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Abstract

This paper derives conditions under which the generalized method of
moments (GMM) estimator is as efficient as the maximum likelihood esti-
mator (MLE). The data are supposed to be drawn from a parametric family
and to be stationary Markov. We study the efficiency of GMM in a general
framework where the set of moment conditions may be finite, countable
infinite, or a continuum. Our main result is the following. GMM estimator
is efficient if and only if the true score belongs to the closure of the linear
space spanned by the moment conditions. This result extends former ones
in two dimensions: (a) the moments may be correlated, (b) the number of
moment restrictions may be infinite. It suggests a way to construct estima-
tors that are as efficient as MLE. In the last part of this paper, we show how

to calculate the greatest lower bound of instrumental variable estimators.
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1. Introduction

Since the seminal paper by Hansen (1982), the Generalized Method of Moments
(GMM) has been widely applied in econometrics. However, GMM estimator is
usually inefficient relative to the Maximum Likelihood estimator (MLE) due to
the arbitrary choice of moment conditions. In this paper, we shall study the
efficiency of GMM estimators. For this purpose, we assume that the observations
are drawn from a parametric family and are stationary Markov of arbitrary order
L. Suppose that moment restrictions indexed by an index parameter 7 in [ are
available such that
E® [h(1;00)] =0, 7 € I.

If [ is the set {1,2,..., M}, there is a finite number of moments (M finite) or a
countable infinity of moments (M infinite). If I is an interval of R or R itself,
there is a continuum of moments. When I is finite, h (#) denotes the vector where
the moment functions are stacked. In this case, Hansen (1982) shows that the
optimal GMM estimator is obtained by minimizing the quadratic form

hr (0) K7 her (0)

where hrp (6) is the sample estimator of E% [h (6)] and K is a consistent estimator
of, K, the covariance matrix of h (6y) . Under some regularity conditions, the GMM
estimator is v/T —consistent and asymptotically normal with asymptotic variance
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LEQO [Voh] K~1E% [V@h” . These results can be generalized to the case where
is infinite. We propose a general framework that encompasses both the finite
and infinite cases. Let h(0) denote {h(7;0): 7 € I} and hy (6) be the sample
counterpart of E% [ (0)]. Tt is shown that the optimal GMM estimator is solution
of
. _ )
0 = argmin [|hr ()|

where ||.||% denotes the norm in the Reproducing Kernel Hilbert Space (RKHS)

associated with the covariance operator, K, of h(fy). Its asymptotic variance
-1

is [HE9 [Voh (9)]“}(} . We do not discuss the implementation of the GMM

=0,
estimator. In the case of a continuum of moment conditions, the GMM estimation

is detailed in Carrasco and Florens (2000, 2001) and Carrasco, Chernov, Ghysels,
and Florens (2002). In the case of a countable infinity of moment restrictions, it is
customary to truncate the sequence of moment conditions and to let the number




of moments grow with the sample size, see Chamberlain (1985) and Gallant and
Long (1997).

The question we address in this paper is a simple one. Under which conditions
on the set of moment restrictions is the (optimal) GMM estimator asymptotically
as efficient as the MLE? To answer this question, it suffices to compare the asymp-
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totic variance of 0, [HEOD [Voh] HK] with the Cramer Rao efficiency bound. To do

so, we use a characterization of the norm in a RKHS proposed by Parzen (1970).
The main result of this paper is the following. The GMM estimator reaches the
Cramer Rao bound if and only if the Data Generating Process (DGP) score be-
longs to the closure of the set of moment conditions. Although this result may
sound familiar, it generalizes former results in two dimensions: (a) the moment
conditions may be autocorrelated, (b) the number of moment conditions may be
infinite since we allow for both a continuum and a countable infinity of moment
conditions.

