rbiprobit: Recursive bivariate probit estimation and decomposition of marginal effects

Mustafa Coban

Institute for Employment Research, Germany

mustafa.coban@iab.de

github.com/cobanomics

Italian Stata Conference 2022: May 19, 2022

Table of Contents

- 1 Motivation
- 2 Econometric Specification
- 3 The rbiprobit package
- 4 Application and Examples
- 5 Conclusion

Motivation

Effects of interest

What we want

- Estimate: Effect of binary or treatment variable on binary outcome variable
- ► Treatment variable itself is endogenous
- Unobservables may correlate with treatment and outcome equation
- Compute average treatment effect
- Compute average marginal effect of independent variables

What doesn't work:

- margins gives incorrect treatment effect using biprobit
- margins gives incorrect average marginal effect using biprobit
- ivprobit inapproriate; treatment variable is binary

What we need

- Correct Estimation of a recursive bivariate probit model (RBPM)
- Considering recursive nature of the model for postestimation commands

Contribution

A new Stata package

- rbiprobit estimates RBPMs like biprobit or cmp
 - allows weights (pw,fw,iw)
 - provides various variance estimators (vce)
 - bootstrap, jackknife, and svy prefix are allowed
- rbiprobit accounts for recursive nature in postestimation
- Postestimation commands enable
 - Correct predictions
 - Computation of different treatment effects
 - Decomposition of average marginal effects of independent variables
 - Standard errors using the delta method or bootstrapping

Table of Contents

- 1 Motivation
- 2 Econometric Specification
- 3 The rbiprobit package
- 4 Application and Examples
- 5 Conclusion

Recursive bivariate probit model

The Model

A structural model with endogenous explanatory treatment variable y_2

$$y_1^{\star} = x'\beta + \alpha y_2 + u_1$$
 , $y_1 = 1 \Big[y_1^{\star} > 0 \Big]$ (1)

$$y_2^{\star} = z'\gamma + u_2$$
 , $y_2 = 1 \Big[y_2^{\star} > 0 \Big]$ (2)

with
$$\begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \sim \mathcal{N} \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 , $\begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \right]$

- \triangleright correlation between u_1 and u_2 induces endogeneity
- parametric distribution assumption is bivariate normality
- \triangleright x' and z' can share some or all independent variables
- ▶ Greene (2018) notes that endogenous nature of y_2 can be ignored
- ▶ Han and Lee (2019): estimates are at best weakly identified if x = z

May 19, 2022 Italian Stata Conference 2022 Mustafa Coban 6 / 33

Recursive bivariate probit model

Treatment Effects: ATE and ATET

Average treatment effect (ATE)

$$\mathsf{ATE} = \Phi(x'\beta + \alpha) - \Phi(x'\beta)$$

- Ceteris-paribus scenario over full sample
- ► Effect of discrete change in treatment holding all other observed and unobserved variables constant

Recursive bivariate probit model

Treatment Effects: ATEC

Average treatment effect on conditional probability of outcome success (ATEC)

$$\mathsf{ATEC} = \frac{\Phi_2(x'\beta + \alpha, z'\gamma, \rho)}{\Phi(z'\gamma)} - \frac{\Phi_2(x'\beta, -z'\gamma, -\rho)}{\Phi(-z'\gamma)}$$

- Accounts for selection on unobservables
- Utilizes conditional probabilities of the outcome $Pr(y_{1i} = 1 | y_{2i} = s)$ for s = 0, 1 over full sample.
- Effect of a discrete change in treatment, holding only the observed variables constant
- Imposing no constraint on ρ to account for changes in unobserved variables as a consequence of the treatment
- ▶ ATEC collapses to ATE if $\rho = 0$

