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Abstract

The aim of this paper is to give a formal de�nition and consistent estimates of the extremes

of a population. This de�nition relies on a threshold value that delimits the extremes and

on the uniform convergence of the distribution of these extremes to a Pareto type distri-

bution. The tail parameter of this Pareto type distribution is the tail index of the data

distribution. The estimator of the threshold is anchored in the Kolmogorov-Smirnov dis-

tance between consistent estimates of those two distributions. Our estimator is consistent

and via the construction of con�dence intervals for the tail index (derived from our thresh-

old estimator) we overcome the bias problems of the usual tail index estimators (Hill or

Pickands). The paper also explores the validity of our de�nition for standard sample sizes.

For this purpose, a hypothesis test is designed in order to reject extremes estimates that

are not really extremes. Applications for di�erent stock returns are presented.
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1 Introduction

None doubts that Risk Management is one of the most important innovations of the 20th

century. The question one would like to answer is: "If things go wrong, how wrong can they

go?" The variance used as a risk measure is unable to answer this question, and therefore

alternative measures regarding possible values out of the range of available information need

to be de�ned. Extreme value theory (EVT) provides some tools to construct these new risk

measures: Value at Risk (VaR), Expected Shortfall or the tail index of a distribution. All

these measures need to start by identifying which values are extreme values. In practice

this is done by graphical methods like QQ-plot, Sample Mean Excess Plot or by other

ad-hoc methods that impose an arbitrary threshold (5%; 10%; : : :).

In this paper we propose a formal way of identifying which extreme values are really

extremes. The goal is to estimate the lower bound of these extremes for �nite samples,

i.e. a threshold value. Our method is anchored in three key elements: Pickands, Balkema-

De Haan theorem (BHP), a distance based on a Kolmogorov-Smirnov (KS) statistic and

hypothesis testing via bootstrap methods. By Pickands, Balkema-De Haan theorem we

know that the distribution of the exceedances of a random variable in the limit tends to

a Pareto shape distribution. Therefore, extreme values considered as exceedances above

certain threshold will asymptotically have this type of Pareto distribution. In order to

estimate this threshold point we propose an alternative of Pickands estimator based on

minimizing a Kolmogorov-Smirnov distance taking into account the length of the sample

tail. One of the contributions of our threshold estimator is the obtention of con�dence

intervals for the tail index capturing the tail behavior of the data distribution. Moreover,

the tail index estimators relying on our threshold estimator are consistent and allow to

test our de�nition of extreme values (uniform convergence of the sample distribution of

extremes to a Pareto type distribution). The paper concludes with some applications to

extreme quantile estimation for simulated known distributions as well as for real �nancial

series. For these series, extreme quantiles are the cornerstone of risk measures, as Value at

Risk or Expected Shortfall.

The paper is structured as follows. In section 2 we present a summary of the existing

methods to calculate the threshold value. Section 3 shows a brief review of the results

from the Extreme Value Theory that we will be using in the core of the paper. Section 4

is devoted to de�ne our concept of extreme value and to present a new estimation method

for the threshold value that is used to de�ne extreme observations. Section 5 introduces

a bootstrap goodness of �t test to check the validity of our de�nition. The �nite sample

performance of our proposed method as well as some real applications are shown in section
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6. The conclusions are given in section 7. All proofs as well as the notation used in the

paper are gathered in the Appendices.

2 Existing ad-hoc Methods for Threshold Estimation

In the existing literature, there is not a clear de�nition of the threshold value � that

determines the extremes. There exist di�erent popular estimation methods to select a

threshold (�̂n) relying on the asymptotic Pareto distribution of the exceedances.

� QQ-plot

� Sample Mean Excess Plot

� Simulation Procedures

This estimation of the threshold has di�erent challenges depending on how close �̂n is to

the right end point. A small �̂n yields bias problems in the estimation of the parameters

of the Pareto distribution. On the other hand, large �̂n implies problems of great variance

due to the abscence of points in the tail to estimate the Pareto distribution.

2.1 QQ-plot

The method is based on the following simple fact: if U(1) � U(2) � : : : U(n) are the order

statistics from n i.i.d. observations uniformly distributed on [0,1], then by symmetry

E(U(i+1) � U(i)) =
1

n+ 1
and hence E(U(i)) =

i

n+ 1
. Since U(i) should be close to its

mean i
(n+1) , the plot of f( i

(n+1) ; U(i)); 1 � i � ng has to be linear. Suppose now, X(1) �
X(2) � : : : X(n) are the order statistics from an i.i.d. sample of size n which is suspected to

come from a particular continuous distribution G. The plot of f( i
(n+1) ; G(X(i)); 1 � i � ng

should be approximately linear and hence also the plot of fG ( i
(n+1) ); X(i)); 1 � i � ng

should be linear.
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Figure 2.1. QQ-plots of the negative tail of Nikkei Index returns over the period 05=1997�
05=2001 with �̂ = xd0:90ne and �̂ = xd0:95ne.

It is not clear from Figure 2.1 which portion of the observations �ts better to the Gener-

alized Pareto distribution GPD�̂, with parameters � estimated from the sample observa-

tions.

2.2 Sample Mean Excess Plot

Another standard tool for choosing suitable thresholds is the sample mean excess plot

(�; en(�)) where en(�) is the sample mean excess function de�ned by

en(�) =

n

�
i=1

(Xi � �)+

n
�
i=1

1fXi>�g

,

with x+ = max(x; 0). The sample mean excess function en(�) is the empirical counterpart

of the mean excess function which is de�ned as e(�) = E[X � � j X > �]. If the empirical

plot follows a reasonably straight line with positive gradient above a certain value of �,

then this is an indication that the exceedances over this threshold follow a Generalized

Pareto distribution with positive tail index (�) parameter. This is derived from the fact

that

e(�) =
� + ��

1� �
;

where � + �� > 0 and � is the standard deviation of the GPD (see McNeil and Saladin,

2001).
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Figure 2.2. Sample mean Excess plot for negative Nikkei Index returns over the period

05=1997� 05=2001, (left graph) and a sample from a normal distribution of size n = 1000

(right graph).

Focusing on Figure 2.2 di�erent candidates can be selected for the estimated threshold

value.

Other methods in order to choose the threshold value � take advantage of simulation

procedures for known distributions. The idea is to determine a threshold � from a sample

of size n and consider the number of observations over this threshold N� . The goal is to

obtain the necessary sample size to generate N� exceedances over the determined threshold

�. This sample size is employed to estimate an extreme quantile closer to the right end

point than the threshold �. In this way we can compare this extreme estimate with the

actual extreme quantile of the known distribution and see the reliability of the ad-hoc

threshold estimate (see McNeil, 1997).

3 Extreme Value Theory Results

The mathematical foundation of EVT is the class of extreme value limit laws, �rst derived

heuristically by Fisher and Tippet (1928) and later from a rigorous standpoint by Gnedenko

(1943). Suppose X1; : : : ; Xn are independent random variables with common distribution

function F (x) = PfX � xg and let Mn = max(X1; : : : ; Xn). Under some continuity

conditions on F at its right end point, the maximumMn properly centered and normalized

has a limit law H� with � the parameter of the limit distribution,

PfMn � dn
cn

� xg = Fn(cnx+ dn)
d! H�(x): (1)

The continuity on F is a suÆcient condition but it is not necessary. It is only required

some smoothness near the right end point.
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Theorem 3.1. Let F be a distribution function with right end point xF � 1 and let

� 2 (0;1). There exists a sequence (un) satisfying nF (un)! � if and only if

lim
x!xF

F (x)

F (x�)
= 1 (2)

(see Embrechts, Kl�uppelberg and Mikosch, 1997, p.117).