Our result can be particularly useful to devise an efficient GMM estimator
in the cases where MLE is either intractable or burdensome. For instance, it
permits to establish that GMM estimator based on power functions or on the
characteristic function is asymptotically efficient. In particular, it implies that the
GMM estimator based on the joint characteristic function of (X, X; 1,..., X; 1)
is asymptotically efficient when X; is Markov of order L. To our knowledge, we
are the first to give a formal proof of this result!. As the expectation of power
functions or the value of the characteristic function is not always known, it may
be necessary to estimate them by simulations. The simulated method of moments
(see Gourieroux and Monfort, 1996 and the survey by Carrasco and Florens, 2002)
consists in matching the sample moment with an estimated moment based on
simulated data. As the simulated method of moments is asymptotically equivalent
to the usual GMM when the number of simulations goes to infinity, our results
also apply to these estimators.

Our approach is strictly parametric and we do not give semiparametric effi-
ciency bound as e.g. in Chamberlain (1987). However, Chamberlain shows that
his bound can be approached using an increasing sequence of moment restrictions
if the set of moment restrictions is “complete”, that is, if it spans the whole space
L?. This condition is similar to our sufficient condition in Corollary 4.2. Hansen
(1985) gives the greatest lower bound for the asymptotic covariance matrices of
GMM estimators when an infinity of moment conditions is available. He does

!Feuerverger (1990) claims this result but does not give a formal proof.



not impose enough structure on the estimation problem to discuss efficiency. He
assumes that the moment {h} can be approximated by martingale difference se-
quences (m.d.s.). The lower bound is obtained by solving an equation similar
to our condition C(g) in Section 3. Our result does not use an approximation
of {h} by a m.d.s.. Tauchen (1997) has the same efficiency result as us in an
iid environment with a finite number of moments. Gallant and Long (1997) dis-
cuss the efficiency of the efficient method of moments (EMM) and show that if
the auxiliary model is sufficiently rich to nest the DGP then efficiency follows.
Note that our results show that it is sufficient that the set of moment restrictions
encompasses the DGP score.

The rest of the paper is organized as follows. Section 2 presents a general
framework for GMM estimation with a finite or infinite number of moments.
Section 3 characterizes the norm in a RKHS. Section 4 gives the efficiency results
and illustrates their usefulness with simple examples. Section 5 gives a method
for deriving the greatest lower bound of instrumental variable estimators in the
spirit of Hansen (1985). The proofs of the main propositions are in appendix.

2. A general framework for GMM estimation

Assume that the process {X,} is stationary, ergodic, and Markov of order L.
X may be multivariate so that X; € RP. The observations are given by {z1, ..., zr} .
The distribution of X; is indexed by 6, its conditional pdf is denoted

fo(ze|lxs 1,2 9,...,x 1;0). Let 0 € © C RY. Let Y; = (X¢, X4 1, ..., X¢_n) for
some finite N and let fy (y) be its pdf. E% denotes the expectation with respect
to fo, (y) - Define L? (Y) as the set {G (V) [E® |G (V)] < oo}

Inference is based on a set of moment conditions

E°h(r,Y,0)]=0,T7€1 (2.1)

where h (7,Y,0) is a function from I x R to R or C. Assume that h(7,Y,0) €
L*(Y), forany 7 € I and 0 € O.
Identification condition:

E®[h(r,Y,0)]=0,Yr € I =0=0,. (2.2)

For efficiency consideration, we might want to base the estimation on a full set
of moment conditions indexed by 7 € I even if identification is achieved from a
finite subset of I. Let I be a measurable space provided with a measure 7. The
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space of reference is L? (I, ) the Hilbert space of complex valued functions such
that

L2(1,7) = {g:]—>C|/I|g(T)|27T(dT) <oo}.

