyst’s forecast boldness.  Let 

∑ −∈− =
im tjmtji F

n
F ,,,,

1 , where –i is the set of all analysts other than analyst i who produce an 

earnings estimate for stock j in year t, and n is the number of analysts in –i. Hence, tjiF ,,−  is a 

measure of the consensus forecast made by all other analysts except analyst i following stock j in 

quarter t. 

tjitjitji FFboldness ,,,,,, −−=  

We then replicate the previous ranking methodology for constructing the analyst accuracy score as 

in the previous subsection. 

 

Empirical Findings 

Table 1 presents summary statistics for our sample of analysts’ forecasts.  Our sample contains a 

large number of analysts from a number of different investment firms.  The average number of 

unique investment firms each quarter is 366.37, while the average number of unique analysts 

issuing forecasts each quarter is 1,763.67.  The average analyst in our sample issues quarterly 

earnings-per-share estimates for 7.32 stocks.9  The average stock in a sample has 5.56 different 

analysts providing coverage.  Note that we require at least two analysts to be covering the stock in 

order to calculate our boldness and performance rankings.   The average analyst in our sample has 

                                                 
8 For example, the lowest rated analyst for each firm would receive a score of zero, while the highest rated analyst 
would receive a score of 100. 
9 The maximum number of stocks covered by an analyst is 94.  This could be attributed to team of analysts rather than 
an individual. 



 

4.46 years of experience.  Finally, average analyst boldness and average analyst accuracy average 

50.38 and 50.46.  By construction, the median values of both of these variables is 50.00. 

 Table 2 examines whether analysts actively move between conservative and bold  

forecasting strategies.  The table shows a transition matrix relating average past boldness to future 

boldness.  The table is constructed as follows.  For each quarter in our sample, we calculate the 

average boldness score for each analyst over the previous four quarters and then divide analysts into 

deciles based on this score.  We similarly rank analyst into boldness deciles based on their current 

boldness score.  The results suggest that analysts actively move between bold and conservative 

strategies.  For example, of the analysts ranked into the lowest past boldness decile, only 15.93% 

pursue the least bold strategy in the subsequent period.  Similarly, of the analyst ranked into the 

highest boldness decile based on past performance, only 18.02% fall into the same decile in the 

subsequent period.   It’s worth noting that the p-value from a χ2 test indicates that we can reject the 

null hypothesis of equal proportions within each past boldness decile. 

 Table 3 presents our results on the relation between past performance and future boldness.   

Each quarter, we rank analysts into deciles based on their average past performance.  The average 

past performance of each analyst is calculated using accuracy scores over the previous four, eight, 

and twelve quarters.  We then compute mean future boldness for each of these deciles.  In order to 

test for a U-shaped relation, we computer the average difference in boldness between past 

performance deciles 5 and 6 and then test to see whether mean boldness in each decile is different 

from this value.  Panel A presents our findings for the case where past performance is calculated 

over the previous four quarters.  The results confirm the existence of a U-shaped relation.  The 

worst past performance decile has future boldness of 51.06, which is statistically significant.  

Similarly the best past performance decile has future boldness of 50.61, which is statistically 



 

significant.  The results in Panel B and Panel C show that the results are not affected by the choice 

of the time horizon over which past forecast accuracy is calculate.  Similar results obtain if we 

calculate average past performance using the previous eight quarters or the previous twelve 

quarters. 

 In Table 4, we control for the past boldness of the analyst.  It is possible that the U-shaped 

relation documented in Table 3 is a result of analysts persisting in choosing bold or conservative 

strategies and not due to dynamic alteration of strategies by analysts.  In other words, an analyst 

who is always bold is more likely to take on extreme positions in relative performance.  The results 

presented in Table 4 panel are still consistent with a U-shaped relation between past performance 

and future boldness even after controlling for past boldness.  In contrast to the results presented in 

Table 3, we find that the relation tends to be driven by the best past performance decile and the 

worst past performance decile.  Panels B and C show that the choice of time horizon over which 

past forecast accuracy is calculated produces similar results.   

 

 Fama-MacBeth Regressions: 

Our findings above are consistent with a U-shaped relation between boldness and past performance.   

In this section, we use Fama-MacBeth (1973) regressions to examine the robustness of our results.  

For every quarter in our sample period, we estimate a cross-sectional regression relating future 

boldness to past accuracy.  Given the results in Table 4, we include in the regression model 

indicator variables if the analyst’s past performance is either in the top performance decile or the 

bottom performance decile.  Based on the existing literature, we also control for an analyst’s 

experience and the number of firms covered by the analyst.  High experience is an indicator variable 

taking the value of one if the analyst has more than four years of prior experience and zero 



 

otherwise.  Number of firms covered is the number of firms the analyst covers in a given quarter.  