The condition nF (un) ! � is equivalent to say that the sample maximum has a non-

degenerate distribution of exponential type P (Mn � un) ! e�� . The asymptotic distri-

bution of the maximum is called extreme value law. The key result of Fisher-Tippet and

Gnedenko is that there are only three fundamental types of extreme value limit laws. These

are

Type I: (Gumbel) �(x) = exp(�e�x); �1 < x <1;

Type II: (Fr�echet) ��(x) =

8<
: 0 x � 0;

exp(�x��) x > 0

Type III: (Weibull) 	�(x) =

8<
: 1 x � 0;

exp(�(�x)�) x < 0
.

In Types II and III � is a positive parameter. The three types may also be combined into

a single generalised extreme value distribution, �rst proposed by Von Mises (1936), of the

form

H�(x) =

8<
: e�(1+�x)

�1
�

� 6= 0

e�e
�x

� = 0
(3)

with 1 + �x > 0. The case � > 0 corresponds to Type II with � = 1
� , the case � < 0 to

Type III with � = �1=�, and the limit case � ! 0 to Type I.
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Figure 3.1. The density function of the extreme value limit laws. The dot line is the

Gumbel distribution. Fr�echet and Weibull distributions are plotted with � = 1.
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Corollary 3.1. From expressions ( 1) and ( 3), the following relationships can be extracted

depending on the value of the parameter �, nF (cnx + dn)
d! (1 + �x)

�1
� if � 6= 0 and

nF (cnx+ dn)
d! e�x if � = 0.

These expressions can be considered as the survivor functions of a Generalized Pareto

distribution. Moreover, the asymptotic distribution of the standardized tail of F depends on

a parameter � (tail index), hence a distribution F verifying ( 2) can be classi�ed according

to this parameter.

De�nition 3.1. F belongs to the Maximum Domain of Attraction of an Extreme Value

Distribution H�, F 2 MDA(H�), if and only if there exist constants cn > 0 and dn, such

that c�1n (Mn � dn)
d! H�.

Notice that the commonly employed continuous distribution functions belong to the

maximum domain of attraction of an extreme value limit law, F 2 MDA(H�). From

the results of Fisher-Tippet and Gnedenko it is derived that there are only three types of

maximum domains of attraction in contrast with the number of domains of attraction of

�-stable processes. This maximum domain of attraction of F depends on the sign of �.

De�nition 3.2. A df F such that the right tail satis�es

lim
x!1

1� F (tx)

1� F (x)
= t��; t > 0; � =

1

�
> 0 (4)

is called regularly varying with index � (F 2 RV��).

The tail of a distribution F satisfying ( 4) decays polynomially (F is heavy tailed). This

condition can be rewritten as

1� F (x) = x�
1
�L(x); x!1; � > 0 (5)

where L(x) is a slowly varying function

lim
x!1

L(tx)

L(x)
= 1; t > 0: (6)

A distribution function F with positive tail index and verifying condition ( 2) indicates

that the sample maximum should have a non degenerate distribution of Type II.

Proposition 3.1. F 2 RV�� , F 2 MDA(��) where �� is the Fr�echet EVD. The

normalizing constants for this case are dn = 0 and cn = F (1 � 1
n ) (see Embrechts,

Kl�uppelberg and Mikosch, 1997, p.132).
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It is suÆcient to know the tail index of a distribution F to know the asymptotic distribu-

tion of the standardized maximum. Moreover, this parameter � provides information about

the behavior of the tail and therefore the tail index can help to give a formal de�nition for

the tail avoiding the ad-hoc selection of arbitrary quantiles.

De�nition 3.3. The tail of a distribution is the set of extreme values; these extremes are

the exceedances over a determined threshold (�) with � suÆciently large. The distribution

of these large observations F�(x) is called the conditional excess distribution function (cedf)

over � and is de�ned as

F�(x) = PfX � xjX > �g; � � x � xF ; (7)

where X is a random variable, � is a given threshold and xF � 1 is the right endpoint of

F. This distribution can be written in terms of F,

F�(x) =
F (x) � F (�)

1� F (�)
x > �: (8)

From this expression it is deduced that F �(x) =
F (x)

F (�)
. The extremes of a population

are determined by the threshold � and by the tail index � of the distribution F. These

parameters de�ne the asymptotic distribution of standardized extremes.

Theorem 3.2. (Balkema and de Haan (1974), Pickands (1975)) (BHP). Let F be a

distribution function such that F 2MDA(H�), the conditional excess distribution function

F�(x) for � large, is

lim
�!xF

F�(x) = GPD��(x� �)

where

GPD�;�(x� �) =

8<
:

1� (1 + �(x��)
� )

�1
� if � 6= 0

1� exp
�
�(x��)

�

�
if � = 0

(9)

is the so-called Generalized Pareto distribution (GPD).

The Generalized Pareto is the asymptotic distribution of the extremes under some

continuity conditions over F. If the distribution F has a regularly varying tail, then the

distribution of the extremes as n goes to in�nity can be reduced to a Pareto distribution.

Corollary 3.2. For a distribution function F such that F 2 MDA(��), the conditional

excess distribution function F�(x), for � large, is

lim
�!xF

F�(x) = PD�(
x
� );
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where

PD�(
x
� ) = 1� (x� )

�1
� ; x > �

is the Pareto distribution.

We bring together the two approaches of the asymptotic Pareto type distribution of the

tail in the notation G�,

G� =

8<
: GPD�;�(x� �); F 2MDA(H�)

PD�(
x
� ); F 2MDA(��)

with � = f�; �g for the GPD case and � = f�g for the Pareto distribution. It is important
to notice that we are not contradicting BHP theorem. The Pareto distribution is included

in the Generalized Pareto family: PD�(
x
� ) = GPD�;�(

x��
�� ).

4 De�nition and Estimation of Extremes

Under de�nition ( 3.3) the tail of a distribution is the set of extreme values. We can extend

BHP theorem to give a formal de�nition of the extremes based on uniform convergence

between the two involved distribution functions.

De�nition 4.1. Let X be a random variable with a distribution F 2 MDA(H�). Let � 2
support of F = [x0; xF ] with xF � 1, F�(x) be the conditional excess distribution function

and G�(x; �) be the Pareto type distribution. The extreme values of the distribution F are

de�ned by a parameter � < xF such that F�(x) converges uniformly to G�(x; �) as � ! xF ,

lim
�!xF

sup
x2R

jF�(x)�G�(x; �)j = 0 (10)

with � 2 � the tail index of the distribution F.

In order to obtain the extremes of a distribution F from a sample data we need to

estimate the threshold parameter. Condition ( 10) is not possible to check for a given n,

therefore we give a characterization of the de�nition for sample data.

Proposition 4.1. Let F (x) be a distribution function verifying condition ( 2) and consider

�̂n an estimator of �. The extreme values estimates de�ned by �̂n are extreme values if and

only if

� sup
x2R

jF�̂n(x)�G�(x; �̂n)j p! 0.

� F�̂n(x) = G�(x; �̂n) for almost every x 2 R and given n.
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The �rst condition provides the consistency of the estimator �̂n. This is a necessary

condition but not suÆcient to de�ne the set of extremes. We can obtain consistent estima-

tors of � that determine extremes estimates that do not follow Pareto type distributions for

a given sample size n. This is the reason to impose the second condition. This condition

is not usually possible to check because the parameters of the Pareto type distribution

(�) are unknown. In consequence, we propose a goodness of �t test to circumvent this

drawback.

4.1 Conditional Estimation of the Parameter Set �

The distribution of the extremes of a distribution depends on its tail behavior, i.e. on �.

This set of parameters � must be estimated from the available data sample. Maximum

Likelihood (ml) is the most conventional method and has very desirable properties; con-

sistency, asymptotic eÆciency and normality. The estimation of the tail parameters � is

conditioned on the knowledge we have about the sample tail de�ned by the threshold �. For

the GPD approach, �̂(�) = f�̂ml(�); �̂ml(�)g and for the Pareto approach, �̂(�) = �̂ml(�).