The inner product on this space is
(f.9) = [ () g()m (ar).

where g denotes the complex conjugate of g. The term ||g||* denotes the norm of
gin L? (I, 7). When g is a vector, we define

lgll* = [ 9(r)"g @m ()

It is assumed that h (7,Y,0) € L? (I, 7). The norm in L? (I, 7) may take different
forms.
Examples of spaces L? (I,7) :

e Finite number of restrictions: I = {1,..., M}, 7w is a uniform probability
measure. The norm is the euclidean norm ||g||* = LM, lg(T)|”.

e Countable infinity of restrictions: I = N*, 7 is a Poisson probability measure
such that 7 {7} = e~'/71,7 = 1,2, ... Thenormis ||g||* = ¥2, |g (7)]* 7 (7).

e Continuum of restrictions: I = [0, 1], 7 is Lebesgue measure on [0, 1].The
. 2 2
norm is [lg]* = Jy lg()| dr.

e Continuum of restrictions on R : I = R, 7 is a probability measure on R.The
. 2 2
norm is [|g||* = [ |g(7)|" 7 (d7).

In the following, we use the generic notation [ |g()|*  (d7) even in the discrete
case. Let K be the covariance operator with kernel & (7, \) = E% {h (1,Y,00) h (N, Y, 90)] :
It associates to a function g of L? (I, ) the element of L* (I, ) :

Kg (r) =/Ik(7-,)\)g()\)7r(d)\).

For instance, in the case of a countable infinity of moments K¢ (1) = >, k (7, A) g (A) 7w (N) .
Hence K is an infinite-dimensional matrix.



Let hr (.,0) = £ 527 h (., 4, 0). The GMM estimators are solutions of

min (Bhr (,6) , Bhr (.,6))

where B is an operator from L?(I,7) in L* (I, 7). Denote K 'f the solution g
(when it exists) of the equation Kg = f and K2 = (K~1)"*. The optimal
GMM estimator in the class of GMM estimators is obtained for B = K~1/2 :

6 = arg min (K= hy (,0), K™y (.,0)) . (2.3)

In the case of a finite number of moments, we have the usual GMM objective func-
tion hix K ~'hy where hy = (hy (1,0),...,hr (M,0))" and K~'is the inverse of the
covariance matrix of h. When I is infinite dimensional, K ~'/2 is not defined on the
whole space L? (I,7) but on a subset denoted H(K) and called the Reproducing

Kernel Hilbert Space (RKHS). We use the notation (g, f), = <K‘1/2g7 K‘1/2f>
for the inner product in the RKHS associated with K.
Under some regularity conditions, 0 satisfies

VT (0—6,) % N (0,57) (2.4)
where Y is the ¢ X g—matrix with (7, j) element equal to
(B (Vo.h(0)), E* (V0,1 (9))) |

For I finite, the asymptotic variance can be rewritten as

ot (2.5)
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{E™ (7oh) KT'E” (voh)'}
The result of (2.4) is shown in Carrasco and Florens (2000) for I = [0,1], in
Carrasco and Florens (2001) and Carrasco and al. (2002) for I = R. In presence
of a countable infinity of moments, the result can be established using the same
approach as in Carrasco and Florens (2000). As our focus is on efficiency, we do

not discuss the implementation of the GMM estimator. In the sequel, we assume
that the result (2.4) holds.

3. Norm in a RKHS

Our aim is to compute (f,g), that show up in the inverse of the asymptotic
variance of the GMM estimator. Calculation of this variance permits to establish
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whether the estimator is efficient or not. This section gives results on the norm
in a RKHS that appear in Parzen (1970) and Saitoh (1997). The setting is very
general, and goes far beyond the GMM context.

Besides the space L? (I, 7) introduced in the previous section (on which the
norm ||.||* has been defined), we need to define several spaces:

e Let k be a Hermitian kernel from I x I into C that is
k(m,)) =k, 7).
Assume moreover that k is a L-kernel that is
//|k(7’,)\)|27r(d7')7r(d/\) < o0,
Therefore k defines a Hilbert-Schmidt operator K :
K : L*(I,7n)— L*(I,m)
fo= 9= [RENFO)T @),

The operator K has a countable spectrum. Let {gbj, uj} be the eigenfunc-
tions and eigenvalues of K.
e We define the RKHS on L? (I, 7) associated with k as the Hilbert space:
2
f7 QZS
H(K) = {fELQ(I,WHZM <00y
; .