Decomposition of Marginal Effects

Joint and Conditional Probabilities

- Independent variable d appears in both x' and z'
- Decomposition of total marginal effects on the probabilities (except marginal probabilities) are then
 - 1. Continuous Variables (see Greene, 2018)

$$\mathsf{ME} = \frac{\partial \mathsf{Pr}}{\partial \begin{pmatrix} x_d \\ z_d \end{pmatrix}} = \underbrace{\frac{\partial \mathsf{Pr}}{\partial x_d}}_{\mathsf{direct effect}} + \underbrace{\frac{\partial \mathsf{Pr}}{\partial z_d}}_{\mathsf{indirect effect}}$$

2. Discrete Variables (see Hasebe, 2013; Edwards et al., 2019)

$$\mathsf{ME} = \underbrace{[\mathsf{Pr}\,|_{x_d=1} - \mathsf{Pr}\,|_{x_d=0}]}_{\mbox{direct effect}} + \underbrace{[\mathsf{Pr}\,|_{z_d=1} - \mathsf{Pr}\,|_{z_d=0}]}_{\mbox{indirect effect}}$$

May 19, 2022 Italian Stata Conference 2022 Mustafa Coban 9 / 33

Table of Contents

- 1 Motivation
- 2 Econometric Specification
- 3 The rbiprobit package
- 4 Application and Examples
- 5 Conclusion

Basic Syntax

```
rbiprobit depvar [=] [indepvars] [if] [in] [weight]
, endogenous(depvar_en [=] [indepvars_en] [, enopts]) [options]
```

- depvar and depvar_en have to be 0/1 variables
- depvar_en automatically added to outcome equation as factor-variable
- Factor variables and time-series operators allowed
- bootstrap, jackknife, and svy prefix are allowed
- ▶ Variance estimators: robust, cluster robust, bootstrap, ...
- Linear constraints are applicable

Postestimation Commands

probability functions

Predictions

```
predict [type] newvar[if] [in] [, statistic]
```

statistic

...

```
Pr(depvar = 1, depvar en = 1); the default
p11
             Pr(depvar = 1, depvar en = 0)
p10
p01
             Pr(depvar = 0, depvar en = 1)
             Pr(depvar = 0, depvar en = 0)
00g
             Pr(depvar = 1); marginal success probability for outcome eq.
pmarg1
             Pr(depvar_en = 1); marginal success probability for treatment eq.
pmarg2
pcond1
             Pr(depvar = 1 | depvar en = 1)
             Pr(depvar en = 1 | depvar = 1)
pcond2
xb1
             linear prediction for outcome eq.
             linear prediction for treatment eq.
xh2
```

 May 19, 2022
 Italian Stata Conference 2022
 Mustafa Coban
 12/33

Postestimation Commands

Margins and Treatment Effects

```
rbiprobit margdec [if] [in] [weight] [, response_options options]
rbiprobit tmeffects [if] [in] [weight] [, tmeffect(effecttype) options]
```

rbiprobit margdec options

effect(effecttype) specify type of effect; effecttype may be total, direct,

or indirect; default is total

predict(pred_opt) estimate margins for predict, pred_opt;

multiple predict not applicable

dydx(varlist) estimate marginal effect of variables in varlist

. . .

rbiprobit tmeffects options

tmeffect(effecttype) specify type of effect; effecttype may be ate, atet,

or atec; default is ate

Table of Contents

- 1 Motivation
- 2 Econometric Specification
- 3 The rbiprobit package
- 4 Application and Examples
- 5 Conclusion

An empirical application

independent variables

Preference for redistribution and hazard of national culture by immigrants

1. Research question

Does the perception of immigrants as a hazard of national culture effect natives' preference for redistribution?