Proposition 4.2. If F 2MDA(��), �̂ml(�) for PD� is the Hill estimator (see Hill, 1975),

�̂Hill(�) =
1

(n� k)

nX
i=k+1

log
x(i)

�
; (11)

with � = x(k) and x(k+1) � : : : � x(n) the increasing order statistics.

Hill estimator is gaining popularity in the EVT Literature because is easy to calculate

and has good asymptotic properties, but in the �nancial literature is employed even for

not heavy tailed distributions. Therefore, consistency and asymptotic normality may not

hold any more. There exists some confusion about the conditions to use it.

Proposition 4.3. Let �̂ml and �̂Hill be the maximum likelihood estimators of the parameter

� of a Generalized Pareto and of a Pareto distribution respectively. These estimators are
p
n-consistent estimates of the tail index of a distribution function F verifying condition

( 2) if � > � 1
2 for �̂ml (see Smith, 1984) and if � > 0 for �̂Hill (Goldie and Smith,

1987).

The drawback of these estimators is their biases (see Guillou & Hall, 2000). This bias

has two di�erent sources: the distribution of data is not of a Pareto type and the choice

of the number of order statistics used to construct the estimator. Let us concentrate on

the Hill estimator and assume F 2 MDA(��). By BHP theorem the large observations

x(k0+1) � : : : � x(n) greater than � = x(k0) follow a PD� with � suÆciently large, therefore
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we eliminate the �rst source of bias. It is shown in Hill (1975) that the random variable

Vi = i [log x(n�i+1)� log x(n�i)] follows an exponential distribution with mean �. Consider
�̂n = x(k) an estimate of � such that x(k+1) � : : : � x(k0) � : : : � x(n) are the exceedances

over the estimate 1. Hill estimator based on x(k) is �̂Hill(�̂n) =
1

n�k

nP
i=k+1

log
x(i)
x(k)

. This

estimator can be decomposed as

�̂Hill(�̂n) =
1

n� k

nX
i=k0+1

log
x(i)

�
+

1

n� k

k0X
i=k+1

log
x(i)

�
+ log

�

x(k)
=

=
n� k0

n� k
�̂Hill(�) +

1

n� k

k0X
i=k+1

log
x(i)

�
+ log

�

x(k)
:

On the other hand, Hill estimator based on the parameter � can be expressed in terms

of Vi, �̂Hill(�) =
1

n�k0

n�k0P
i=1

Vi. This estimator is unbiased ( E[�̂Hill(�)] = � ), however the

expected value of the Hill estimator based on the estimate �̂ is biased. This deviation from

the parameter depends on the bias of the threshold estimator:

E[�̂Hill(�̂n)] =
n� k0

n� k
� +

1

n� k

k0X
i=k+1

Elogx(i) �Elogx(k) +
n� k0

n� k
log�:

Notice that the bias disappears if k = k0. Therefore, the bias of the Hill estimator

of a distribution F 2 MDA(��) as n goes to in�nity depends only on the bias of the

threshold estimate. The problem is that the parameter � = x(k0) is unknown. In order to

minimize bias problems, con�dence intervals are proposed as estimators of the tail index. It

is well known that the random variable Sk =
p
n� k(�̂Hill� �) has an asymptotic N(0; �2)

distribution. We construct nonparametric bootstrap con�dence intervals to approximate

the exact con�dence intervals for the tail index,

� 2 [�̂Hill(�̂n)� 1p
k
J�1k (Fn; 1� �

2
); �̂Hill(�̂n)� 1p

k
J�1k (Fn;

�

2
)]; (12)

with Fn the empirical distribution function of the data, � the signi�cance level and

Jk(x; Fn) the approximate bootstrap distribution of Sk. Note that the same procedure

can be applied to calculate con�dence intervals for the tail index based on the maximum

likelihood estimator �̂ml(�̂n) of a Generalized Pareto distribution.

1Notice that if �̂ > � there is not a problem of bias, it is only a matter of eÆciency of the estimator �̂.
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4.2 Estimation Method for the Threshold Value �

Pickands (1975) proposed a method to estimate the threshold value � based on uniform

convergence (d1) between the Empirical Distribution associated to F� and a Generalized

Pareto distribution estimated from data GPD�Pic
�

:

�Picn = arg min
�

d�1(F�;n; GPD�Pic
�

); (13)

with �Pic
� the estimated parameters of the GPD. This estimator of � is consistent in the

sense that Pfsup
x2R

jF�P icn
�GPD�Pic

�Picn

j > "g ! 0. The estimators for the parameters of the

GPD proposed by Pickands depend on the di�erent values of �. Consider � = X(n�4i+1),

i = 1; : : : ; n=4.

�̂(�) =
1

log(2)
log(

X(n�i+1) �X(n�2i+1)

X(n�2i+1) � �
),

for the tail index and

�̂(�) =
X(n�2i+1) � �R log2

0 e�̂udu
,

for the variance. This estimator for the tail index is consistent, but it is very sensitive to

the choice of the order statistics and it is not eÆcient (Drees, 1995). For standard sample

sizes the estimations of the tail index are biased and the con�dence intervals for � do not

give reliable information. Alternative statistics have been proposed for the tail index to

overcome these drawbacks, (see Dekker, Einmahl and de Haan, 1989). Goldie and Smith

(1987) or Dekker and de Haan (1993) establish the optimal number of order statistics for

di�erent estimators of the tail index.

On the other hand, Pickands estimator for the threshold (�Picn ) does not take into

account the length of the sample tails de�ned by � to compute the distances in ( 13). As

� ! xF the available samples of the tails are smaller yielding worse estimations of the tail

parameters of the GPD. This implies worse goodness of �t of the conditional distributions

F� to the theoretical asymptotic distribution. This is caused not only by the lack of �t

of data to the theoretic GPD distribution but also by the estimation mechanism of the

tail parameters. Hence, �Picn is not near the tail by its own construction. Consequently,

the extremes estimates de�ned by Pickands estimator can be very misleading for standard

sample sizes (see Table 6.1).

A natural distance to derive a good estimator to overcome Pickands drawbacks for �nite

samples is a distance based on Kolmogorov-Smirnov statistic.
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De�nition 4.2. (Kolmogorov-Smirnov distance)

Let F�;n(x) =

n

�
i=1

1f��xi�xg
n

�
i=1

1fxi>�g
be the empirical distribution function associated to F� and G� be

a Pareto type distribution. The distance between F� and G� is calculated by the following

KS distance

d�ks(F�;n; G�̂�
) =

vuut nX
i=1

1fxi>�g sup
x2R

j

nP
i=1

1f��xi�xg

nP
i=1

1fxi>�g

�G�̂�
(x; �)j: (14)

This statistic regards the number of observations of the available sample tails giving

less weight to distances of samples with less data in order to compensate the estimation

failure of the parameters of the theoretical distribution from small samples.

De�nition 4.3. Let d�ks be the KS distance of ( 14) and xn = fx1 : : : ; xng be a sample

of size n from a distribution F. The estimated threshold �̂n is the order statistic x(k) that

makes the distance d�ks minimum.

�̂n = arg min
�

d�ks(F�;n; G�̂�
);

with x(k) such that n� k !1, n�k
n ! 0.

The latter conditions are consequence of BHP theorem. As n becomes large, n-k should

go to in�nity to bene�t of an increasing sample (more information as n increases and

therefore smaller variance). At the same time, unless a portion of the upper tail follows

exactly a Pareto type distribution we expect that n�k
n tends to zero in order to improve

the approximation to the theoretical distribution when � ! xF as BHP theorem states

(smaller the bias).

