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Abstract

Conventional time series analysis, focusing exclusively on a time series at a
given scale, lacks the ability to explain the nature of the data generating process.
A process equation that successfully explains daily price changes, for example, is
unable to characterize the nature of hourly price changes. On the other hand, sta-
tistical properties of monthly price changes are often not fully covered by a model
based on daily price changes. In this paper, we simultaneously model regimes of
volatilities at multiple time scales through wavelet-domain hidden Markov models.

We establish an important stylized property of volatility across different time
scales. We call this property asymmetric vertical dependence. It is asymmetric in
the sense that a low volatility state (regime) at a long time horizon is most likely
followed by low volatility states at shorter time horizons. On the other hand, a high
volatility state at long time horizons does not necessarily imply a high volatility
state at shorter time horizons.

Our analysis provides evidence that volatility is a mixture of high and low
volatility regimes, resulting in a distribution that is non-Gaussian. This result
has important implications regarding the scaling behavior of volatility, and conse-
quently, the calculation of risk at different time scales.
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1 Introduction

The fundamental properties of volatility dynamics are volatility clustering (conditional
heteroscedasticity) and long memory (slowly decaying autocorrelation). Both prop-
erties might be labeled as horizontal dependency when viewing volatility in the time
domain.1 In this paper, we establish a third important stylized property of volatility
from a time-frequency point of view – the asymmetric dependence of volatility across
different time horizons. Specifically, low volatility at a long time horizon is most likely
followed by low volatility at shorter time horizons. On the other hand, high volatility at
long time horizons does not necessarily imply a high volatility at shorter time horizons.
We call this property asymmetric vertical dependence.

The motivation behind the vertical dependence in volatility is the existence of
traders with different time horizons. At the outer layer of the trading mechanism
are the fundamentalist traders who trade on longer time horizons. At lower layers,
there are short-term traders with a time horizon of a few days and day traders who
may carry positions only overnight. At the next level down are the intraday traders
who carry out trades only during the day but do not carry overnight positions. At
the heart of trading mechanisms are the market makers operating at the shortest time
horizon (highest frequency). Each of these types of traders may have their own trading
tools consistent with their trading horizon and may possess a homogeneous appearance
within their own class. Overall, it is the combination of these activities for all time
scales that generates market prices. Therefore, market activity would not exhibit ho-
mogeneous behavior, but the underlying dynamics would be heterogeneous with each
trading class at each time scale dynamically interacting across all trading classes at
different time scales.2 In such a heterogeneous market, a low-frequency shock to the
system penetrates through all layers of the entire market reaching the market makers.
The high-frequency shocks, however, would be short lived and may have no impact
outside their boundaries.

Short-term traders constantly watch the market to re-evaluate their current posi-
tions and execute transactions at a high frequency. Long-term traders may look at the
market only once a day or less frequently. A quick price increase followed by a quick
decrease of the same size, for example, is a major event for an intraday trader but a
nonevent for central banks and long-term investors.3 Long-term traders are interested

1Clustering and long memory properties were first noted in Mandelbrot (1963) and Mandelbrot
(1971). These findings remained dormant until Engle (1982) and Bollerslev (1986) proposed the ARCH
and GARCH processes for volatility clustering. In the early 1990s, a comprehensive study of the long-
memory properties of financial time series had started.

2The term “time scale” may be viewed as a “resolution”. At high time scales (low frequencies, long
term) there is a coarse resolution of a time series while at low time scales (high frequency, short term),
there exists a high resolution. Moving from low time scales to high time scales (from short term to
long term) leads to a more coarse characterization of the time series due to averaging.

3Small, short-term price moves may sometimes have a certain influence on the timing of long-term
traders’ transactions but not on their investment decisions.
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Figure 1: The coarse volatility, vc(t), captures the view and actions of long-term traders
while the fine volatility, vf (t), captures the view and actions of short-term traders. The
two volatilities are calculated at the same time points where returns (rj) are measured
and are synchronized.

only in large price movements and these normally happen only over long time intervals.
Therefore, long-term traders with open positions have no need to watch the market at
every instance.4 In other words, they judge the market, its prices, and also its volatility
with a coarse time grid. A coarse time grid reflects the view of a long-term trader and
a fine time grid that of a short-term trader.

For exploring the behavior of volatilities of different time resolution, Dacorogna
et al. (2001) defined two types of volatility, the “coarse” volatility, vc, and the “fine”
volatility, vf , as illustrated in Figure 1. The coarse volatility, vc(t), captures the view
and actions of long-term traders while the fine volatility, vf (t), captures the view and
actions of short-term traders.5 It has been shown in Müller et al. (1997) and Dacorogna
et al. (2001) that there is an asymmetry where the coarse volatility predicts fine
volatility better than the other way around.6

One of the goals of this paper is to investigate the propogation properties of this
heterogeneity-driven asymmetry by studying the statistical properties of the flow of
information from low-to-high frequency scales.7 Low frequency scales (fundamental-

4They have other means to limit the risk of rare large price movements by stop-loss limits or options.
5The two volatilities are calculated at the same time points where returns (rj) are measured and

are synchronized.
6The HARCH model of Müller et al. (1997) belongs to the ARCH family but differs from ARCH-type

processes in a unique way of considering the volatilities of returns measured over different interval sizes.
The HARCH model has the ability to capture the asymmetry in the interaction between volatilities
measured at different frequencies such that a coarsely defined volatility predicts a fine volatility better
than the way around.

7The flow of dependence, from lower resolution (low frequency content) to higher resolution (higher
frequency content) can be relaxed such that an analysis from higher frequency to low frequency content
can be allowed. Durand and Gonçalvès (2001) comment that the directions of the directed acyclic graph
(DAG) for the model of Crouse et al. (1998) is not necessary according to a paper by Smyth et al.
(1996). In this paper, one can drop all directions in the graph and the conditional independence
statements would still be valid.
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ist type traders) are associated with traders who trade infrequently. Therefore, the
framework that we study focuses on the impact of the actions of the long-term traders
on short-term traders who trade more frequently. Once the regime structure (state) is
identified from low-to-high frequency, this has implications for the flow of information
across time scales. In particular, a high volatility regime persists longer at longer (lower
frequency) trading horizons relative to short (high frequency) horizons. Alternatively,
the duration of regimes tends to be longer for low-frequency trading horizons whereas
high-frequency horizons have short-lived regime durations with frequent regime switch-
ing. This is not surprising since the impact of a change in long term dynamics would
be short lived at higher frequencies.

Indeed, our findings indicate that a low volatility at a low frequency implies a low
volatility at higher frequencies. For example, if a low volatility is observed at a weekly
scale, it is more likely that there is also a low volatility at a one day scale. However, a
high volatility at a low frequency does not necessarily imply a high volatility at higher
frequencies. This is because the market “calms down” at higher frequencies much
earlier than it does at lower frequencies.

Our modeling framework is based on wavelet-domain hidden Markov models (HMMs).
The wavelet HMMs are distinct from traditional HMMs already used in time se-
ries analysis.8 Traditional HMMs capture the temporal dependence within a given
time scale whereas wavelet HMMs capture dependencies in the two-dimensional time-
frequency plane. In our analysis, we classify high-frequency data into time horizons
(scales) that are consistent with the time scales in which traders operate. Each time
scale is characterized with a two-state regime of high and low volatility. By connect-
ing the state variables vertically across scales, we obtain a graph with tree-structured
dependencies between state variables across different time scales. An implication of
our findings is that composition of states across adjacent scales varies in time. Hence,
simple aggregation of a daily volatility to obtain a monthly volatility, for instance, may
not necessarily follow linear aggregation but may involve nonlinearities through state
switching.