H;

The inner product on this space is defined as

B %1

The properties of H (K) are (i) k (., 7) € H (K), (ii) (reproducing property)
f(T) = (f?k('77-))K '
e Let H° be a complex Hilbert space with inner product (.,.)go.

e Assume there exists {h(7),7 € I} a family of vectors in H" such that k
takes the form:

kE(T,A) = (h(7),h (X))o -



e Define L? (h) the closure of the subspace of H® spanned by {h (7),7 € I},
it consists of combinations (for some n, real wy, ...,w, and indices 71, ..., 7,)
of the form

n
v = Zwlh (Tl) .
=1
and limits in mean square of such finite linear combinations.

Examples of kernels k include various covariance kernels. If there is no auto-
correlation and h is real, we have

(h (1) ;B (N) o = E” (R (7, Y3, 00) h (X, Y7, 60))

and H° is the Hilbert space of real functions ¢ (Y') such that E% (g@ (Y)Z) < 00.
If h is complex, we have

(h (), h(A) o = E® (b (7,Y:,60) h (X, Y, 60))
where h ()\) denotes the complex conjugate of h (A) . In that case, H" is the Hilbert

space of complex-valued functions ¢ (Y) such that E% <|g0 (Y)|2) < 00. Finally, if
there are autocorrelations, we have

h(r) h ) = 3 E” ( (7,5, 00) b (X, Y5, 00) )

j=o0

and H° is the Hilbert space of complex-valued processes {¢ (Y;),—o00 <t < oo}
such that 332 E% (¢ (Yp) ¢ (V;)) < oc.

The question of interest is to characterize (f,g), for any f, g € H(K). To do
so, we need the following assumption.

Assumption 3.1. {h(7): 7 € I} is complete in L? (h) that is for all G € L*(h),
(G,h(1))go=0forallTe I = G=0.

Assumption 3.1 implies that {k (X, 7) : 7 € I} are linearly independent for all
A € I. Note that the reproducing property implies that {k (.,7) : 7 € I} spans
H(K). As a result of the linear independence, each element of H (K) has a
unique representation as Y, ok (., 7;) for some constants a1, as, ...
Let
Clg)={GeH :g(r)=(C.h(r)y, Vrel}.



Proposition 3.1. Suppose that Assumption 3.1 holds.
(a) H(K) and L* (h) are isometrically isomorphic, i.e. there exists a one-to-one
linear mapping J (not necessarily unique) from H(K) to L? (h) such that

(£ 9= (T, T(9),,

for all f,g € H(K). J is referred to as Hilbert space isomorphism from H(K) to
L% (h).

(b) Let J be the Hilbert space isomorphism from H(K) to L? (h) that trans-
forms k (., 7) into h(7), i.e. J(k(.,7)) = h(r). We have J (g) = G and ||g||5 =
|G|I?0 where G is the unique element of C' (g) N L? ().

(c) Another characterization of J is the following: .J (g) = arg mingec(g) 1G][%0

and hence ||g||§( = Mingeg(y) ”G”iw -

Although the results of Proposition 3.1 are not new, they have not been pre-
sented under this compact form before. In appendix, we provide a personal proof
of this proposition that we think is useful to understand the role played by the
reproducing property. Note that (a) and (c¢) imply that for any g,g9, € H(K)
and G; = arg mingec(g,) G20, i = 1,2, we have

(91792)K = (G17G2)H0 .

The condition that is satisfied by the elements of C'(g) is basically the same
condition as in Equation (4.2) of Hansen (1985). Hansen uses this condition
to calculate the greatest lower bound for the asymptotic covariance matrices of
instrumental variable estimators. He does not discuss (parametric) efficiency.