Theorem 4.1. Let �̂n be the threshold estimator derived from the KS distance (d�ks) and

let �̂(�̂n) be a consistent estimator of the tail index based on xn with � 2 �. Then, �̂n is a

consistent estimator of the threshold parameter � in the sense that

Pfsup
x2R

jF�̂n(x)�G�(x; �̂n)j > "g ! 0, 8 " > 0.

The concept of consistency can be puzzling in this context because the parameter �

according to BHP theorem must go to the right end point. The uniqueness of the threshold

makes no sense, because as � goes to xF the approximation of the conditional distribution

is better. In consequence, we prove the consistency of our estimator in the sense that

mimics the properties of the parameter �. However, other estimators can mimic as well the

behavior of the parameter; � ! xF , �̂(�)
p! � and F� = G�(x; �). In order to check the
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performance of these other estimators we propose a hypothesis test in the next section. In

practice our estimator of the threshold is obtained in the following way,

Algorithm 4.1. :

1. Fix a threshold, � = x(k), (k = k0 = n=2) 2

2. Estimation 3 of �̂� =

8<
: �̂ml(�); �̂ml(�) GPD approach

�̂Hill(�) Pareto approach

3. Compute F�;n(x) =

n

�
i=1

1f��xi�xg
n

�
i=1

1fxi>�g
.

4. Compute G�̂�
=

8<
: GPD�̂;�̂(xi � �) GPD approach

PD�̂Hill
(xi� ) Pareto approach

5. Calculate the distance de�ned by

d�ks(F�;n; G�̂) =

s
nP
i=1

1fxi>�g sup
x2R

j
n

�
i=1

1f��xi�xg
n

�
i=1

1fxi>�g
�G�̂�

(x; �)j

6. k ++

Repeat the process until k = n� 1.

7. At the end of the day, we estimate �̂n = x(k̂) such that

�̂n = arg min
�

d�ks(F�;n; G�̂�
).

Alternative distance measures can be proposed for this threshold selection. For instance

the ones based on Cram�er-von Mises or Anderson-Darling Statistics,

� W 2
n = n

R1
�1

(F�;n(x) �G�̂�
(x))2dG�̂�

(x)

� A2
n = n

R1
�1

(F�;n(x)�G�̂�
(x))2

G�̂�
(x)(1�G�̂�

(x))dG�̂�
(x).

These statistics rely on the euclidean distance. The drawback of these measures with

respect to KS type statistics for threshold selection is that these �rst ones are less sensitive

to large deviations from the Pareto type distribution due to isolate observations (outlier

observations).

5 Hypothesis Testing

The threshold estimate �̂n provides the lower limit of the estimation of the extreme values

in �nite samples. Our threshold estimator �̂n is such that as the sample size increases,

2Consider k = 1; : : : ; n � 1 is computationally very costly. The method is implemented taking fractions of
the sample. x(k) s.t. k = n � i

100
; i = 50; 60; 70; 80; 90; 91; : : : ; 99.

3The algorithm to estimate the threshold depends on the maximum domain of attraction of the distribution
F.
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condition ( 10) asymptotically holds (F�̂n = G�). The key question to answer is whether

this condition can be rejected or not for the extremes estimates produced from the threshold

value estimation. In other words, are these estimates really extreme values according to

our de�nition of extremes? The answer boils down to test

H0 : F� = G� (15)

with G� =

8<
: GPD�;�(x� �) GPD approach

PD�(
xi
� ) Pareto approach.

The statistic proposed to test H0 is the following goodness of �t test

Tn(xn;�) =
p
n sup

x2R
jF�̂n;n(x)�G�(x; �̂n)j: (16)

Although there are alternatives that are more sensitive to the deviations from the null

distribution that occur in both tails (Modi�ed KS tests, see Mason and Schuenemeyer,

1983) we concentrate on the standard KS test because our concern is the distribution of

the largest observations exceeding the threshold value �. The sampling distribution of

this test statistic Jn(x; F ; �) = PfTn(xn;�) � xg is not known and the asymptotic null

distribution J(x; F ) is parameter free (see Kolmogorov, 1933) but it is not possible to obtain

a value of the estimator based on a sample xn because the set of parameters � is unknown.

Therefore, the test statistic needed to test the null hypothesis is Tn(xn; �̂), where �̂ is

an estimate of the true �. This statistic follows asymptotically a functional of a centered

gaussian process that depends on �, see Durbin (1973). The asymptotic critical values

vary with H0 and the estimation of this set of parameters. Bootstrap methodology can be

applied to calculate the sampling quantiles of the Bootstrap distribution Jn(x; F̂n; �̂
�) with

�̂� the estimated set of parameters from the bootstrap sample x�n = fx�1; : : : ; x�ng and with
F̂n an estimate of F. These quantiles will be close to the exact quantiles of the distribution

of the statistic Jn(x; F ; �) if the Bootstrap is consistent (Jn(x; F ; �̂) ' Jn(x; F̂n; �̂
�)) and

if �̂ is a
p
n-consistent estimator of � (Jn(x; F ; �) ' Jn(x; F ; �̂)), see Babu and Rao

(2002) for details.

Proposition 5.1. Let xn be a sample of size n from F. Assume that F̂n is an estimate of F

based on xn and let Jn(x; F ; �̂) be the true sampling distribution of the statistic Tn(xn; �̂).

If the following two conditions hold

� sup
x2R

jF̂n(x)� F (x)j p! 0.

� Jn(x; F ; �̂)! J(x; F ; �) with J(x; F ; �) being a strictly increasing continuous func-

tion in x.
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Then, the Bootstrap approximation Jn(x; F̂n; �̂
�) is consistent (Jn(x; F̂n; �̂

�) ' Jn(x; F ; �̂)).

5.1 Methodology

The statistic Tn(xn; �̂) follows asymptotically a functional of a centered gaussian process.

Therefore, in order to obtain a consistent bootstrap approximation (Jn(x; F̂n; �̂
�)) of the

true sampling distribution of Tn(xn; �̂) we need to construct F̂n verifying uniform conver-

gence in probability to F .

De�nition 5.1. Let F̂n(x) be a mixture of Fn(x) for values smaller than the estimated

threshold �̂n and of a Pareto type distribution for values above it:

F̂n(x) =

8>><
>>:

1
n

nP
i=1

1fxi�xg x � �̂n

G�̂�̂n
(x) + 1

n

nP
i=1

1fxi��̂ngG�̂�̂n
(x) x > �̂n:

(17)

It is obvious to check that F̂n(x) in expression ( 17) is a distribution function.

Proposition 5.2. Let xn be a sample of size n with distribution function F (x). Then, the

distribution function F̂n is such that sup
x2R

jF̂n(x) � F (x)j p! 0.

The �rst task is to generate a bootstrap sample x�n of size n from the distribution F̂n.

Algorithm 5.1. (Generating Process of Data):

1. Let �̂n = x(k) be the estimated threshold and �̂ be the estimated parameter space.

2. Generate 0 � j � 1 and calculate dnje

3. x�i =

8<
: x(dnje) if djne � k

z if djne > k

z = G 
�̂�̂n

(

nj �
nP
i=1

1fxi��̂ng

nP
i=1

1fxi>�̂ng

)

4. i++

Go to step 2

Once a bootstrap sample is generated it is immediate to calculate Jn(x; F̂n; �̂
�) under

H0.

Algorithm 5.2. (Bootstrap Distribution of Tn):

1. l = 1.

2. Generate x�n a bootstrap sample coming from F̂n.
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3. Compute �̂� from the exceedances of x�n over the �xed threshold �̂n.