We also control for the average boldness of the analyst over the previous four quarters. 

In Table 5, we report the average coefficients from these regressions along with the 

associated p-value from a simple t-test for the statistical significance of the estimates.  In 

specification (1), we find that analysts in the worst past performance decile and analysts in the best 

performance decile have significantly higher boldness than other analysts.  Specification (2) shows 

that this result holds even after controlling for experience, past boldness, and the number of firms 

covered by the analyst.  Interestingly, the coefficient on number of firms covered is negative and 

significant, indicating that analysts covering more stocks tend to issue more conservative forecasts.  

The final specification examines the interaction between past performance and experience and 

boldness.  The results indicate that experienced analysts are more likely to deviate from the 

consensus following poor performance.  However, experienced analysts with good past 

performance are not more likely to issuer bolder forecasts. 

 

5.  Conclusions 

We examine the dynamic forecasting behavior of investment analysts in response to their 

prior performance relative to their peers within a continuous time/multi-period framework.  The 

model differs significantly from existing theoretical models in its dynamic nature and the fact that it 

does not rely on any specific assumptions regarding the existence of asymmetric information and/or 

differential analyst abilities.  The central prediction of the model is that there is a U-shaped 

relationship between the boldness of an analyst's forecast, that is, the deviation of her forecast from 

the consensus and her prior relative performance. In other words, analysts who significantly out 

perform or under perform their peers issue bolder forecasts than intermediate performers.  



 

We then test the predictions of our model on observed analyst forecast data. Consistent with 

our theoretical predictions, we document an approximately U-shaped relationship between the 

deviation of analysts’ forecasts from the consensus and their prior relative performance.  This result 

is robust to different empirical methodologies.  Consistent with prior empirical evidence, our results 

imply that analysts who face greater employment risk have greater incentives to herd.  Our 

theoretical and empirical analyses therefore highlight the importance of both explicit incentives in 

the form of compensation structures and implicit incentives in the form of career concerns, on the 

dynamic forecasting behavior of analysts.  

As noted by Welch (2000) one drawback of many existing models of herding is that they are 

static and designed only to explain a steady state in which all analysts herd perfectly.  These models 

are unable to explain why analysts may deviate from the consensus some times and herd at other 

times.  We address this issue by theoretically and empirically examining the dynamic forecasting 

behavior of investment analysts in response to their prior performance relative to their peers.  
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 Appendix 

Proof of Lemma 1 

We first note that  
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since the expression in the brackets on the right hand side above is zero by the definition of the root 

+
iη  and 0>αδ . From the above, it easily follows that we must have ++− << iii ρηρ . 

Proof of Proposition 2:  

The proof proceeds by explicitly constructing a differentiable function u  that satisfies the 

hypotheses of Proposition 1, that is, 
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We first show that there exists *p  with ∞<< *ppb  such that the function 
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It is not difficult to show that this implies that 
*pu  is twice differentiable at *p  and that  
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As ∞→r , the value function ru  clearly approaches the value function ∞u of the policy of choosing 

strategy 2 for bpp > . It is easy to see that the functional form of ∞u  for bpp > is  
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It now easily follows by continuity that there exists bpp >*  such that (A8) holds and 

therefore (A9) holds. We now show that *p  is the required “optimal switching point” where 
*pu  is 

defined by setting *pr =  in (12). By the result of Proposition 3, we need to show that  

                                                 
10 Strictly this needs to be shown rigorously, but the arguments are quite straightforward and are available upon request. 
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no finite threshold bp  beyond which the analyst does not face employment risk. 
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Since 21121 ,, σσρρρ ><< +++ c , (A20) implies that the first term on the right hand side above is 

negative and the second term is also negative. This clearly implies (A19). Therefore, we have 

shown that the value function 
*pu  satisfies the hypotheses of Proposition 3 and is therefore the 

optimal value function of the analyst. Hence, the policy of switching policies at *p  is optimal. This 

completes the proof. 

Proof of Proposition 3 

Setting bpr =  in (12), the value function 
bpu  has the following functional form: 
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Since 
bpu  must be at least as great as the value function of choosing strategy 1 when the analyst 

faces employment risk for all values of p , we must have  
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In order to establish the optimality of choosing strategy 1 for all values of p , we need to show that 
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Since 21121 ,, σσρρρ ><< +++ c , (A23) implies that the first term on the right hand side above is 
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If −− < 21 ηη , then (A24) implies that the first term on the right hand side above is negative. Since 

+<≤ 11 ηc , the second term is also negative. On the other hand, if −− > 21 ηη , then the first term on the 

right hand side of (A27) is positive and the second term is negative. This implies that c
p puL
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is a decreasing function of p  for bpp > . Hypothesis (14) of the proposition now implies that 
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><+ ,0)(2 . Therefore, we have established (A25). Hence, the function 
bpu  satisfies 



 

the hypotheses of Proposition 3. Hence, the policy of always choosing strategy 1 is optimal. This 

completes the proof. 