A simple way to think about wavelet multiscale analysis is the following example:
The day ends and one makes the analysis of the day at various time intervals. For
instance, a trader may argue that the day overall was quiet with minimal volatility
except that there was high volatility within a 10-min window in the morning trading
around 10:00 a.m. Such a statement requires the trader to observe the entire day
and make references to specific time intervals in that trading day. Figure 2 illustrates
this point with an example from the New York Stock Exchange. On January 3, 2001,
the Dow Jones Industrial Average (DJIA) increased from 10,646 (previous day closing

8In the economics and finance literature, the persistence of mean and volatility dynamics and
nonlinearities through regime switching at a given data frequency (horizontal persistence) have been
examined extensively within the context of Markov switching models. The introduction of Markov
switching models to the economics and finance literature is due to Hamilton (1989). Maheu and
McCurdy (2002) is a recent study of high-frequency volatility using a Markov switching model.
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Figure 2: The Dow Jones Industrial Average (DJIA) volatility during January 3, 2001. In this
day, the DJIA increased from 10,646 (previous day closing value) to 10,946 (closing value that
day). The 2.82% daily increase was relatively large and the market on this day can be classified
as “volatile”. However, a close inspection of 5-min DJIA values shows that the market was not
volatile during the entire trading session.

value) to 10,946 (closing value that day). The 2.82% daily increase was relatively large
and the market in this day can be classified as “volatile”. However, a closer inspection
of 5-min DJIA values shows that the market was not volatile during the entire trading
session in that day. If we look at the data from an hourly scale, the high volatility
took place at the beginning of the trading session (first hour) and between 1:00-2:00
p.m. Other than these two hours, the market was not volatile on an hourly scale.
Similarly, high volatility was only present for certain intervals of the intraday scales
this particular day. A successful method to describe the market dynamics at different
scales (monthly, daily, hourly, etc.) must be able to separate each time-scale component
from the observed data.9 Though it is not common in economics and finance, wavelet
methodology has been proved to be an excellent tool to reach this goal in several
scientific areas.

Wavelet coefficients decompose the information from the original time series into
9One apparent question regarding the wavelet methodology is whether comparisons of volatilities are

fair, and whether there is an issue of the use of future information, as low-frequency volatility uses more
information on the time-domain relative to a high-frequency volatility. The usage of future information
is not a concern, purely because of the fact that this study is an historical analysis describing market
dynamics at different scales.
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pieces associated with both time and scales. Since the wavelet coefficients capture
the variation of volatility at a given scale and interval of time, we model the wavelet
coefficients directly. The wavelet coefficients can be viewed as differences between
weighted averages where the weights are determined by a given wavelet filter. If the
concern is the total variation of the data at various time scales, it is essential to work
with wavelet coefficients. For the current analysis, the important issue in a given scale
is “how large a wavelet coefficient is”. If it is relatively large (relative to the average
in this time scale), then it implies there was a sudden change in average volatility at
that scale, meaning the system had switched to a “high volatility state”. On the other
hand, if the wavelet coefficient is small, it implies no large change in volatility (relative
to the average in that time scale) and that a “low volatility state” prevails.10

The outline of this paper is as follows. Section 2 introduces the discrete wavelet
transform in terms of orthonormal matrices and digital filters. Multiresolution analysis,
the additive decomposition of a time series based on the discrete wavelet transforma-
tion, is also introduced. Section 3 explores how the additive decomposition of high-
frequency foreign exchange (FX) rates, through multiresolution analysis, accurately and
efficiently isolates features in high-frequency U.S. Dollar-Deutsche Mark (USD-DEM)
series. The primary model in this paper, the wavelet based hidden Markov model,
is explained in Section 4 with emphasis on the hidden Markov tree formulation that
allows for dependencies between wavelet coefficients across scales. Section 5 examines
the wavelet hidden Markov tree modeling of high-frequency USD-DEM FX rates. In
the study of the stock markets, we use a unique high-frequency stock market data set,
namely the Dow Jones Industrial Average (DJIA) Index which includes the September
11, 2001 crisis. We discuss the methodology presented here along with future directions
in Section 6.

2 Wavelet Methodology

The discrete wavelet transform (DWT) is a mathematical tool that projects a time
series onto a collection of orthonormal basis functions (wavelets) to produce a set of
wavelet coefficients. These coefficients capture information from the time series at
different frequencies at distinct times. The DWT has the advantage of time resolution
by using basis functions that are local in time, unlike the discrete Fourier transform
whose sinusoids are infinite and hence cannot produce coefficients that vary over time.
The DWT achieves this through a sequence of filtering and downsampling steps applied
to a dyadic length vector of observations (N = 2J for some positive integer J) that
yields N wavelet coefficients. The wavelet coefficients decompose the information from
the original time series into pieces associated with both time and frequency. The DWT
has proven to be useful in capturing dynamics of financial and economic time series;

10The wavelet coefficients are normalized to a unit time scale for all time scales so that comparisons
are carried out in the same unit time scale.
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see, for example, an excellent survey by Ramsey (2002) on wavelets in economics and
finance. An in-depth introduction to the DWT with applications may be found in
Gençay et al. (2001b). Here we provide only the essential information in order to
establish notation and interpret results from models based on the DWT.

2.1 Wavelet Filters

Unlike the Fourier transform, which uses sine and cosine functions to project the data
on, the wavelet transform utilizes a wavelet function that oscillates on a short interval
of time. The Haar wavelet is a simple example of a wavelet function that may be
used to obtain a multiscale decomposition of a time series. The Haar wavelet filter
coefficient vector, of length L = 2, is given by h = (h0, h1) = (1/

√
2,−1/

√
2). Three

basic properties characterize a wavelet filter:∑
l

hl = 0,
∑

l

h2
l = 1, and

∑
l

hlhl+2n = 0 for all integers n �= 0. (1)

That is, the wavelet filter sums to zero, has unit energy,11 and is orthogonal to its even
shifts. These properties are easily verified for the Haar wavelet filter. The first property
guarantees that h is associated with a difference operator and thus identifies changes
in the data. The second ensures that the coefficients from the wavelet transform pre-
serves energy. In other words, the coefficients from the wavelet transform are properly
normalized and, therefore, will have the same overall variance as the data. This would
ensure that no extra information has been added through the wavelet transform nor
has any information been excluded. The third property guarantees that the set of
functions derived from h will form an orthonormal basis for the detail space and allows
us to perform a multiresolution analysis on a finite energy signal. The complementary
filter to h is the Haar scaling filter g = (g0, g1) = (1/

√
2, 1/

√
2), which possesses the

following attributes:∑
l

gl =
√

2,
∑

l

g2
l = 1, and

∑
l

glgl+2n = 0 for all integers n �= 0,

and satisfies the quadrature mirror relationship gl = (−1)l+1hL−1−l for l = 0, . . . , L−1.
The scaling filter follows the same orthonormality properties of the wavelet filter, unit
energy and orthogonality to even shifts, but instead of differencing consecutive blocks
of observations the scaling filter averages them. Thus, g may be viewed as a local
averaging operator.

The transfer or gain function of the length L wavelet and scaling filter coefficients
is given by their discrete Fourier transforms (DFTs), respectively,

H(f) =
L−1∑
l=0

hle
−i2πfl and G(f) =

L−1∑
l=0

gle
−i2πfl (2)

11Energy is defined to be the sum of squares.
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Figure 3: Squared gain functions for the wavelet and scaling filters. Each function is plotted
against frequency and indicates which frequencies in the original time series are allowed in the
corresponding wavelet coefficients, for |H(f)|2, and scaling coefficients, for |G(f)|2. The first
row contains the squared gain functions calculated from the Haar wavelet, while the second
row contains the squared gain functions from the D(4) wavelet. The shaded regions correspond
to the leakage from an ideal filter.

where i =
√
−1 and f is the frequency. The fact that filter coefficients are related

to their transfer function via the Fourier transform is denoted by {h} ↔ H(f) and
{g} ↔ G(f) for the wavelet and scaling filters, respectively. To illustrate this re-
lationship, insert the Haar wavelet and scaling coefficients into Equation 2 yielding
H(f) = (1 − e−i2πf )/

√
2 and G(f) = (1 + e−i2πf )/

√
2, respectively. The transfer

functions are complex valued, so for convenience we plot the squared gain functions
H(f) = |H(f)H∗(f)| = 2 sin2(πf) and12 G(f) = |G(f)G∗(f)| = 2 cos2(πf) in the first
row of Figure 3. The squared gain function associated with the wavelet filter favors

12H∗(f) is the complex conjugate of H(f). The operator | · | is the modulus operator for a complex
variable, i.e., |z| =

√
a2 + b2 where z = a + ib. In discrete time setting, the frequency f = 1/2, or

the angular frequency ω = π, is known as a Nyquist frequency, which is the highest possible frequency
since the shortest length of a cycle would be two time periods. See Gençay et al. (2001b) for more
information.
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high frequencies and suppresses low frequencies, thus the Haar wavelet is an example
of a high-pass filter. The squared gain function derived from the scaling filter does
the exact opposite, favoring low frequencies and suppressing high frequencies. It is an
example of a low-pass filter. Together, the Haar wavelet and scaling filters capture
all the content of a signal and split it into coefficients associated with high and low
frequencies. Longer wavelet filters are better approximations to ideal high-pass and
low-pass filters, where the frequency axis is split into two disjoint intervals at f = 1/4.
For example, the Daubechies extremal phase wavelet filter of length four is defined to
be

h =
1

4
√

2

(
1 −

√
3,−3 +

√
3, 3 +

√
3,−1 −

√
3
)T

.