4. Compute T �l (x
�
n; �̂

�) =
p
n sup

x2R
j

nP
i=1

1f�̂n�x�i�xg

nP
i=1

1fx�
i
>�̂ng

�G�̂�
�̂n

(x; �̂n)j:

5. l = 1; : : : ; B

6. Jn(x; F̂n; �̂
�) = 1

B

BP
i=1

1fT�
i
�xg:

Notice that the set of parameters � is consistently estimated by fŝ2; �̂mlg for the Gen-
eralized Pareto distribution, and by �̂Hill for the Pareto distribution. Both estimators of

the tail index are
p
n -consistent for some values of the tail index (see proposition ( 4.3)).

Therefore, the knowledge of Jn(x; F̂n; �̂
�) allows us to estimate the p-value of the test ( 16):

p = PfJn(x; F ; �) > Tn(xn;�)g ' PfJn(x; F̂n; �̂�) > Tn(xn; �̂)g = 1
B

BP
i=1

1fT�
l
>Tng = p̂:

Large values of the test statistic imply rejection of the null hypothesis. In other words, it

is rejected if p̂ < � for a given signi�cance level �.

5.2 Size of the Test

Theorem 5.1. Let Q̂n be an estimator of F based on a sample xn of size n that satis�es

sup
x2R

jQ̂n � F (x)j p! 0 whenever F 2 FH0 . Then, PfTn(x; �̂) > jn(1� �; Q̂n; �̂
�)g ! �,

with jn(1 � �; Q̂n; �̂
�) the 1 � � quantile of the Bootstrap distribution Jn(x; Q̂n; �̂

�) of

Tn(x; �̂).

The distribution function F̂n(x) of expression ( 17) veri�es the condition of theorem

5.1, therefore jn(1� �; F̂n; �̂
�) ' jn(1� �; F ; �̂). In consequence, F̂n is a good candidate

to estimate the size of the proposed test.

Algorithm 5.3. :

1. j = 1.

2. Estimate �̂n = x(k) and G�̂�̂n
by KS method from a sample xj;n that follows F.

(a) i = 1

(b) Generate a sample x�i;n � F̂n from xj;n.

(c) Calculate T �i (x
�
i;n; �̂

�)

(d) i++. Go to step (b) while i � B:

(e) Construct Jn(x; F̂n) =
1
B

BP
i=1

1fT�
i
�xg:

3. Generate a sample x0n under H0.

4. Calculate T 0n(x
0
n; �̂

0).
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5. p̂ =
1

B

BX
i=1

1fT�
i
>T 0ng

:

6. Reject H0 if p̂ < � with � the signi�cance level.

7. Æj =

8<
: 1 if H0 is rejected

0 if H0 is accepted.

8. j ++. Go to step 2 while j � m:

9. �̂ =
1

m

mX
i=1

Æi, where �̂ is the estimation of the type I error.

�̂ should be close to the signi�cance level �.

5.3 Power of the Test

The choice of Q̂n can bring some problems under the alternative hypothesis (F 2 FH1).

Q̂n should satisfy three conditions under the alternative hypothesis in order to avoid that

the critical values of Jn(x; Q̂n; �̂
�) go to in�nity as n increases.

� Tn(xn; �̂)!1 under F 2 FH1 .

� Q̂n with F 2 FH1 such that Q̂n � F , but some F0 under (FH0).

� The critical value should satisfy jn(1� �; Q̂n; �̂
�) ' jn(1� �; F0; �)!

! j(1� �; F0) <1.

If these conditions hold, then by Slutsky's theorem,

PfTn(x; �̂) > jn(1� �; Q̂n; �̂
�)g ' PfTn(x;�) > jn(1� �; F0)g ! 1 as n!1.

Proposition 5.3. Let xn be a sample of size n from a distribution F under the alternative

hypothesis FH1 and let Tn(x; �̂) be the test statistic of ( 16) with �̂n and G�̂�̂n
estimated

under the null hypothesis. Then, Tn(x; �̂)!1.

The problem is how to construct Q̂n such that does not approach the distribution F,

but FH0 when the sample xn comes from FH1 . F̂n is not valid in this case because F 2 FH1

(xn � FH1). At least, a sample xo;n of size n under FH0 is required to construct Q̂n, a

consistent estimate of FH0 .

Q̂n(x) =

8>><
>>:

1
n

nP
i=1

1fx0;i�xg x � �̂n

G�̂�̂n
(x) + 1

n

nP
i=1

1fx0;i��̂ngG�̂�̂n
(x) x > �̂n

(18)

with �̂�̂n a consistent estimate of � under the null hypothesis.

The algorithm to estimate the power is equivalent to the algorithm proposed for the

size, but in step 3 the sample is generated from F 2 FH1 . Therefore, �̂ is an estimate of
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the power of the test. The objective of this hypothesis test is to reject extremes estimates

de�ned by �̂n which are not really extremes. This situation can occur for small sample

sizes where �̂n can be not near the right end point xF de�ning more extremes estimates

than there really exist. We can also test if the extremes estimates de�ned by other ~�n are

really extremes.

6 Simulations and Some Financial Applications

In this section we present how our estimation and testing methodology perform in �nite

samples, with simulated data from di�erent distributions as well as with real data. Under

our methodology the extremes of the distribution are well estimated by the observations

exceeding a determined threshold value once the null hypothesis ( 15) is not rejected.

The extreme quantile estimates and their bootstrap con�dence intervals rely upon the

construction of F̂n(x). We distinguish two cases: if F has heavy tails, G� is a PD� and a

consistent estimator is given by

F̂n(x) =

8>><
>>:

1
n

nP
i=1

1fxi�xg x � �̂n

1�
n

�
i=1

1fxi>�̂ng

n ( x
�̂n
)
�1

�̂ x > �̂n

otherwise, G� is a GPD�;� and a consistent estimate of F is

F̂n(x) =

8><
>:

1
n

n

�
i=1

1fxi�xg x � �̂n

1�
n

�
i=1

1fxi>�̂ng

n (1 + �̂ (x��̂n)�̂ )
�1

�̂ x > �̂n

By the conditional probability theorem,

PfX � xg = PfX � �gPfX � x j X � �g+ PfX > �gPfX � x j X > �g (19)

with PfX � x j X � �g = 1 for x > �. The conditional probability

PfX � x j X > �g = F�(x) can be well approximated by a Pareto type distribution G�

for � large (BHP theorem). Consider xp such that PfX � xpg = 1 � p, 0 < p < 1 and

�̂n = x(k) estimated by our KS distance estimator. Then, converting expression ( 19) into

its empirical counterpart and approximating F�(x) by G�̂�̂n
we obtain

1� p =
1

n

nX
i=1

1fxi��̂ng +
1

n

nX
i=1

1fxi>�̂ngG�̂�̂n
:

For F 2MDA(��), G�̂ = PD�̂,

x̂p = �̂n(

n

�
i=1

1fxi>�̂ng

pn
)�̂ : (20)
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For F 2MDA(H�), G�̂ = GPD�̂;�̂ ,

x̂p = �̂n +
�̂

�̂
((

n
n

�
i=1

1fxi>�̂ng

p)��̂ � 1): (21)

Quantile estimation is very important as a risk measure in many �elds. In Finance

is used as a risk indicator (Value at Risk) and in Hydrology or Meteorology to determine

security levels of rainfalls or 
oods. Another application of F̂n is to measure the uncertainty

of the tail parameter estimates. There are two challenges to make inference about these

parameters. First, F and the true sampling distribution of the statistic hn(xn; �) of the

extreme parameter � are not known, and second, the asymptotic distribution of hn depends

on nuisance parameters. F̂n de�ned from �̂n allows to generate bootstrap samples x�n in

order to calculate the Bootstrap sampling distribution Ln(x; F̂n) = P (hn(x
�
n; �̂) � x) of

the statistic.