4. Asymptotic Efficiency of GMM estimators

We consider arbitrary functions h (T,XtL,HO) that satisfy E%h (T,XtL,HO) =0
where X! is the (L + 1) —vector of r.v.: X! = (X;, X; 1, ..., X;_1). We drop 6,
in h (7’, Xt 0()) in the sequel to simplify notation. The question is: Under which

conditions on h is the GMM estimator asymptotically efficient?
Let L? (h) be the closure of the linear space spanned by {h (7’, xtL)} , L2 (h) is

composed of terms of the form 377, w;h (Tj, :ctL) and their limits in L? norm.
Assumption 4.1. (i) X; is stationary, ergodic, and Markov of order L.
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(11) f9 (.’L’l, T2y uny .’L’L|I_T+1, L7425 -y I'_T+L) T:)oo f9 (.’L’l, T2y uny .’L’L) .
(iii) [ supgee ‘h (7’, zk; 9) fo (xo, 1, ...,xL)‘ dxodz,...dxy, < 0o

Proposition 4.1. Assume that Assumption 4.1 holds. The GMM estimator
based on h (T,XtL;G) , T € I is asymptotically as efficient as MLE if and only
if

8(2;? (CL‘t mf_‘f) € L?(h) forall j =1,2,...,q.

The assumption 4.1 (ii) is equivalent to requiring that (X;, X;_1,..., Xi—r11)
is strong mixing, see Rosenblatt (1971, page 195). If X, is geometrically ergodic,
this condition will be automatically satisfied. Proposition 4.1 is a generalization
to the dynamic case of the efficiency result by Carrasco and Florens (2001) which
was proved in an iid environment. A similar result (for a countable sequence of
moments) is discussed by Tauchen (1997) in the static case and by Gallant and
Long (1997) in the context of moment conditions based on the score of a semi-
nonparametric auxiliary model, in the dynamic case. The proof uses the results of
Proposition 3.1. It is proved in the two opposite cases, the case where {h (T, XtL)}
is a martingale difference sequence:

E* [h (7, XF,0) X[ =0

and the general case where {h (T, Xl 9) is autocorrelated. Note that the MLE
efficiency obtains only for the optimal GMM estimator, that is, if the optimal
weighting matrix/operator is used.

The following corollary to Proposition 4.1 gives a sufficient condition for effi-
ciency. L? (Y') denotes the space of functions of X/ that are square integrable.

Corollary 4.2. Assume that Assumption 4.1 holds. If {h (1) : T € I} spans L? (Y)
then the GMM estimator based on {h (1)} is asymptotically efficient.

Remark: {h(7):7 € I} spans L*(Y) is equivalent to say that the family of
moment functions {h (1) : 7 € I} is complete in L? (Y), see Chamberlain (1987).
It is trivially satisfied if L?(h) coincides with L?(Y).

Example 1. (Power functions)

Assume that the data are iid with distribution for which the moment generat-
ing function exists. One can reach efficiency using a countable infinity of moments
indexed by 7

hir,z,0) =2" —E°(X"), 7=1,...
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The efficiency follows from the properties of Hermite polynomials, under mild
conditions on the score, see Sansone page 367-368. The moments E’ (X7) are
usually unknown and need to be estimated using simulations.

Example 2. (EMM)

We now revert to the case where {X;} is a stationary Markov process of
order L. The indirect inference method proposed by Gourieroux, Monfort, and
Renault (1993) and the Efficient Method of Moments (EMM) proposed by Gallant
and Tauchen (1996) are methods designed to handle cases for which the MLE is
intractable, these methods use an auxiliary model (easy to estimate) indexed by a
parameter A. The auxiliary model defines a conditional pdf fas (y¢|yi—1, .- Yr—r; \)
where M denotes the dimension of A. Denote A (6y) the pseudo-true value of A
(the limit of the QMLE of \) and denote h,;; the pseudo score:

6 In f]w

hZVIt (00) = O\

(yt|yt717 e YL A (90)) .