We denote this filter as the D(4) wavelet filter. Its squared gain function is given by
H(f) = 2 sin4(πf)[1+2 cos(πf)] and the squared gain function of the D(4) scaling filter
is G(f) = 2 cos4(πf)[1 + 2 sin(πf)]. These two squared gain functions are plotted in
the second row of Figure 3 and illustrate the advantage of longer wavelets. Again, the
wavelet filter is an example of a high-pass filter and the scaling filter is an example of
a low-pass filter but the differentiation between frequencies above and below f = 1/4
is much improved over the Haar wavelet and scaling filters. This is seen by the steeper
ascent (descent) of the squared gain functions for the wavelet (scaling) filters and the
longer plateaus at each end of the frequency interval. Additional information regarding
wavelet filters, including the Haar and longer compactly supported orthogonal wavelets,
and their properties may be found in, for example, Mallat (1998) and Gençay et al.
(2001b).

2.2 The Discrete Wavelet Transform

In this section we introduce notation and concepts in order to compute the discrete
wavelet transform (DWT) of a finite-length vector of observations. There are a variety
of ways to express the basic DWT. We proceed by introducing the DWT as a simple
matrix operation. Let X be a dyadic length vector (N = 2J) of observations. The
length N vector of discrete wavelet coefficients W is obtained via W = WX, where W
is an N ×N orthonormal matrix defining the DWT. The vector of wavelet coefficients
may be organized into J + 1 vectors

W = (W1,W2, . . . ,WJ ,VJ)T , (3)

where Wj is a length N/2j vector of wavelet coefficients associated with changes on a
scale of length λj = 2j−1, VJ is a length N/2J vector of scaling coefficients associated
with averages on a scale of length 2J = 2λJ , and WT is the matrix transpose of the vec-
tor W. Wavelet coefficients are obtained by projecting the wavelet filter onto the vector
of observations. Since Daubechies wavelets may be considered as generalized differences
(Gençay et al. 2001b, Sec. 4.3), we prefer to characterize the wavelet coefficients this
way. For example, a unit scale Daubechies wavelet filter is a generalized difference of
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X

H(f)

G(f)

↓2

↓2

W1

V1

Figure 4: Flow diagram illustrating the decomposition of X into the unit scale wavelet co-
efficients W1 and the unit scale scaling coefficients V1 using the pyramid algorithm. The
time series X is filtered using the wavelet filter {h}↔H(f) and every other value removed
(downsampled by 2) to produce the length N/2 wavelet coefficient vector W1. Similarly, X is
filtered using the scaling filter {g}↔G(f) and downsampled to produce the length N/2 vector
of scaling coefficients V1.

length one; that is, the wavelet filter is essentially taking the difference between two
consecutive observations. We call this the wavelet scale of length λ1 = 20 = 1. A
scale two Daubechies wavelet filter is a generalized difference of length two; that is,
the wavelet filter first averages consecutive pairs of observations and then takes the
difference of these averages. We call this the wavelet scale of length λ2 = 21 = 2. The
scale length increases by powers of two as a function of scale.

The matrix form of the DWT is not computationally efficient and in practice the
DWT is implemented via a pyramid algorithm (Mallat 1998). Starting with the data
vector X, filter it using h and g, subsample both filtered outputs to half their original
length, and keep the subsampled output from the wavelet filter as wavelet coefficients
W1. Repeat the above filtering and downsampling operations on the subsampled out-
put from the scaling filter V1. The complexity of the pyramid algorithm is linear in
the number of observations N , faster than the discrete Fourier transform.

Let us go into the pyramid algorithm in more detail so that the calculations are
clear. For each iteration of the pyramid algorithm, we require three objects: the
data vector X, the wavelet filter h, and the scaling filter g. The first iteration of the
pyramid algorithm begins by filtering (convolving) the data with each filter to obtain
the following wavelet and scaling coefficients:

W1,t =
L−1∑
l=0

hlX2t+1−l mod N and V1,t =
L−1∑
l=0

glX2t+1−l mod N ,

where t = 0, 1, . . . , N/2 − 1. Note that the downsampling operation has been included
in the filtering step through the subscript of Xt. The N length vector of observations
have been high- and low-pass filtered to obtain N/2 coefficients associated with this
information (W1 and V1, respectively). The second step of the pyramid algorithm
starts by defining the “data” to be the scaling coefficients V1 from the first iteration
and applying the filtering operations as above to obtain the second level of wavelet and

9
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V1

↑2

↑2

H∗(f)

G∗(f)

+ X

Figure 5: Flow diagram illustrating the reconstruction of X from the unit scale wavelet coef-
ficients W1 and the unit scale scaling coefficients V1. Both W1 and V1 have zeros inserted
in front of every observation (upsampling by 2). The upsampled wavelet coefficients are then
filtered using the filter H∗(f) and added to the upsampled scaling coefficients filtered by G∗(f)
to form X.

scaling coefficients:

W2,t =
L−1∑
l=0

hlV1,2t+1−l mod N and V2,t =
L−1∑
l=0

glV1,2t+1−l mod N ,

t = 0, 1, . . . , N/4 − 1. Keeping all vectors of wavelet coefficients, and the final level of
scaling coefficients, we have the following length N decomposition W = (W1,W2,V2)T .
After the third iteration of the pyramid algorithm, where we apply filtering operations
to V2, the decomposition now looks like W = (W1,W2,W3,V3)T . This procedure
may be repeated up to J times where J = log2 N and gives the vector of wavelet
coefficients in Equation 3.

Consider the four-dimensional vector X = (2, 3,−2,−1)T and apply the pyramid
algorithm to produce the Haar DWT coefficient vector W = (W1,W2,V2)T . The
first application of the pyramid algorithm yields the vectors W1 = (1/

√
2, 1/

√
2)T

and V1 = (5/
√

2,−3/
√

2)T . Notice that the wavelet coefficients are identical, since
the local change was +1 between the adjacent observations X0, X1 and X2, X3. The
scaling coefficients may be thought of as local averages, one positive and one negative.
The second application of the pyramid algorithm to V1 yields the vectors W2 = −4
and V2 = 1, where the wavelet coefficient captures the change in local averages and
the scaling coefficient is proportional to the sample mean. Thus, the vector of Haar
DWT coefficients for X is

W =
(

1√
2
,

1√
2
,−4, 1

)T

. (4)

Inverting the DWT is achieved through upsampling the final level of wavelet and
scaling coefficients, convolving them with their respective filters (wavelet for wavelet
and scaling for scaling) and adding up the two filtered vectors. Figure 5 gives a flow
diagram for the reconstruction of X from the first levels wavelet and scaling coefficient
vectors. The symbol ↑2 means that a zero is inserted before each observation in W1 and
V1 (upsampling by 2). Starting with the final level of the DWT, upsampling the vectors
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WJ and VJ will result in two new vectors W0
J = (0, WJ,0)T and V0

J = (0, VJ,0)T . The
level J − 1 vector of scaling coefficients VJ−1 is given by

VJ−1,t =
L−1∑
l=0

hlW
0
J,t+l mod 2 +

L−1∑
l=0

glV
0
J,t+l mod 2,

t = 0, 1. Notice that the length of VJ−1 is twice that of VJ , as to be expected. The next
step of reconstruction involves upsampling to produce W0

J−1 = (0, WJ−1,0, 0, WJ−1,1)T

and V0
J−1 = (0, VJ−1,0, 0, VJ−1,1)T , and the level J − 2 vector of scaling coefficients

VJ−2 is given by

VJ−2,t =
L−1∑
l=0

hlW
0
J−1,t+l mod 4 +

L−1∑
l=0

glV
0
J−1,t+l mod 4,

t = 0, 1, 2, 3. This procedure may be repeated until the first level of wavelet and
scaling coefficients have been upsampled and combined to produce the original vector
of observations; that is,

Xt =
L−1∑
l=0

hlW
0
1,t+l mod N +

L−1∑
l=0

glV
0
1,t+l mod N ,

t = 0, 1, . . . , N − 1. This is exactly what is displayed in Figure 5.
We now illustrate wavelet reconstruction using the four-dimensional signal X and

its Haar decomposition (Equation 4). First, the upsampled vectors W0
2 = (0,−4)T

and V0
2 = (0,−1)T are combined to produce V1 = (5/

√
2,−3/

√
2)T . The second set of

upsampled vectors W0
1 = (0, 1/

√
2, 0, 1/

√
2)T and V0

1 = (0, 5/
√

2, 0,−3/
√

2)T are then
combined to produce the original vector of observations X = (2, 3,−2,−1)T .