Proposition 6.1. Let hn(xn; �(F )) be a statistic such that depends on the sample xn and

on the parameter �(F ). Let Ln(x; F ) the true sampling distribution of the statistic and

Ln(x; F̂n) be the bootstrap approximation. Consider �̂(F̂n) an estimator of �(F ). Then, if

the Bootstrap approximation is consistent (Ln(x; F ) ' Ln(x; F̂n)),

PfL�1n (
�

2
; F̂n) � hn(xn; �(F )) � L�1n (1� �

2
; F̂n)g ' 1� �:

Suppose hn(xn; �(F )) = n
(�̂(F̂n)� �(F )), 
 > 0. Then, a con�dence interval for �(F ) at

signi�cance level � is

I:C(�) = [�̂(F̂n)� n�
L�1n (1� �

2
; F̂n); �̂(F̂n)� n�
L�1n (

�

2
; F̂n)]: (22)

Con�dence intervals for the tail index parameter proposed in ( 12) are calculated with

this methodology but with no information about the tail behavior, i.e. F̂n is the empirical

distribution. Once the null hypothesis of ( 15) is not rejected, con�dence intervals from

expression ( 12) can be improved approximating F by our semi-parametric distribution F̂n

because we are counting with crucial information about the tail of F.

6.1 Finite Sample Performance

The scope of this section is to give simulated evidence about the �nite sample properties

of the di�erent estimators of the threshold, as well as the impact of these estimators in the

tail index estimators.
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Extremes are characterized by a threshold parameter � such that satis�es: �̂(�)
p! �,

� ! xF and F� = G�(x; �). Let us start with the tail index estimator. We consider

three alternative estimators: �̂ml(�̂) based on a GPD with the threshold estimated by KS

distance, �̂Hill(�̂n) with �̂n also estimated by KS distance and �̂Pic(�
Pic) Pickands estimator

with the threshold estimated by Pickands method (see Section 4:2). These statistics depend

on the threshold, therefore the method to select �̂n is crucial to minimize possible bias

e�ects and to get consistency. We have constructed bootstrap con�dence intervals for the

tail index yielded from these three di�erent approaches. KS(GPD) and KS(PD) are the

methods anchored in a Generalized Pareto and a Pareto distribution respectively. Pickands

method is constructed with the estimates of the Pickands estimator obtained from the

values over the estimated threshold proposed by Pickands (1975).

F � KS (GPD) KS (PD) Pickands

N(0; 1) � = 0 [�0:41; 0:18] [0:08; 0:19] [�0:80;�0:35]
Exp(1) � = 0 [�0:23; 1:22] [�0:29; 0:25] [�0:34;�0:05]
t60 � � 0 [�0:39; 0:27] [0; 0:24] [�0:6;�0:31]
t10 � � 0:1 [�0:28; 0:48] [0:16; 0:30] [�0:67;�0:09]

PD1=4;1 � = 0:25 [0:02; 0:59] [0:16; 0:37] [0:13; 0:43]

PD1=2;1 � = 0:5 [�0:13; 1:41] [0:23; 0:81] [0:46; 0:79]

Table 6.1. Con�dence intervals at � = 0:05 for the tail index � yielded from the three

proposed estimators, �̂ml(�̂n), �̂Hill(�̂n) and �̂Pic(�
Pic) with � estimated by the KS distance

method and Pickands estimator, respectively. B = 1000 bootstrap samples of size n = 1000

have been generated from a sample of the distribution F.

It can be observed that KS(GPD) con�dence intervals always contain the parameter,

although they are longer than the other ones. KS(PD) method outperforms the GPD

method when F has heavy tails, in other cases, this estimator can produce biased con�-

dence intervals. Pickands method only performs well for distributions with heavy tails.

It is important to notice that these bootstrap intervals rely on the empirical distribution

function, Fn. For large sample sizes it is not relevant the bootstrap approximation of F,

however, for as the sample size decreases it is better to use F̂n of expression ( 17), because

it provides us with information about the tail when there is no suÆcient available data of

F.
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F KS (GPD) KS (PD)

Fn F̂n Fn F̂n

N(0; 1) [�0:48; 1:45] [�0:67;�0:11] [�1:38; 0:08] [0:04; 0:38]

Exp(1) [�0:35; 1:39] [�0:48; 1:56] [0:02; 0:42] [�2:32; 0:13]
t60 [�1:49; 1:50] [�0:62;�0:01] [�0:89; 0:32] [�0:03; 0:30]
t10 [�0:39;�0:29] [�0:43; 0:31] [0:20; 0:59] [�0:25; 0:29]

PD1=4;1 [�0:78;�0:66] [�0:14; 0:70] [0:10; 0:42] [0:19; 0:30]

PD1=2;1 [0:06; 0:95] [0:11; 1:11] [0:18; 1:70] [0:37; 0:67]

Table 6.2. Con�dence intervals at � = 0:05 for the tail index � yielded from �̂ml(�̂n) and

�̂Hill(�̂n) with � estimated by the KS distance method. B = 1000 bootstrap samples of size

n = 250 have been generated from a sample of the distribution F.

In the rest of the section we will be using Fn to construct the con�dence intervals for

the tail index, because in order to employ F̂n we have �rst to accept the null hypothesis

F� = G�.

To check in more detail the performance of these estimators for heavy tails, in Table

6.3 we analyze t-student distributions with di�erent degrees of freedom.

t1(� � 1) t3(� � 0:33) t5(� � 0:2) t10(� � 0:1) t30(� � 0)

KS (GPD) [0:37; 1:11] [0:10; 1:53] [�0:17; 0:33] [�0:48; 0:14] [�1:31; 0:50]
KS (PD) [0:67; 1:24] [0:09; 0:42] [0:15; 0:39] [0:16; 0:30] [�0:03; 0:24]
Pickands [0:61; 1:36] [�0:44; 0:14] [0:01; 0:90] [�0:67;�0:09] [�0:83;�0:36]

Table 6.3. Con�dence intervals at � = 0:05 for the tail index � from the three proposed

estimators, �̂ml(�̂n), �̂Hill(�̂n) and �̂Pic(�
Pic) with � estimated by the KS distance method

and Pickands estimator, respectively. B = 1000 bootstrap samples of size n = 1000 have

been generated from a sample of the di�erent t-student distributions.

In practice, the problem arises when the generating process of data is unknown and

there is no information about the ratio of decay of the tail. The tail index can be estimated

by both methods (KS(GPD) and KS(PD)) and depending on the results we should apply an

adequate estimator for the threshold parameters, �̂GPDn;ks or �̂PDn;ks, to achieve more accurate

and reliable estimations of the extremes. Some �nancial indexes are considered in Table

6.4.
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KS (GPD) KS (PD) C.I. Pickands

Dax [�0:18; 0:89] [0:23; 0:37] [�0:49;�0:15]
Ftse [�0:25; 0:07] [�0:31; 0:15] [�0:46;�0:06]
Ibex [�0:11; 0:87] [0:25; 0:47] [�0:46; 0:04]
Nikkei [�0:11; 0:56] [0:27; 0:41] [�0:36; 0:03]

Dow-Jones [�0:15; 1:55] [0:039; 0:53] [�0:43;�0:03]

Table 6.4. Con�dence intervals at � = 0:05 for the tail index � for real data over roughly

the period 05=1997 � 05=2001. B = 1000 bootstrap samples of size n = 1000 have been

generated for the bootstrap intervals.

Almost all �nancial indexes analyzed in this Table can be considered to be fat tailed and

the extremes of these distributions are well de�ned by �̂n yielded from the KS estimator

and the Pareto distribution (PD�) with � contained in a precise con�dence interval. Some

doubts can exist with respect Ftse index. In this case we conclude that the extremes follow

a GPD�;� . Consider now the second property of the threshold parameter: � ! xF . By

consistency, the threshold estimators should go to the right end point as the sample size

increases.