The asymptotic variance of /T (@ — 00) is given by

-1
Ego lahwlt]

00

j=—00

oh e
& l 69N’H] [ > B (hanti ;)

By Proposition 4.1, efficiency is achieved if the DGP score belongs to the closure
of the set {hpst} . This will be satisfied in general if the auxiliary model is based on
a seminonparametric model using a Hermite expansion suggested by Gallant and
Tauchen (1996). Gallant and Long (1997) show that the variance of the EMM
estimator converges to the Cramer Rao efficiency bound when M goes to infinity
(see also Gallant and Nychka 1987).

Example 3. (Characteristic function)

Consider moment functions based on the joint characteristic function of X} =
(X, Xe 1,0, Xt 1)

h (T, Xk, 9) — "Xt _ gt [eT’XtL] . (4.1)
or the conditional characteristic function
h (T,xtL,Q) = X {e"Xt —E° [e"Xt|XtL:11H (4.2)

where 7 = (s',7)". In both cases a continuum of moment conditions is available.
Corollary 4.2 implies that GMM estimators based on either moment functons are
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asymptotically efficient. This result was shown by Singleton (2001) for (4.2) but
is new for (4.1)2. Note that the first set of moment conditions are autocorre-
lated unless the data are iid. On the other hand, the moment conditions (4.2)
are martingale difference sequences and hence are uncorrelated. Therefore the
second set of moment conditions may be easier to handle than the first one. If the
conditional c.f. is unknown, it may be estimated via simulations. This requires
drawing from the conditional distribution which is not always possible. An ap-
plication of the characteristic function to the estimation of iid mixture models is
presented by Carrasco and Florens (2001) and of diffusions is given by Singleton
(2001) and Carrasco, Chernov, Florens and Ghysels (2002). The last papers allow
for the possibility that the characteristic function is unknown and estimated via
simulations.

5. Efficiency bound for instrumental variables (incomplete)

We use the results on RKHS to derive a greatest lower bound for instrumental
variable estimators in a time series context. Our approach is closely related to
that of Hansen (1985), Hansen, Heaton and Ogaki (1988), and West (2001). We
specify the same model as in Hansen (1985):

e=m(z,0)
where 6 is the parameter of interest. Let Z be the set of instruments so that
Eze =0 (5.1)

for all z € Z. The greatest lower bound for instrumental variable estimators based
on any subsets of moments of type (5.1) is the variance of the GMM estimator
based on all the moment conditions as the variance of the GMM estimator can
never decrease when the number of moments increase. So Formula (2.5) and
Proposition 3.1 provide a way to compute the efficiency bound of GMM estima-
tors. When {h} are martingale difference sequences (m.d.s.), our method is very
similar to that of Hansen (1985) as his condition (4.8) corresponds to the condition
satisfied by the elements of C'(g). When {h} are not m.d.s., both approaches are
different as Hansen follows Gordin by approximating stationary ergodic processes
by m.d.s. Below we give an illustrative example on how to apply our approach to
study moment redundancy.

2Feuerverger (1990) claims the result but his proof is heuristic.
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Example of application. There have been recently several papers treating
of the moment redundancy (Kim, Qian, and Schmidt, 1999, Broze, Francq, and
Zakoian, 2001, Hall and Inoue, 2003). We show here how our bound permits
to give a necessary and sufficient condition for moment redundancy in a simple
framework. Consider the following autoregressive model

Y = 0yi_1 + &

where ¢; satisfies
E [€t|yt—1,yt—2, ] = 0,
E &y yia, ] = atbyl,.

witha >0and b> 0. Heree =, Z = {yt 1,Y1 2,--}, h (1) = ye i (ye — Oy 1),
Voh (i) = =yt ¥t1, g (i) = —E (y+—iy+—1) - To compute the bound, we look for
an element G of the linear space spanned by {h (i) ,7 = 1,2, ...} which belongs to

C(g). Hence G = (230'11 wjyt_j> g, where {w; : j = 1,2, ..} are the solutions of
g(i) = EMh@G)G), forali=1,2,..