To contrast different wavelet filters, Figure 6 contains a sample of 25 = 32 ob-
servations with a level shift at t = 16 and nonstationary variance.13 Three wavelet
filters, namely, Haar, D(4) and LA(8) wavelet filters, were used with varying lengths
L = 2, 4, 8. All wavelet filters capture the nonstationary variance in the first scale of
wavelet coefficients W1, with the second half of the coefficients being more variable
than the first half. In addition, all three capture the obvious level shift at the midpoint
of the observations with a large positive wavelet coefficient in W5. Because the signal
is piecewise in nature, the Haar wavelet filter is most suitable for the analysis of this
signal. It is very important to match the wavelet filter to the underlying features of
the observed series.

2.3 Choice of Wavelet Filters

The selection of a particular wavelet filter is not trivial in practice and should carefully
weigh several aspects of the data: length of the data, complexity of the spectral density

13The formula to reproduce the true vector of observations is X = 15 ·132 · (−1[t≤15] +1[t>15])+Z32 ·
(1[t≤15] + 6 · 1[t>15]), where Z is a Gaussian random variable with mean zero and standard deviation
one.
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Figure 6: Example vector of 25 = 32 observations. The original signal is plotted in the top
row with the corresponding vectors of DWT coefficients below for the Haar, D(4) and LA(8)
wavelet filters, respectively. The vertical lines delineate the scales – from left to right – W1,
W2, W3, W4, W5 and V5.

function, and the underlying shape of features in the data. The length of the original
data is an issue because the distribution of wavelet coefficients computed using the
boundary will be drastically different from wavelet coefficients computed from complete
sets of observations. The shorter the wavelet filter, the fewer so-called “boundary”
wavelet coefficients will be produced (and potentially discarded). With the luxury of
high-frequency data, the effects of boundary wavelet coefficients are minimized and we
are allowed to select from longer filters if necessary.

The complexity of the spectral density function is important because wavelet filters
are finite in the time domain and thus infinite, although well localized, in the frequency
domain. If the spectral density function is quite dynamic, then shorter wavelet filters
may not be able to separate the activity between scales. Longer wavelet filters would
thus need to be employed. Clearly a balance between frequency localization and time
localization is needed. In most data sets of reasonable length, this balance is not
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difficult. From previous studies on high-frequency FX rates (Gençay et al. 2001a;
Gençay et al. 2001c), a moderate length wavelet filter, for example length eight, is
adequate to deal with the stylized features in the data.

Finally, and most importantly, there is the issue of what the underlying features
of the data look like. This is very important since wavelets are the basis functions, or
building blocks, of the data. If one chooses a wavelet filter that looks nothing like the
underlying features, then the decomposition will be quite inefficient. So care should be
taken when selecting the wavelet filter and what its corresponding basis function looks
like. Issues of smoothness and (a)symmetry are the most common desirable charac-
teristics for wavelet basis functions. For this study, we chose to balance smoothness,
length and symmetry by selecting the Daubechies least asymmetric wavelet filter of
length eight, LA(8). This is a widely used wavelet and is applicable in a wide variety
of data types.

2.4 Multiresolution Analysis

The concept of a multiresolution analysis (MRA) is that a given time series, with finite
variance, may be decomposed into different approximations associated with unique
resolutions (or time horizons). The difference between consecutive approximations, say
at levels J − 1 and J in the decomposition, is the information contained in the wavelet
coefficients at scale J . We have already seen that the series Xt may be decomposed and
then reconstructed using straightforward matrix operations in the previous section. We
now proceed to show how an MRA produces an additive decomposition of the same
series.

Let us assume the level J DWT has been applied to the dyadic length vector X to
obtain the wavelet coefficient vector W = (W1, . . . ,WJ ,VJ)T . We may now formulate
an additive decomposition of X by reconstructing the wavelet coefficients at each scale
independently. Let Dj = WT

j Wj define the jth level wavelet detail associated with
changes in X at the scale λj (for j = 1, . . . , J). The wavelet coefficients Wj = WjX
represent the portion of the wavelet analysis (decomposition) attributable to scale λj ,
while WT

j Wj is the portion of the wavelet synthesis (reconstruction) attributable to
scale λj . For a length N = 2J vector of observations, the vector SJ = VT

J VJ is equal
to the sample mean of the observations.

A multiresolution analysis (MRA) may now be defined via

Xt =
J∑

j=1

Dj,t + SJ t = 0, . . . , N − 1. (5)

That is, each observation Xt is a linear combination of wavelet detail coefficients at
time t. Let Sj =

∑J+1
k=j Dk define the jth level wavelet smooth (for 1 ≤ j ≤ J).

Whereas the wavelet detail Dj is associated with variations at a particular scale, Sj is
a cumulative sum of these variations and will be smoother and smoother as j increases.
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Figure 7: Multiresolution analysis of example vector of 25 = 32 observations. The wavelet
details and smooth form an additive decomposition of the original series, so that adding across
scales produces the example vector exactly. The vertical axis is the same for each scale.

In fact, X − Sj =
∑j

k=1 Dk so that only lower-scale details (high-frequency features)
from the original series remain. The jth level wavelet rough characterizes the remaining
lower-scale details through

Rj =
j∑

k=1

Dk, 1 ≤ j ≤ J.

The wavelet rough Rj is what remains after removing the wavelet smooth from the
vector of observations. For smaller j the wavelet rough is less smooth. A vector
of observations may thus be decomposed through a wavelet smooth and rough via
Xt = Sj,t +Rj,t, for all j, t, which is equivalent to Equation 5. The wavelet details are
the differences between either adjacent wavelet smooths or adjacent wavelet roughs.

Given that the Haar DWT was preferred when analyzing the length 32 series X
in the previous section, we perform a Haar MRA with the results in Figure 7. The
nonstationary variance is succinctly captured in the first two wavelet details D1 and
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D2, where the first half of coefficients are near zero and the second half of coefficients
are distinctly nonzero. Wavelet details D3 and D4 indicate there is no activity in those
scales associated with 4-8 and 8-16 unit changes. The level shift is captured in D5 while
the overall mean is essentially zero, as seen in S5.

3 Differentiating Time Horizons in High-Frequency Data

As previously explored in Gençay et al. (2001a), the DWT is an effective tool for
removing seasonalities in high-frequency data series. In this section we explore the
ability of a multi-scale decomposition (specifically the MRA described in Section 2.4)
to reproduce the correlation structure of realized volatility found at different sampling
rates of high-frequency data. The multi-scale decomposition of realized volatility is a
demonstration that modeling high-frequency realized volatility in the wavelet domain
captures the features at a variety of sampling rates simultaneously, whereas current
methodology only models one fixed sampling frequency.

3.1 Actual Realized Volatility

We follow Andersen et al. (2001) and Dacorogna et al. (2001) to define realized
volatility (or actual realized volatility) via

σ2
t,δ =

δ−1∑
k=0

r2
t+k/δ, (6)

where rt+k/δ = pt+k/δ − pt+(k−1)/δ are continuously compounded returns sampled δ

times per day. The raw 5-min return series was obtained from Olsen & Associates
spanning January 1, 1987, through December 31, 1998, and excludes weekends (defined
to be Friday 21:05 GMT until Sunday 21:00 GMT). This results in a series of 901,152
high-frequency return observations, or 3,129 days of data. Hence, the sampling rate δ

will vary depending on the level of aggregation needed to calculate realized volatility
at coarser levels of time. For example, δ = 288 for daily realized volatility but we will
also consider 20-min and hourly realized volatility with δ = 4 and δ = 12, respectively.

Looking at the definition of realized volatility more closely, there are two operations
in Equation 6. First, a filter of length δ is applied to the squared returns with each
value of the filter being one. For dyadic lengths, this filter mimics the Haar scaling
filter. Then a downsampling operation is performed that picks every δth value from
the smoothed return series. Hence, aggregation is related to the Haar DWT through
its use of filtering and downsampling but it utilizes a non-orthogonal filter.