Distribution n = 500 n = 1000 n = 1500 n = 2000 n = 5000

N(0; 1)

�̂GPDn;ks 1:19 1:37 1:45 1:51 1:67

(0:57) (0:49) (0:47) (0:46) (0:42)

�̂Picn 0:44 0:52 0:59 0:64 0:88

(0:26) (0:29) (0:32) (0:33) (0:36)

t10

�̂PDn;ks 2:18 2:28 2:33 2:39 2:49

(0:47) (0:43) (0:41) (0:38) (0:32)

�̂Picn 0:47 0:56 0:63 0:69 0:96

(0:27) (0:31) (0:34) (0:36) (0:39)

PD 1
4 ;1

�̂PDn;ks 2:14 2:13 2:11 2:07 2:07

(0:64) (0:62) (0:62) (0:61) (0:61)

�̂Picn 1:29 1:29 1:29 1:29 1:29

(0:07) (0:07) (0:08) (0:08) (0:08)

Table 6.5. Threshold estimation with KS distance and Pickands estimators as n increases.

5000 samples of size n of di�erent distributions are generated. The unbiased estimated

standard deviation from simulations of �̂n is displayed in brackets.
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As n increases, the two estimators go to the right end point of the distribution. Pickands

estimator provides estimates far from the right end point and the variance slowly increases.

This result points out that extremes estimates produced by Pickands method may be not

very reliable. On the other hand, the estimators anchored in KS distance have decreasing

variance and approach to xF as n!1. Notice that for PD 1
4 ;1

distribution, �̂PDn;ks estimator

has a greater variance as before and n�k
n 9 0. This is because this distribution is exactly

of Pareto type but the term of the KS statistic accounting for the sample length of the tails

produces this uncertainty in the threshold estimates from the bootstrap samples. Pickands

estimator detects the shape of the distribution from the beginning.

One of the goals of this paper is to propose a test to check if the extreme estimates

yielded from a proposed threshold estimator verify the third property: F� = G�(x; �). The

rejection of the null hypothesis means the extremes estimates de�ned by �̂n are not really

extremes. Tables 6.6 and 6.7 show size and power of the goodness of �t test proposed

in ( 16). The proposed alternatives to measure the power of this test are constructed as

deviations from the theoretical distribution of the extremes. Table 6.6 shows the empirical

rejection rates of our test for F 2MDA(H�).

n = 1000 Size Power (5%)

0:01 0:05 Exp(1) GPD�1=4;1 GPD1=4;1

N(0; 1) 0:014 0:07 0:98 0:96 0:96

Exp(1) 0:014 0:04 0:5 0:72 0:75

t60 0:02 0:05 0:97 0:95 0:96

FTSE 0:006 0:048 1 1 1

Table 6.6. B=1000 Bootstrap samples of length n = 1000 of the di�erent distributions

with tail exponentially decaying. m=500 simulations are generated for the bootstrap test.

Notice that the results from the exponential distribution re
ect certain lack of power

of the test. This is because the tail of an exponential with mean 1 is a GPD with � = 0.

Thus, our proposed alternatives are very close to the null hypothesis.

Next table displays the the empirical rejection rates of our test for F 2MDA(��).
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n = 1000 Size Power (5%)

0:01 0:05 Exp(1) PD0:1;1 PD0:65;1

t10 0:012 0:038 0:79 0:74 0:97

PD1=4;1 0:012 0:056 0:75 0:92 0:95

PD1=2;1 0:01 0:046 0:98 0:99 0:67

Nikkei 0:014 0:042 1 1 1

Table 6.7. B=1000 Bootstrap samples of length n = 1000 of the di�erent heavy tailed

distributions. m=500 simulations are generated for the bootstrap test.

Another possibility for the alternative hypothesis is to consider more extremes than

with our de�nition of extremes, i.e. ~�n < �̂n. Let us concentrate on distributions with

heavy tails. We should test F� = PD� �xing the threshold ~�n in order to check if there

are more data in the population that follow a Pareto distribution with tail index �. In

addition, the opposite case can be tested as well. Consider a smaller set of extremes than

the ones produced with our de�nition of extremes. In this case the null hypothesis should

be accepted because F�̂n = PD� implies F~�n = PD� with �̂n < ~�n.

Data �̂n ~�n = x(950) ~�n = x(900) ~�n = x(800) ~�n = x(700)

t10 
0:97 = 2:27 0:19 0:01 0:00 0:00

ŝ = (0:42) (0:29) (0:07) (0:00) (0:00)

t3 
0:97 = 2:97 0:29 0:13 0:0001 0:00

ŝ = (0:97) (0:33) (0:26) (0:002) (0:00)

DaX x(910) = 0:025 0:69 0:20 0:00 0:00

Nikkei x(920) = 0:021 0:97 0:05 0:00 0:00

Table 6.8. p-values of the bootstrap hypothesis tests H0 : F~� = PD� for samples of n =

1000 observations. For the t-student distributions m = 500 iterations are generated. 
p is

the extreme quantile �̂n of the distribution. The unbiased estimated standard deviation of

the p-values is displayed in brackets.

7 Conclusion

Risk and uncertainty are not the same thing (see Granger, 2002) and therefore they need

to be characterized by di�erent measures. It is accepted that variance is well designed to

capture the latter but not the former. To measure risk, in other words, to respond the

question if things go wrong how wrong they can go? it is �rst necessary to �nd an answer
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to the question which extreme values are really extremes? This is the main goal of this

paper, where following Pickands (1975) methodology we do not only de�ne formally and

analytically the set of extreme observations of a given population, but we propose a simple

estimator of them and construct a test to answer the previous question. Identi�cation of

the extreme observations allows to estimate very accurately risk measures as Value at Risk

or Expected Shortfall, as well as to make inference on di�erent tail parameters of interest.

Boths issues are extensions of this paper and constitute undergoing research by the authors.

A Appendix: Proofs

Corollary 3.1: Taking logs in expression ( 1), we have n log(1�F (cnx+dn)) d! logH�(x).

Therefore, log (1� nF (cnx+dn)
n )n

d! logH�(x). This is equivalent to

n F (cnx+ dn)
d! �logH�(x), with H� = e�(1+�x)

�1
�

if � 6= 0 and H� = e�e
�x

if � = 0. We

obtain nF (cnx+ dn)
d! (1 + �x)

�1
� if � 6= 0 and nF (cnx+ dn)

d! e�x. �

Corollary 3.2: Let F 2 MDA(��) and Mn = max(x1; : : : ; xn). By de�nition, there

exist constants, cn = F (1 � 1
n ) and dn = 0 such that c�1n (Mn � dn)

d! �� with �� =

e�x
��

; x > 0, and � > 0. By proposition ( 3.1), F 2 RV��. Consider �; x 2 support(F)

with xF = 1 and x = �t with t > 1. Notice that for 0 < t � 1, F�(x) = 0. Operating in

expression ( 4),

1� lim
�!1

1� F (x)

1� F (�)
= lim

�!1

F (x) � F (�)

1� F (�)
= lim

�!1
F�(x) = 1� (

x

�
)�� = PD�(

x

�
): �

Proposition 4.1: First the if part. Consider �̂n a threshold estimator such that the

values above it are extreme values. Therefore expression ( 10) can be written, replacing

the parameter by the estimator, as

lim
�̂n!xF

sup
x2R

jF�̂n(x) �G�(x; �̂n)j = 0:

This implies

Pfsup
x2R

jF�̂n(x)�G�(x; �̂n)j > "g ! 0.

In addition, if �̂n de�nes the set of extreme values there may exist a subset An � R such

that jF�̂n(An) � G�(An; �̂n)j > ", although from ( 10) sup
x2An

jF�̂n(x) � G�(x; �̂n)j ! 0.

Then, it is derived that F�̂n(x) = G�(x; �̂n) 8x 2 RnAn .