& —F (ytfiytfl) =F (ytz (ijytj) E%) N for all 7 = 1,2,

J=1

& —FE(yi—iyi1) =F (yt_z- (Z U}jyt_j) (a + byfl)) , foralli=1,2, ..
=1

The solution if it exists is unique. The efficiency bound is then given by

-1

[ 2
(EG2>_1 = (B (ijytj)
j=1

e o)

The OLS estimator will be as efficient as any GMM estimator based on moments
{h(i),i=1,2,...} if and only if this bound coincides with the asymptotic variance

of OLS that is
1

o FE y{ a—i—by{
o e i

13



This condition is satisfied if ¢, is homoskedastic (case where b = 0, w; = 1/a, and
w; = 0 for i > 1) and may or may not be satisfied when &, is heteroskedastic.
Broze, Francq, and Zakoian (2001) give an example where OLS is not efficient.
If y; 1 is replaced by an exogenous variable x; and x; is iid normal (0,02), then
condition (5.2) is satisfied in spite of the presence of heteroskedasticity because
w; = —1/(a+ 3bo?) and w; = 0 for i > 13,

A. Proofs

Proof of Proposition 3.1. 1 - Proof of (a) and (b). As {k(.,7):7 € I} span
H (K) and are linearly independent and {h (7): 7 € I} are complete in L? (h),
we have that any element of H (K') can be written as

g= Zajk: (.,75)
J
and any element of L? (h) can be written as

G =2 B;h(r;).

The fact that there are at most a countable infinity of terms in the two sums
above follows from Theorem 10 of Dunford and Schwartz (1988, p. 251). Note
moreover that by the reproducing property, we have

k(1) k(L A) e =k(T,X) = (h(T),h (X))o - (A.1)

Let g = >2; a;k (., 7;) be an element of H (K), it follows from (A.1) that

gl = (;alk(-m)azajk(ﬂj))
= Z ala_jk (Tlv Tj)
= ]Zala_j(h (72) s 2 (7)) o

2
= [1Glo

K

3This remark is inspired from Anatolyev (2003).
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for G =3, auh (7). G is unique by Assumption 3.1 and belongs to C(g). Hence
J is the one-to-one mapping that transforms Y-, ok (., 7;) into 3°; ah (75) .

Proof of (¢) - Now we prove (b)==(c). First note that an element of C'(g)
can not be orthogonal to h (7)for all 7. Define a general element of C (g) G =
Go + Gy where Gy = 3, wih (1;) belongs to C N L2(h). G € C (g) implies

(G1,h (7))o =0 V7. (A.2)
Next we compute the norm of G and show that it is minimal for G; = 0.
1G1Z = 1Goll + G120 +2 (Goy G ) o
The condition (A.2) implies that
ZI:M (Gi,h(T)go = 0
(GG = 0.
Hence Gy has minimal norm. The result follows.

Proof of Proposition 4.1. The GMM estimator is efficient if the inverse of
its asymptotic variance equals the Information matrix that is the (i, j) element of
3] satisfies:

(2 o @) £ (20 0) = 2 | (B2 (i) ) (52 (i) ) |

at 0 = 6y. Note that HEQO (vgih)Hi = H—E9° (%)Hi Using the notation of

Section 3, (.,.)zo denotes the inner product defined by the covariance operator
K. Define
C(g)={Glg(1) =(G,h(T))po foralrel}.