3.2 Wavelet Realized Volatility

In contrast to simple aggregation to produce realized volatility at different time hori-
zons, we propose wavelet multi-scaling instead. Although the filtering of the DWT does
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not allow for the filtering of arbitrary time spans (see Table 1), the fixed partitioning
of 5-min volatility via multiresolution analysis (MRA) is feasible. We first perform
an MRA down to level J = log2(N) on the squared 5-min return series, where N is
the longest dyadic piece of the series. For a given sampling rate δ there is a wavelet
smooth that captures features that are longer than or equal to δ. For example, an
hourly sampling rate of δ = 12 would involve the wavelet smooth at wavelet scale λ4; it
is associated with 80-min averages, not 60, since the 3rd scale is associated with aver-
ages shorter than 60 minutes. Once the level, in this case j = 4, has been determined
the wavelet smooth corresponding to that level is constructed from the wavelet details
from the MRA using the formula in Section 2.4. For the example of an hourly sampling
rate the wavelet smooth is given by S4,t =

∑J+1
k=5 Dk,t.

Once the appropriate wavelet smooth has been obtained, the wavelet-based realized
volatility (or wavelet realized volatility) is given by

ν2
t,δ =

δ−1∑
k=0

Sj,t+k/δ,

where Sj,t is the wavelet smooth associated with scale λj . That is, we aggregate the
wavelet smooth in order to compare wavelet realized volatility to actual realized volatil-
ity for the sampling rate δ. From one application of an MRA, up to J distinct wavelet
realized volatility series are produced. Starting from 5-min squared returns, 20-min,
hourly and daily wavelet realized volatility will use scales λ2, λ4, and λ9. With all
the information from the original 5-min time scale preserved in the wavelet details and
smooth, one can look for features at multiple time horizons simultaneously.

3.3 Autocorrelation Functions for Realized Volatility

To evaluate how well the discrete wavelet transform (DWT) captures dynamics in
a volatility series at different time horizons, we look at the sample autocorrelation
functions (ACFs) for both actual realized volatility and wavelet realized volatility. The
sample ACF for actual realized volatility is defined to be

ρ̂σ(τ, δ) =
∑N−τ−1

t=0 (σ2
t,δ − µ̄σ)(σ2

t+τ,δ − µ̄σ)
var{σ2

t,δ}
, τ = 0, 1, . . . , N − 1, (7)

where var{σ2
t,δ} =

∑N−1
t=0 (σ2

t,δ − µ̄σ)2 and µ̄σ is the sample mean of the actual realized
volatility series. This is the usual definition of the covariance for the actual realized
volatility series at lag τ divided by the variance (covariance at lag 0) of the actual
realized volatility series. The sample ACF ρ̂σ(τ, δ) estimates the true ACF of actual
realized volatility at a given sampling rate.

The sample ACF for wavelet realized volatility is defined similarly via

ρ̂ν(τ, δ) =
∑N−τ−1

t=0 (ν2
t,δ − µ̄ν)(ν2

t+τ,δ − µ̄ν)
var{ν2

t,δ} + var{ν2
t,δ(Rj)}

, τ = 0, 1, . . . , N − 1, (8)
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where var{ν2
t,δ} =

∑N−1
t=0 (ν2

t,δ − µ̄ν)2 and µ̄ν is the sample mean of the wavelet realized
volatility series. The second term in the denominator of Equation 8 is the remainder
of the variance in the MRA coefficients not accounted for by the wavelet smooth Sj .
Recall, the wavelet rough is computed via Rj =

∑j
k=1 Dk and is then aggregated to

form ν2
t,δ(Rj) =

∑δ−1
k=0 Rj,t+k/δ. Finally, the variance of the wavelet realized volatility

based on the wavelet rough is given by var{ν2
t,δ(Rj)} =

∑N−1
t=0 [ν2

t,δ(Rj) − µ̄ν(Rj)]2,
where µ̄ν(Rj) is the sample mean of ν2

t,δ(Rj).
Figure 8 shows the sample ACFs for the wavelet realized volatility ρ̂ν(τ, δ) and

actual realized volatility ρ̂σ(τ, δ) of USD-DEM returns at 20-minute, hourly and daily
sampling rates. Lags up to 30 days are displayed for all sampling rates, although the
number of lags in each plot differs. In both cases the wavelet realized volatility is
virtually indistinguishable from the actual realized volatility at all lags except the first.
For daily realized volatility, the wavelet-based version exhibits less variation from lag
to lag due to the fact that the high-frequency content was removed via the MRA.

4 Wavelet-based Hidden Markov Trees

4.1 Introduction

Modeling in the wavelet domain usually ignores the correlation between wavelet coeffi-
cients, falling back on the assumption that the DWT is a whitening transform. Indeed,
for a wide range of naturally occuring time series the wavelet coefficients may be treated
as uncorrelated and Gaussian. These assumptions are not valid in the context of ana-
lyzing high-frequency FX rates. First, since the quantity of interest is volatility there is
no opportunity to assume a Gaussian distribution for the observed series. Second, the
unknown and potentially complex correlation structure in the series most likely does
not produce approximately uncorrelated wavelet coefficients. We propose to borrow a
probabilistic model from signal processing and apply it to the wavelet decomposition
of a high-frequency volatility series. By taking advantage of the tree-based structure
of the DWT, we provide an efficient representation and estimation technique of the
underlying joint distribution of the wavelet coefficients. Through this representation
the multiscale decomposition of the volatiliy series is classified into a state of high or
low volatility.

In the context of signal processing applications, Crouse, Nowak, and Baraniuk
(1998) proposed a variety of hidden Markov models for wavelet decompositions of one-
and two-dimensional data sets (time series and images). The assumption of uncorre-
lated wavelet coefficients was replaced by the possibility of allowing correlation between
scales of the DWT or within scales of the DWT. The assumption of Gaussianity was
also replaced by specifying a small number of unobserved (hidden) states, and repre-
senting the distribution of wavelet coefficients as a mixture of Gaussian distributions
conditional on the hidden state variable. Figure 9 illustrates two possible models for de-
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Figure 8: Sample autocorrelation functions (ACF) of the realized volatility (RV) for the U.S.
Dollar - Deutsche Mark (USD-DEM) foreign exchange rate at 20-minute, hourly and daily
sampling rates. The solid line denotes the ACF based on wavelet realized volatility and the
dashed line denotes the actual realized volatility. The lag zero coefficient was omitted from all
plots since it is identically one.
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Figure 9: Models for dependence between wavelet coefficients. Each wavelet coefficient (black
dot) is modeled as a mixture of two Gaussian probability density functions with a hidden
state (white dot). The uppermost node is the scaling coefficient and the one below it is the
coarsest wavelet coefficient (which we call the root node). From the root node downward, each
subsequent level produces two children for each state and wavelet coefficient pair from the
previous level. This pattern continues until level j = 1. For the independent mixture model (a)
all state and wavelet coefficient pairs are assumed independent, while for the hidden Markov
tree model (b) hidden state variables are linked in order to model the dependence between
levels of the wavelet transform.

pendence between wavelet coefficients in the DWT. The first model (Figure 9a) assumes
unconditional independence between all wavelet coefficients, each with an unobserved
state variable. This independence is a common assumption when formulating wavelet-
based models, but ignores a wealth of information contained in the local structure of
the time series that is extracted through the DWT.

One possible model of dependence between wavelet coefficients is to allow associ-
ation between scales but not within scales (Figure 9b). This so-called wavelet hidden
Markov tree (HMT) model takes advantage of the persistence of large or small wavelet
coefficients across scales with the state variables are connected vertically between scales.
Let W be a vector of wavelet coefficients from a dyadic length vector of observations
X; see Section 2.2. The first point is that the DWT coefficients may be organized into
a binary tree, denoted by T = {(j, n) : j = 0, . . . , J ; n = 0, . . . , 2j − 1}. The wavelet
coefficient WJ,0 is the root of the tree with children WJ−1,0 and WJ−1,1 (the only two
wavelet coefficients at scale λJ−1), WJ−1,0 has children WJ−2,0 and WJ−2,1, and so on.
The wavelet HMT model is directional in that information from longer time horizons
directly influences shorter time horizons, but not vice-versa.
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Figure 10: Gaussian mixture model (M = 2) for wavelet coefficient W . The Gaussian condi-
tional probability density function (PDF) for W |S are shown in the first two panels as well as
the non-Gaussian mixture PDF for W . The first state (S = 0) corresponds to a low-variance
Gaussian PDF, while the second state (S = 1) corresponds to a high-variance Gaussian PDF.