 



 

Table 1.  Summary Statistics 
This table shows various summary statistics for our sample of analysts’ forecasts.  The data consists of all quarterly 
forecasts of earnings per share between 1988 and 2000 contained in the IBES Detail History File.  The number of 
investment firms each quarter and number of analysts issuing forecasts each quarter are the average number of 
investment firms submitting forecasts to IBES each quarter and the number of unique analysts submitting forecasts 
respectively.  Experience is calculated for each analyst as the difference between the year of the forecast and the 
analyst’s first year submitting forecasts to the IBES database.  Analyst boldness and analyst accuracy are calculated 
using the ranking procedure of Hong, Kubik, and Solomon (2000). 

 
  Mean Median Std. Deviation Min  Max 

Number of investment firms each quarter 366.37  386.00  90.99  194.00  510.00  

Number of analysts issuing forecasts each quarter 1,763.67  1,607.00  626.50  768.00  2,861.00  

Number of stocks covered per quarter 7.32  6.00  6.28  1.00  94.00  

Number of analysts following a stock 5.56  4.00  4.35  2.00  38.00  

Experience 4.46  3.00  3.96  0.00  20.00  

Average analyst boldness 50.38  50.00  18.32  0.00  100.00  

Average analyst accuracy 50.46  50.00  19.68  0.00  100.00  
            
 



 

Table 2.  Transition Matrix 
This table shows a transition matrix relating past average boldness to future boldness.   The table is constructed as 
follows.  For each quarter in our sample period, we rank analysts into deciles based on their average boldness score over 
the previous four quarters.  We perform a similar ranking of the boldness scores for the current score.  The p-value from 
a χ2 test for equal proportions is reported for each past boldness decile.  
 
 

  Boldness   

  Least Bold 2 3 4 5 6 7 8 9 Most Bold 

p-value 
from χχχχ2 test 

for equal 
proportions

Least Bold 15.93% 11.09% 8.43% 7.62% 7.44% 10.46% 6.94% 7.58% 9.50% 15.02% 0.001 

2 10.79% 11.90% 11.90% 10.80% 10.07% 9.87% 9.49% 8.85% 8.34% 8.00% 0.001 

3 8.72% 11.53% 12.27% 11.59% 11.05% 9.74% 10.21% 9.45% 8.47% 6.97% 0.001 

4 8.02% 10.79% 11.51% 12.18% 10.98% 10.12% 11.05% 10.06% 8.61% 6.68% 0.001 

5 7.21% 9.96% 12.04% 11.76% 11.56% 9.77% 11.49% 10.29% 9.42% 6.51% 0.001 

6 8.99% 9.45% 9.78% 10.31% 10.45% 11.46% 10.62% 10.91% 9.13% 8.89% 0.001 

7 7.38% 9.48% 9.59% 10.91% 10.99% 9.97% 11.05% 11.76% 10.86% 8.01% 0.001 

8 7.95% 8.80% 9.62% 10.17% 9.48% 10.17% 10.96% 11.26% 12.07% 9.52% 0.001 

9 9.70% 8.82% 7.85% 8.29% 8.96% 9.76% 10.90% 11.19% 12.17% 12.37% 0.001 
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Most Bold 14.97% 8.26% 7.07% 6.55% 7.20% 10.54% 7.39% 8.67% 11.33% 18.02% 0.001 
 



 

Table 3.   Past performance and future boldness 
This table examines the relation between past performance and future boldness.  Analysts are ranked each quarter on the 
basis of their average accuracy over the previous four, eight, and twelve quarters.  The analysts are then sorted into 
deciles, with Decile 1 containing the worst performing analysts and Decile 10 containing the best performing analyst.  
We then compute mean future boldness for each decile.  The p-value reported for each decile tests whether the mean 
boldness is statistically different from the average boldness of quartiles five and six. 
 