With respect to the only if part, this result follows from condition ( 2). The continuity

near the right end point xF and the consistency of the estimator �̂n imply that

lim
�̂n!xF

sup
x2R

jF�̂n(x) �G�(x; �̂n)j = 0. �
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Proposition 4.2: Let x1; : : : ; xk � PD� with PD�(
x
� ) = 1� (x� )

��; x > �. The density

function is pd(x) = �(x� )
�(�+1) 1

� . Then, the likelihood function is

l(x1; : : : ; xk; �; �) = (�� )
k

k
�
i=1

(xi� )
�(�+1). Let � = 1

� , then from the �rst order conditions, it

is easy to obtain �̂ = 1
k

kP
i=1

log xi� : �

Theorem 4.1: Let �̂n be the threshold estimator derived from the KS distance and let

�̂(�̂n) be a consistent estimator of the tail index based on xn with � 2 �.

sup
x2R

jF�̂n(x) �G�(x; �̂n)j � sup
x2R

jF�̂n(x)�G�̂(x; �̂n)j+ sup
x2R

jG�(x; �̂n)�G�̂(x; �̂n)j.
�̂ is a consistent estimator of �, therefore, sup

x2R
jG�(x; �̂n)�G�̂(x; �̂n)j

p! 0.

Let Xn(�) =

s
nP
i=1

1fxi>�g sup
x2R

jF�(x) � G�̂�
(x; �)j such that for values of � suÆ-

ciently large Xn(�) is a random variable that follows a functional of a centered gaussian

process depending on the parameter � (see Durbin, 1973). Consider now, Xn(�̂n) =

minfXn;1(�1); : : : ; Xn;k(�k)g with f�1; : : : ; �kg greater than a �0 verifying BHP theorem

and Xn;i(�i) random variables. �̂n is the argument of the minimum of this �nite set;

�̂n = arg min
�

Xn(�). Then,

P (Xn(�̂n) > ") = P (minfXn;1(�1); : : : ; Xn;k(�k)g > ") = P (Xn;i(�i) > ")k:

As n goes to in�nity k increases as well. In addition, P (Xn(�) > ") < 1, therefore,

P (Xn(�̂n) > ")! 0 as n; k !1. This expression is equivalent to

Pf
s

nP
i=1

1fxi>�̂ng sup
x2R

jF�̂n(x) �G�̂�̂n
(x; �̂n)j > "g ! 0.

Then,

Pfsup
x2R

jF�̂n(x)�G�̂�̂n
(x; �̂n)j > "�g ! 0 with 0 < "� < ". �

Proposition 5.1: Let xn be a sample of size n from F. Assume that F̂n is an estimate of F

based on xn verifying sup
x2R

jF̂n(x)�F (x)j p! 0 and let Jn(x; F ; �̂) be the true sampling dis-

tribution of the statistic Tn(xn; �̂). This distribution is such that Jn(x; F ; �̂)! J(x; F ; �)

with J(x; F ; �) being a strictly increasing continuous function in x. Then,

PfTn(x; �̂) � J n (1� �; F ; �̂)g ! PfTn(x; �̂) � J (1 � �; F ; �)g = 1� �. In addition,

J(x; F ; �) is continuous and strictly increasing, therefore

J n (1��; F ; �̂)! J (1��; F ; �). Then, as n!1, J n (1��; F̂n; �̂�)! J (1��; F ; �)
because sup

x2R
jF̂n(x) � F (x)j p! 0. Consequently, PfTn(x; �̂) � J n (1 � �; F̂n; �̂

�)g !
PfTn(x; �̂) � J (1 � �; F ; �)g = 1 � �. Then, sup

x2R
jJn(x; F ; �̂) � Jn(x; F̂n; �̂

�)j �
sup
x2R

jJn(x; F ; �̂)� J(x; F ; �)j+ sup
x2R

jJn(x; F̂n; �̂�)� J(x; F ; �)j ! 0. �

Proposition 5.2: For x � �̂n, F̂n(x) is the Empirical distribution function. By Glivenko-

Cantelli theorem, sup
x��̂n

jF̂n(x) � F (x)j = sup
x��̂n

jFn(x) � F (x)j a:s:! 0. For x > �̂n, under
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the null hypothesis, F�̂n = G� and G�̂�̂n
is a consistent estimate of G�.

PfX � xg = PfX � �̂ngPfX � x j X � �̂ng + PfX > �̂ngPfX � x j X > �̂ng.
Therefore, F̂n(x) = Fn(�̂n) + Fn(�̂n)G�̂�̂n

(x).

sup
x>�̂n

jF̂n(x)�F (x)j = sup
x>�̂n

j1�Fn(x)G�̂�̂n
(x)�F (x)j = sup

x>�̂n

jF (x)�Fn(�̂n)G�̂�̂n
(x)j.

The distribution of data F (x) can be written in terms of the tail distribution as F (x) =

F (�̂n)F �̂n(x). Then, sup
x>�̂n

jF (�̂n)F �̂n(x) � Fn(�̂n)G�̂�̂n
(x)j p! 0 by consistency of the

threshold estimator (see Theorem 4.1) and by Glivenko-Cantelli theorem. �

Theorem 5.1: Let Q̂n be an estimator of F based on a sample xn of size n that satis�es

sup
x2R

jQ̂n(x) � F (x)j ! 0 in probability whenever F 2 FH0 . Let j(1� �; F ) be the 1� �

asymptotic quantile of the distribution Jn(x; F ) of a statistic Tn(x;�). Then, PfTn(x;�) >
j(1� �; F )g ! �. The asymptotic distribution of the statistic is continuous, then, jn(1�
�; Q̂n) ! j(1 � �; F ) with jn(1� �; Q̂n) the 1 � � quantile of the Bootstrap distribution

Jn(x; Q̂n). By Slutsky's theorem, PfTn(x;�) > jn(1� �; Q̂ng ! � as n!1 . �

Proposition 5.3: Let xn be a sample of size n from a distribution F under the alternative

hypothesis, H1 : F�̂n � G�. 9An 2 R such that 8 Æ > 0, jF�̂n;n(An) � G�̂(An; �̂n)j > Æ

with �̂ a consistent estimate of � under H0. Then,
p
nsup
x2R

jF�̂n;n(x) � G�̂�̂n
(x)j �

p
n sup
x2An

jF�̂n;n(x)�G�̂�̂n
(x)j > p

nÆ. �

Proposition 6.1: Let �̂(F̂n) be an estimator of �(F ) and hn(xn; �(F )) be the statistic

with sampling distribution Ln(x; F ). Let � be the signi�cance level.

PfL�1n (�2 ; F ) � hn(xn; �(F )) � L�1n (1� �
2 ; F )g can be approximated by

PfL�1n (
�

2
; F̂n) � hn(xn; �(F )) � L�1n (1� �

2
; F̂n)g ' 1� �, if the bootstrap is consistent

(Ln(x; F ) ' Ln(x; F̂n) ).

Let hn(xn; �(F )) = n
(�̂(F̂n)� �(F )), 
 > 0

PfL�1n (�2 ; F̂n) � n
(�̂(F̂n)� �(F )) � L�1n (1� �
2 ; F̂n)g ! 1� �

I:C1��(�)(F ) = [�̂(F̂n)� n�
L�1n (1� �
2 ; F̂n); �̂(F̂n)� n�
L�1n (�2 ; F̂n)]: �

B Appendix: Notation List

x(i): i
th order statistic.

xn: x1; : : : ; xn.

x+ : max(x; 0).

x! a+ : x approaches to a by the right side.

dxe : integer greater or equal than x.

!: convergence as n goes to 1.
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p! : convergence in probability.

d! : weak convergence.

a:s:! : almost sure convergence.

F : inverse of the distribution function.

F : tail of F

�: follows a distribution.
': approximates.
�: does not approximate.

�Pic: estimated parameters by Pickands method.
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