We impose the following five properties on the structure of our wavelet HMT model
(Durand and Gonçalvès 2001):

1. The wavelet coefficient W is modeled by a mixture distribution with probability
density function

fW (w) =
M−1∑
s=0

fW |S(w | S = s)P (S = s), (9)

where S is a discrete random variable (the hidden state) with M possible values.

2. Let S = (S1, . . . ,SJ ,SVJ
)T define the state vector associated with the vector of

wavelet coefficients W, indexed in the same way. Thus, the state vector may be
organized as a binary tree rooted at SJ,0 and read from right to left. Since we
are using two indices, one for the scale and one for the location within scale, the
parent of Sj,n is given explicitly by Sj+1,�n/2� for j = 2, . . . , J .14 The children of
Sj,n are given explicitly by Sj−1,2n and Sj−1,2n+1. The notation for state variables
in the binary tree is illustrated in Figure 9a using only the subscripts. The root
is SJ,0, the next level down from left to right is SJ−1,0 and SJ−1,1; the next level
down is SJ−2,0, SJ−2,1, SJ−2,2 and SJ−2,3; and so on. Dependence between scales
in the state variables is illustrated in Figure 9b and uses an identical labeling
scheme.

14�x� refers to the floor function of x which is the greatest integer in x, i.e., the largest integer less
than or equal to x.
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3. The state variable Sj,n is independent of all other states given its parent and
children; i.e.,

P (Sj,n | {Sa,b}a �=j,b�=n) = P (Sj,n | Sj+1,�n/2�, Sj−1,2n, Sj−1,2n+1).

4. The joint probability distribution of the wavelet coefficient vector W is indepen-
dent given the state vector S; i.e.,

fW|S(W) =
∏

(j,n)∈T
fWj,n|S(wj,n).

5. The wavelet coefficient Wj,n is independent of all other states given its own state;
i.e.,

fWj,n|S(wj,n) = fWj,n|Sj,n
(wj,n) for all (j, n) ∈ T .

The last two properties are known as conditional independence properties. We assume
the mixture distribution for W is based on Gaussian probability density functions
(PDFs) with mean µs and variance σ2

s , s ∈ {0, 1, . . . , M −1}. Figure 10 shows the con-
ditional Gaussian PDFs for a two-state mixture distribution, one conditional Gaussian
PDF with a lower variance and another conditional Gaussian PDF with a high variance.
They may be combined with an appropriate probability mass function (Equation 9) to
produce a non-Gaussian mixture distribution for a given wavelet coefficient W . The
resulting distribution for W is distinctly non-Gaussian and gracefully incorporates the
features from both the low-variance and high-variance conditional Gaussian PDFs.

Given the properties of the wavelet HMT, the full likelihood is given by

fW(W) =
∑
S

{
P (SVJ

= sVJ
)fVJ |SVJ

(vJ) P (SJ,0 = sJ,0)fWJ,0|SJ,0
(wJ,0)

×
J−1∏
j=1

N/2j−1∏
n=0

fWj,n|Sj,n
(wj,n)P (Sj,n = sj,n|Sj+1,�n/2�)

}
. (10)

4.2 Implementation

The parameter vector corresponding to the wavelet HMT consists of the distribution
of the root state SJ,0, the transition probabilities that Sj,n is in state s given Sj−1,�n/2�
is in state r, and the parameters of the Gaussian mixtures (µ, σ2). For the applications
considered here, we assume the transition matrix is scale-dependent and model a given
wavelet coefficient via a two-state Gaussian mixture distribution so that the transition
matrix has the form:

Aj =

[
p0,j 1 − p0,j

1 − p1,j p1,j

]
, for j = 1, . . . , J − 1.
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The conditional probabilities

p0,j = P (low volatility at scale j | low volatility at scale j + 1)

and
p1,j = P (high volatility at scale j | high volatility at scale j + 1)

reflect the persistence of large and small wavelet coefficients from long time horizons
to shorter time horizons, respectively. We expect the transition probability from low
to high volatility (1 − p0,j) to be quite small, and therefore p0,j ≈ 1 for most scales.
The main parameter of interest is pi,j . Given a high volatility state at scale j + 1, how
likely is a high volatility state to persist to scale j? The complete parameter vector for
the wavelet HMT model is explicitly given by

θ = (p0,1, p1,1, . . . , p0,J , p1,J , µ0,1, σ
2
0,1, . . . , µ0,J , σ2

0,Jµ1,1, σ
2
1,1, . . . , µ1,J , σ2

1,J),

and includes all transition probabilities and parameters associated with the Gaussian
PDFs. The DWT ensures that the expected value of all wavelet coefficients will be
zero when using a wavelet filter of sufficient length. We thus make the assumption that
µs,j = 0 for all s and j.

Maximum likelihood estimation of the parameter vector θ cannot be performed
directly on Equation 10. An adaptation of the Expected Maximization (EM) algorithm
is applied to this problem where the model parameters θ and distribution of the hidden
states S are estimated jointly, given the observed wavelet coefficients W. For the
estimation step, an upward-downward algorithm for calculating the log-likelihood of
the wavelet HMT was developed in Crouse et al. (1998). The upward-downward
algorithm is similar to the well-known forward-backward algorithm for hidden Markov
chains (Baum 1972).15

The wavelet HMT model is such that dependence between wavelet coefficients is
allowed only between scales. That is, if one pictures a binary tree associating wavelet
coefficients (Figure 9b), there are no links between adjacent wavelet coefficients within
scales – only between and then only from coarse to fine resolution in time. The intuition
behind this dependence structure is that if there exists a large wavelet coefficient at a
given time horizon (implying a local oscillation with a large amplitude), then at least
one of the wavelet coefficients computed using the same data at a shorter time horizon
will also be large. That being said, the transition probabilities and parameters of the
corresponding mixture distribution are estimated using all wavelet coefficients across
time. In this respect, the model uses all available information for parameter estimation,
since all wavelet coefficients are used.

However, one should keep in mind that each wavelet coefficient carries only local
information. Once the parameter estimates θ̂ have been obtained for the wavelet HMT

15An alternative implementation of the upward-downward algorithm from Crouse et al. (1998) may
be found in Durand and Gonçalvès (2001).
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model, the wavelet coefficients may be classified into one of the M states in the mixture
distribution using the Vitterbi algorithm; see, for example, Rabiner (1989) and the
references therein. Let δj,n be the sequence of states and wavelet coefficients for Wj,n

on the hidden Markov tree. The Vitterbi algorithm recursively calculates the sequence
of states with highest probability from top to bottom using the transition probabilities
from the wavelet HMT model. Because of the conditional dependence structure of the
model, the Vitterbi algorithm only operates on the states from a small set of wavelet
coefficients – the parent and children relative to Wj,n. Note, wavelet coefficients are
associated with either high or low volatility since the mean is identically zero for both
Gaussian PDFs.

The exact location of volatility bursts in the wavelet domain relies on how the phase
information was treated in the original decomposition. Wavelet coefficients obtained
from most implementations of the DWT will exhibit some translation in time. This is
accounted for before classification.16

5 Wavelet HMT Models for High-Frequency Data

5.1 USD-DEM Volatility

Our variable of interest is the realized volatility at the high-frequency 5-min sampling
rate. The 5-min foreign exchange (FX) return is defined as

rt,5 = log Pt − log Pt−1

where Pt is the FX price at time t. The FX volatility is defined by squaring 5-min return
r2
t,5. We estimated a two-state wavelet HMT model on a span of N = 219 = 524, 288

observations, from January 4, 1987 to December 27, 1993. This is the largest dyadic-
length vector that is less than or equal to the available sample size of just under
1 million FX rates. For reference, Table 1 translates wavelet scales (j = 1, . . . , 12) into
time horizons that span anywhere from several minutes to a month. We performed a
second analysis on the last N = 524, 288 (from January 9, 1992 to December 31, 1998)
observations to check if the wavelet HMT model produces stable estimates for different,
but not disjoint, time spans.