By Proposition 3.1 (i), the GMM estimator will be efficient if the following two
conditions are satisfied:
(a) Go =, In fo (xt|:z:tL:11) belongs to the set C'(g) with g = —E% (VT,h) :
(b) Gy belongs to L2(h).
We successively consider the case where {h (T, XtL)} is a martingale difference

sequence and the general case where {h (7’, Xf)} is autocorrelated.
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1. <h(7, XL } is a m.d.s. As {h (T,XtL)} are uncorrelated, the covariance
operator K has for kernel

k(r1,72) = B [h (71, X)) b (72, XF)| = (B, h) o
Using the notation of Proposition 3.1, we define
C(g)={Glg(r) = E*(Gh(r)),vre 1}
To show (a), we need to prove that
—E% (vgjh) = /V@J, In fy (:z:t|:z:f_’11> h(r,zF)fo (xtL) dxF.
Taking the complex conjugate on each side, this is equivalent to show
—E" (v4,h) = / Vo, W fo (w|2d=1 ) b (7,28) fo (aF) da. (A.3)

Note that E° gh (T,XtL, 9)) = 0 for all . Differentiating with respect to 6 on
each sides yields

B (o, (7, XE,0)) = [ o, o (aF) b (r,af) dof
_ / Vo, fo (zel2f) fo («f50) b (7 af ) daf (A4)
+ [ o (wlot=t) o, fo (2150) b (7, 2F) daf(A5)
- / Voln fo, (wdlat3) fo («F) b (v, 2k) et +0
because {h (T, XtL)} is a m.d.s. and

/V9jf9 (SL}L:f) {/ h (77 th) Jo (:z:tle:f) d:ct} dzl= !t =o0.

Hence (A.3) holds.
2. {h (T, XtL)} is autocorrelated. The covariance operator has for kernel

k(r1,72) = i Bh (r1, 2t ) b (72, 21)
j=—00
_ i %), (7'1, SjY) h(72,Y)

j=—o0

(h7h)H0
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where Y; = X} and S is a measure preserving shift operator as defined in Stout
(1974, page 171). To show that Gy belongs to C (g) with g = —E?% (V@Jfl) , We
need to establish?

B (Go,h (b, 0)) = Y B [ tnfo (XUXE) B (7, XE )]

j=—00

= 2 B [Vo,n fo (Xpmd XP20 ) 1 (m X )|

tez

> ()

tez

As before, we use the fact that E’ (h (7’, z), 9)) = 0 for all #. Again differentiating
with respect to 6 gives —E? (vgjh (T, XtL,H)) =(A.4)+(A.5). As {h (T,XtL)} is
no longer a m.d.s., the term (A.5) does not vanish. We now turn our attention
on the terms v (¢). For all t <0, vy (¢) =0.

10 = [ o1 o (wplat 1) b (r.oh) fo (aF) dof
= (A4).
To conclude the proof, it remains to show that
> ()=
t=1

We have

o) T
>y () = lim E” [Z Vo, fo (Xpo XE7E0 ) b (7, Xf)]
t=1

t=1

and
E% lz Vo, n fo (Xpo| X[ ) b (7, Xf)] (A.6)
= E% Vo, In fo (X1 1,0 Xp 2| X[ 5 1) b (7, XT))]
= [V, fo (e Haf b)) b (7. fo (o) daf -

- /VO f9 xL 1 L T 1)h( zL) fo (SL’L|$L 1) fo (:z:L T 1) dggT+L_

4This equality appears in Newey and McFadden (1994) in the independent case. It has been
proved for the dynamic case by Hall and Inoue (2003) independently to us.
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Using
= Vejfe (55 |17L T— 1)
we obtain
(A.6) = /Vejfe l’L 1|$L T— 1)h(7'755£> Jo ($L|$£j) Jo (5‘7L T— 1) dl’ﬁdl’L T—1-

Hence letting T' go to infinity and applying Assumption 4.1 (ii) yield

> () = /Vofe (2120) b (7 27) fo (weloiT) fo (2175 ) dafdaf =i,

t=1

= (A.5).
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