 
Panel A:  Performance rankings based on one year of past data   
     

Past Performance quartile Past Performance Boldness # of observations P-value 
Worst 26.38 51.72 51 0.00 

2 40.31 51.27 51 0.00 
3 44.46 50.53 51 0.00 
4 47.25 50.19 51 0.01 
5 49.54 49.89 51 0.02 
6 51.61 49.28 51 0.02 
7 54.00 49.20 51 0.07 
8 56.97 49.60 51 0.96 
9 61.54 49.89 51 0.26 

Best 76.31 50.55 51 0.00 
     
Panel B:  Performance rankings based on two years of past data   
     

Past Performance quartile Past Performance Boldness # of observations P-value 
Worst 28.54 51.80 51 0.00 

2 41.89 51.49 51 0.00 
3 45.48 50.60 51 0.00 
4 47.88 50.18 51 0.03 
5 49.81 50.13 51 0.01 
6 51.59 49.28 51 0.01 
7 53.62 49.39 51 0.19 
8 56.13 49.02 51 0.01 
9 60.12 49.74 51 0.90 

Best 74.24 50.96 51 0.00 
     
Panel C:  Performance rankings based on three years of past data   
     

Past Performance quartile Past Performance Boldness # of observations P-value 
Worst 29.24 51.75 51 0.00 

2 42.42 51.30 51 0.00 
3 45.89 50.76 51 0.00 
4 48.13 50.48 51 0.00 
5 49.93 49.99 51 0.03 
6 51.63 49.41 51 0.03 
7 53.53 49.11 51 0.01 
8 55.88 49.32 51 0.17 
9 59.72 49.68 51 0.84 

Best 73.59 50.90 51 0.00 
 



 

Table 4.  Past Performance and future boldness controlling for past boldness 
This table examines the relation between past performance and future boldness, controlling for past boldness.  Past 
boldness is calculated as the average boldness score for each analyst over the previous four quarters.  The p-value 
reported for each decile tests whether the mean boldness is statistically different from the average boldness of quartiles 
five and six. 
 
Panel A:  Performance rankings based on one year of past data. 

Past Performance quartile Boldness # of observations P-value 
Worst 51.06 51 0.00 

2 50.71 51 0.00 
3 50.38 51 0.08 
4 50.19 51 0.29 
5 50.12 51 0.13 
6 49.68 51 0.13 
7 49.70 51 0.44 
8 49.94 51 0.87 
9 50.08 51 0.48 

Best 50.61 51 0.00 
    
Panel B:  Performance rankings based on two years of past data  
    

Past Performance quartile Boldness # of observations P-value 
Worst 51.09 51 0.00 

2 50.74 51 0.00 
3 50.24 51 0.18 
4 50.62 51 0.00 
5 49.94 51 0.65 
6 49.81 51 0.65 
7 50.06 51 0.57 
8 49.60 51 0.19 
9 49.78 51 0.75 

Best 50.76 51 0.00 
    
Panel C:  Performance rankings based on three years of past data  
    

Past Performance quartile Boldness # of observations P-value 
Worst 51.09 51 0.00 

2 50.57 51 0.03 
3 50.45 51 0.02 
4 50.44 51 0.06 
5 50.26 51 0.10 
6 49.73 51 0.10 
7 49.90 51 0.70 
8 49.73 51 0.20 
9 49.85 51 0.59 

Best 50.65 51 0.02 



 

Table 5.  Fama-MacBeth Regressions 
This table reports the results of Fama-MacBeth regressions.  The dependent variable in each regression is the boldness 
score.  Worst past performance decile is an indicator variable that takes the value of one if the analyst’s average 
forecasting performance over the previous four quarters was in the bottom 10% and zero otherwise.  Best past 
performance decile is an indicator variable that takes the value of one if the analyst’s average forecasting performance 
over the previous four quarters was in the top 10% and zero otherwise.  High experience is an indicator variable that 
takes the value of one if the analysts has four or more years of experience and zero otherwise.  Number of firms covered 
is the number of firms covered by the analyst in the quarter.  Past boldness is the average boldness score of the analyst 
over the previous four quarters.  We include controls for industry effects.  We use the IBES SIG code to define the 
industries.  The average R2 from the 51 quarterly regressions are reported.  P-values are reported in parentheses. 
 

    Boldness 
    (1)  (2)   (3) 

Intercept 50.64  46.94 46.87 
  (0.00)  (0.00) (0.00) 
       

Worst past performance decile 1.88  1.14 0.56 
  (0.00)  (0.00) (0.15) 
       

Best past performance decile 0.80  0.50 0.67 
  (0.00)  (0.05) (0.04) 
       

high experience   0.06 -0.04 
    (0.71) (0.80) 
       

past boldness   0.08 0.08 
    (0.00) (0.00) 
       

number of firms covered   -0.05 -0.05 
    (0.00) (0.00) 
       

Worst past performance decile*high exp    1.80 
     (0.01) 
       

Best past performance decile*high exp    -0.94 
     (0.22) 
       

Industry Effects YES  YES YES 
       

N 51  51 51 
       

Average R2 0.073  0.079   0.081 
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