Table 2 provides the conditional probabilities for the scale-dependent transition
matrix Aj , j = 1, . . . , 12. The first thing we notice is the strong vertical dependency in
low volatility states. The probability of observing a low volatility state at time scale
j, given that there is a low volatility state at time scale j + 1 is almost one at all time
scales, p0,j ≈ 1 for j = 1, . . . , 12. For example, given that a low volatility state is
observed at a 4-7 day time scale (wavelet scale 10), the probability of observing a low

16There are approximate phase shifts available for all Daubechies wavelet families in Percival and
Walden (2000). Once the DWT has been applied, one must circularly shift each vector of wavelet
coefficients by an integer amount.
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Time Horizons
Scale Minutes Hours Days

1 10–20
2 20–40
3 40–80 0.7–1.3
4 1.3–2.7
5 2.7–5.3
6 5.3–10.7
7 10.7–21.3
8 21.3–42.7 0.9–1.8
9 1.8–3.6

10 3.6–7.1
11 7.1–14.2
12 14.2–28.4

Table 1: Translation of wavelet scales into appropriate time horizons for the USD-DEM high-
frequency FX rates (∆t = 5 minutes). Each scale of the DWT corresponds to a frequency
interval, or conversely an interval of periods, and thus each scale is associated with a range of
time horizons.

Scales Low-to-Low Low-to-High High-to-High High-to-Low
11 0.995 0.005 0.981 0.019
10 0.865 0.135 0.996 0.034
9 0.972 0.028 0.703 0.297
8 0.960 0.040 0.782 0.218
7 0.950 0.050 0.736 0.264
6 0.986 0.014 0.478 0.522
5 0.977 0.023 0.554 0.446
4 0.985 0.015 0.452 0.548
3 0.990 0.010 0.547 0.453
2 0.995 0.005 0.505 0.495
1 0.988 0.012 0.490 0.510

Table 2: Conditional probabilities p0,j and p1,j from the scale-dependent transition matrices
Aj in the wavelet hidden Markov tree (HMT) model for USD-DEM volatility. The quantity
under the heading Low-to-Low, for example, is the probability of low volatility at scale j given
there was low volatility at scale j + 1. Similarly, the quantity under the heading Low-to-High
is the probability of high volatility at scale j given there was low volatility at scale j + 1.

volatility state at 2-4 days (wavelet scale 9) is 0.96. Similarly, if a low volatility state
is experienced at a 3-5 hour time scale (wavelet scale 5), the probability of observing a
low volatility state at 1-3 hours (wavelet scale 4) is 0.99.17 Technically, this means that

17Translations of wavelet scales into appropriate time scales are approximate here. For an exact
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given a wavelet coefficient associated with low volatility, there is very little chance that
it will produce a wavelet coefficient associated with high volatility at the lower scale.
Hence, the conditional probabilities for low volatility state-to-low volatility state are
almost one. Naturally, the probability of changing states (from low volatility at time
scale j to high volatility at time scale j − 1) is almost zero as presented in Table 2. We
conclude that vertical dependency in low volatility states is an extremely strong one.

The vertical dependency among high volatility states is not as strong as it is in
low volatility states, especially at lower time scales. This means that a high volatility
state (regime) at a given time scale will not guarantee that wavelet coefficients at the
lower time scale will be associated with high volatility. For example, given a high
volatility regime at a 4-7 day time scale (wavelet scale 10), the probability of being a
high volatility regime at 2-4 days (wavelet scale 9) is 0.78. Similarly, if a high volatility
regime prevails at a 3-5 hour time scale (wavelet scale 5), the probability of being in
a high volatility regime at 1-3 hours (wavelet scale 4) is 0.55. The reason behind this
property is that markets calm down at low time scales (higher frequencies) much before
they do at high time scales (lower frequencies). The vertical dependency amongst the
high volatility states implies that the probability of changing states from high volatility
at time scale j to low volatility at time scale j − 1 is relatively high. In particular,
the probability of changing from a high volatility regime to a low volatility regime is
approximately 0.50 for time scales of approximately 12 hours or less.

These findings establish an important new stylized property of foreign exchange
volatility. In addition to the well-known horizontal dependence (conditional heteroscedas-
ticity or volatility clustering and long memory), foreign exchange volatility exhibits
strong vertical dependence (persistence across different time scales). Furthermore, the
vertical dependence of foreign exchange volatility is asymmetric in the sense that low-
to-low volatility states exhibit a strong dependence while high-to-high volatility states
possess much less dependence.

Figure 11 displays the estimates of a sequence of states, with low volatility (light
rectangles) or high volatility (dark rectangles), from the wavelet HMT model estimated
using the first N = 219 = 524, 288 5-min volatilities.18 A visual inspection of the
figure shows the vertical dependency in the foreign exchange volatility. Starting from
wavelet scale 12 (14-28 day time scale), if the current state is one of low volatility (light
rectangle) then we again observe a low volatility state at shorter time scales. However,
given a high volatility state (dark rectangle), we observe high volatility states less
frequently at shorter time scales. Notice that dark rectangles get narrower as one moves
from a long time scale (low frequency) to shorter time scales (high frequencies) for a
given period of time. The following section gives an intuitive interpretation of different

translation, see Table 1.
18A second analysis was performed on the last N = 219 = 524, 288 (from January 9, 1992 to December

31, 1998) observations from the 5-min volatility series of USD-DEM FX rates. The main findings are
similar to the first data set.
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time scale volatility states by zooming in on the second half of 1992 in Figure 11.

5.2 Currency Turmoil in 1992 at Different Time Scales

International foreign exchange markets experienced one of their largest turmoils in
1992. The events leading to currency turmoil in European economies and international
foreign exchange markets can be tracked back to the German unification. German
authorities decided to finance the cost of unification through borrowing, causing an
increase in German interest rates. Other currencies of the European economies were
forced to increase their interest rates to protect the value of their currencies against
the Deutsche Mark (DM). Speculators were already attacking the weaker currencies by
betting that they could not sustain the parity with the DM. The increase in interest
rates caused further speculation. The Portuguese Escudo (PE), Spanish Peseta (SP),
Italian Lira (IL), and British Pound (BP) all fell in value against the DM. On September
15, 1992, the BP and IL left the European exchange rate mechanism (ERM) and the
PE and the SP were forced to devalue but stayed in the ERM.

George Soros, manager of the Quantum Fund, was reported to have held a $10
billion USD short position on the BP and to have made $1 billion for his fund as a
result of the BP’s September devaluation. Some other hedge funds were also speculating
against the BP. Overall, hedge funds are estimated to have held short on the BP
positions, totaling $11.7 billion in excess of 25% of the government’s official reserves
in 1992 ($40 billion). Considering the fact that central bank interventions in the ERM
by September 1992 totaled roughly $100 billion, it is clear that the total speculative
position in the market against the weaker currencies was much larger than the total
short positions of the hedge funds in these currencies, see Fung and Hsieh (2000).

The estimated sequence of states from the fitted wavelet HMT model clearly in-
dicates that the currency market entered into a high volatility state towards the end
of July 1992. Closer inspection of Figure 12 reveals that wavelet coefficients at scales
11 and 12 (approximately a 7-30 day time scale), between July and November 1992,
were mostly from a high volatility regime. However, the high volatility state was not
uniform across the scales. As we look at the lower scales, the time span of a high
volatility state becomes narrower. For example, at scale 8 (approximately 1-2 days)
the estimated wavelet coefficients are mostly from a high volatility regime during the
month of September 1992. At scale 1 (10-20 min), the high volatility state is observed
only for a few days in September. In other words, for a trader who was only interested
in intraday movements (scales 1-8), the currency turmoil in 1992 lasted only a couple
of days. On the other hand, for a trader (or investor) with a time horizon of 10-15
days, the turmoil started in July and ended in November.
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5.3 DJIA Volatility

In our second application, we use unique high-frequency stock market data, namely the
Dow Jones Industrial Average (DJIA) Index which includes the September 11, 2001
crisis. The data is in 5 minute intervals and the sample period is from January 4, 1999
to October 16, 2002.19 For each trading day, the New York Stock Exchange (NYSE)
opens at 9:30 a.m. (Eastern Standard Time) and closes at 4:00 p.m. (Eastern Standard
Time). There are 79 5-min values per trading day.20 In addition to eliminating official
holidays and weekends, we also eliminated data for days when the market was officially
closed for more than 1 hour on any given business day. Overall, there are 251 trading
days in 1999, 255 trading days in 2000, 249 trading days in 2001 and 200 days in 2002;
a total of 955 business days with 75,446 5-min data points. Let us define the 5-min
stock return via rt,5 = log Pt − log Pt−1, where Pt is the DJIA at time t. Stock market
volatility is defined as the squared 5-min return r2

t,5. In order to eliminate any price
bias at smaller frequencies and to reduce the computational burden, we decided to work
with 1-hour fine volatility,21 defined as the aggregated 5-min volatilities every hour

σ2
t,h =

12∑
i=1

r2
t,5,i,

where the aggregation resulted in a sample size 6287 hourly fine volatilities. Since
the wavelet analysis requires a dyadic sample, the largest sample size available was
212 = 4096. We therefore study the last 4096 hours in the sample from May 1, 2000 to
October 16, 2002. For reference, Table 3 translates wavelet scales (j = 1, . . . , 6) into
time horizons that span anywhere from two hours to four weeks.

Table 4 provides the conditional probabilities for the scale-dependent transition
matrix Aj , j = 1, . . . , 6. Similar to USD-DEM volatility, there is a strong vertical
dependency in low volatility states. The probability of observing a low volatility state
at time scale j, given that there is a low volatility state at time scale j+1 is no less than
0.9 at all time scales. For example, given that a low volatility state is observed at a 8-16
hour time scale (wavelet scale 3), the probability of observing a low volatility state at
4-8 hours (wavelet scale 2) is 0.97. Similarly, if a low volatility state is experienced at a
2-4 week time scale (wavelet scale 6), the probability of observing a low volatility state
at 1-2 weeks (wavelet scale 5) is 0.90.22 Technically, this means that given a wavelet
coefficient associated with low volatility, there is very little chance that it will produce
a wavelet coefficient associated with high volatility at the lower scale. Hence, the

19We thank Olsen & Associates, Switzerland, for providing these data.
20The first new index value each day after the trading starts is registered at 9:35AM. The last index

value of the day is registered at 4:05PM.
21A coarse volatility is based on (

∑
rj)

2 whereas a fine volatility is based on
∑

r2
j calculated at the

same data points and synchronized. More detailed analysis of the comparisons between fine and coarse
volatilities are provided in Dacorogna et al. (2001).

22Translations of wavelet scales into appropriate time scales are approximate here. For an exact
translation, see Table 3.
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Time Horizons
Scale Hours Days Weeks

1 2–4
2 4–8 0.6–1.2
3 8–16 1.2–2.5
4 16–32 2.5–4.9
5 32–64 4.9–9.8 1–2
6 64–128 9.8–19.6 2–4

Table 3: Translation of wavelet scales into appropriate time horizons for the DJIA volatilities
(∆t = 1 hour). Each scale of the DWT corresponds to a frequency interval, or conversely an
interval of periods, and thus each scale is associated with a range of time horizons. A business
day is based on 6.5 trading hours.

Scales Low-to-Low Low-to-High High-to-High High-to-Low
6 0.9058 0.0942 0.3414 0.6586
5 0.9012 0.0988 0.1750 0.8250
4 0.9748 0.0252 0.0691 0.9309
3 0.9469 0.0531 0.1574 0.8426
2 0.9743 0.0257 0.2485 0.7515
1 0.9487 0.0513 0.4571 0.5429

Table 4: Conditional probabilities p0,j and p1,j from the scale-dependent transition matrices
Aj in the wavelet hidden Markov tree (HMT) model for DJIA volatility. The quantity under
the heading Low-to-Low, for example, is the probability of low volatility at scale j given there
was low volatility at scale j + 1. Similarly, the quantity under the heading Low-to-High is the
probability of high volatility at scale j given there was low volatility at scale j + 1.

conditional probabilities for low-to-low volatility states are 0.90 and larger. Naturally,
the probability of changing states (from low volatility at time scale j to high volatility
at time scale j − 1) is not greater than 0.10 as presented in Table 4. We conclude that
vertical dependency in low volatility states is quite strong. These findings are in line
with those previously discussed for FX volatility.

The vertical dependency among high volatility states is not as strong as it is in low
volatility states, especially at lower time scales. This means that a high volatility state
(regime) at a given time scale will not guarantee that wavelet coefficients at the lower
time scale will be associated with high volatility. For example, given a high volatility
regime at a 8-16 hour time scale (wavelet scale 3), the probability of being a high
volatility regime at 4-8 hours (wavelet scale 2) is 0.25. Similarly, if a high volatility
regime prevails at a 2-4 week time scale (wavelet scale 6), the probability of being in
a high volatility regime at 1-2 weeks (wavelet scale 5) is just 0.17. The conditional
probabilities for the scale dependent transition matrix of the stock market volatility
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indicates that low volatility stability is strong in the stock market. Contrary to the FX
market, the probability of changing states from a high to a low state is much higher
in the stock market, especially at higher scales. For example, given a high volatility
state at a 2-4 week time scale (wavelet scale 6), the probability of observing a low
volatility state at 1-2 weeks (wavelet scale 5) is 0.82. This indicates that switching to
a low volatility state is more likely across scales in the stock market as compared to
FX market(s).

Figure 13 exhibits the estimates of the sequence of states in the stock market,
with low volatility (light rectangles) or high volatility (dark rectangles), from the
wavelet HMT model using the sample period from May 4, 2000 to October 16, 2002.
Compared to the FX market volatility states across scales, dark rectangles (high volatil-
ity states) are much narrower, indicating that the low volatility states are more likely in
the stock market. Also, the relative discontinuity of the dark rectangles towards lower
time scales implies that the probability switching from high to low volatility states is
relatively higher in the stock market as compared to the FX market.

5.4 DJIA Volatility on and around September 11, 2001

Following a terrorist attack at the World Trade Center, trading was suspended at the
NYSE from September 11, 2001 to September 14, 2001. Stock prices went down sharply
during the first trading hour and afterwards when the market was re-opened. A close
inspection of the stock market volatility and the most likely sequence of volatility states
reveals that the effect of September 11 on the stock market was a relatively short one.
In fact, Figure 13 shows that there were several volatility bursts, similar to the one
experienced after September 11, during the sample period. Notice that a high volatility
state across almost all scales has been in effect from mid-2002 to the end of the sampling
period (October 16).

6 Conclusions

This paper establishes an important stylized property about volatility – asymmetric
volatility dependence across different time horizons. We call this property asymmetric
vertical dependence. It is asymmetric in the sense that low volatility at a long time
horizon is most likely followed by low volatility at shorter time horizons. On the other
hand, high volatility at long time horizons does not necessarily imply high volatility at
shorter time horizons.

Our analysis provides evidence that volatility may be modeled as a mixture of high
and low volatility regimes, resulting in a mixture distribution that is non-Gaussian.
This result has important implications regarding the scaling behavior of volatility, and
also on the calculation of risk at different time horizons. Our approach, using wavelet-
based hidden Markov models for time series analysis, shows great promise in succinctly
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capturing the non-Gaussian features found in high-frequency FX rates by simultane-
ously modeling multiple time horizons. Although we focused our attention on the
wavelet hidden Markov tree (HMT) model, another possible model is to allow depen-
dence within and between scales through hidden Markov chains and hidden Markov
trees. In addition to taking advantage of the persistence across scales, this would allow
us to explicitly model volatility clustering in time.

30



References

Andersen, T. G., T. Bollerslev, F. X. Diebold, and P. Labys (2001). The distri-
bution of realized exchange rate volatility. Journal of the American Statistical
Association, 96 , 42–55.

Baum, L. (1972). An inequality and associated maximization technique in statistical
estimation of probabilistic functions of Markov processes. Inequalities, 3 , 1–8.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity.
Journal of Econometrics, 31, 307–327.

Crouse, M. S., R. D. Nowak, and R. G. Baraniuk (1998). Wavelet-based statistical
signal processing using hidden Markov models. IEEE Transactions on Signal
Processing, 46 , 886–902.
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Figure 11: Most likely sequence of states from the fitted wavelet hidden Markov tree (HMT)
model for the USD-DEM volatility. The first state S = 0 (light rectangles) indicates a low
volatility (state) regime while the second state S = 1 (dark rectangles) indicates a high volatility
regime.
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Figure 12: Most likely sequence of states from the fitted wavelet hidden Markov tree (HMT)
model from March 1992 to February 1993 for the USD-DEM volatility. The first state S = 0
(light rectangles) indicates a low volatility (state) regime while the second state S = 1 (dark
rectangles) indicates a high volatility regime.
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Figure 13: Most likely sequence of states from the fitted wavelet hidden Markov tree (HMT)
model for the DJIA volatility. The first state S = 0 (light rectangles) indicates a low volatility
(state) regime while the second state S = 1 (dark rectangles) indicates a high volatility regime.
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