2. Data

- European Social Survey (Wave 7, 2014)
- Individual Data from the United Kingdom
- Data adjusted for demonstration purposes
- Sample restricted to respondents with no migration background

The Model

- Binary outcome variable: redist
 Should the government reduce difference in income levels?
 (Agree = 1, Disagree = 0)
- Binary treatment variable: imcult Do immigrants undermine or enrich country's cultural life? (Undermine = 1, Enrich = 0)

rbiprobit output table

```
. use "https://cobanomics.github.io/rbiprobit/data/ess7 uk.dta", clear
(Modified excerpt from European Social Survey Wave 7 for United Kingdom)
. global indeplist
                     c.age##c.age i.female i.urban educyrs rigleft i.lbf
. rbiprobit redist = $indeplist hhincdec hhmemb ///
                    , endog(imcult = $indeplist i.pareduc imcont) nolog
Recursive Bivariate Probit Regression
                                                                               1.256
                                                    Number of obs
                                                    Wald chi2(19) = 334.05
Prob > chi2 = 0.0000
Log \ likelihood = -1120.1179
                      | Coef. Std. Err. z P>|z| [95% Conf. Interval]
redist
              imcult |
c.age#c.age | -.0003429
                                       .0001435 -2.39 0.017
                                                                      -.0006243
                                                                                     -.0000616
              female
             Female
                         -.0292688
                                       .0874852
                                                    -0.33
                                                             0.738
                                                                       -.2007366
                                                                                      .1421991
               urban
    [1] (Sub) Urban | .0833317
                                      .0967068
                                                    0.86 0.389
                                                                       -.1062102
                                                                                      .2728736
             educyrs | .0060353
                                      .0124718 0.48 0.628
                                                                      -.0184091
                                                                                      .0304796
             rigleft | .1570994
                                       .0275802 5.70 0.000
                                                                      .1030432
                                                                                      .2111557
                  1hf I
           Employed | -.0546754
                                      .1064449 -0.51 0.607
                                                                      -.2633036
                                                                                   .1539527

        hhincdec
        - .0636975
        .0172709
        -3.69
        0.000
        - .0975479
        -0.298471

        hhmemb
        - .0008141
        .0409355
        -0.02
        0.984
        -.0810461
        .079418

        cons
        | -1.732201
        .6640082
        -2.61
        0.009
        -3.033633
        -.4307688

              cons | -1.732201
```

May 19, 2022 Italian Stata Conference 2022 Mustafa Coban 16 / 33

rbiprobit output table (con't)

	+					
imcult	İ					
age	.0075091	.0164422	0.46	0.648	0247169	.0397352
c.age#c.age	0000784	.0001574	-0.50	0.619	0003869	.0002302
female Female	.3339391 .3339391	.0884987	3.77	0.000	.1604849	.5073933
urban [1] (Sub)Urban educyrs rigleft	1769626 0586824 1342447	.100775 .0114027 .0219501	-1.76 -5.15 -6.12	0.079 0.000 0.000	374478 0810314 1772661	.0205528 0363335 0912234
lbf Employed pareduc	1640761	.1136411	-1.44	0.149	3868085	.0586563
Academic parent imcontcons	1822516 0794116 2.854024	.0965664 .0255358 .4839785	-1.89 -3.11 5.90	0.059 0.002 0.000	3715182 1294609 1.905444	.0070151 0293623 3.802604
/atanrho	.6042669	.2333532	2.59	0.010	.1469031	1.061631
rho	.5400788	.1652875			.1458554	.7862872

Wald test of rho=0: chi2(1) = 6.70549

Prob > chi2 = 0.0096

- In ML estimation ρ is not directly estimated, but atanh ρ
- estimated correlation between error terms is positive and significantly different from zero
- ► Applying lrmodel would give the LR model test instead of the Wald test

 May 19, 2022
 Italian Stata Conference 2022
 Mustafa Coban
 17/33

The correlation parameter

Comparison: biprobit vs. rbiprobit

- . biprobit (redist = \$indeplist hhincdec i.hhincmsc)
- > (imcult = \$indeplist i.pareduc imcont)

	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
/athrho	0592815	.0641919	-0.92	0.356	1850952	.0665323
rho	0592121	.0639668			18301	.0664343

- . rbiprobit redist = \$indeplist hhincdec i.hhincmsc
- > , endog(imcult = \$indeplist i.pareduc imcont)

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
imcult Culture undermined		.3153386	-3.47	0.001	-1.711323	4752184
/atanrho	.6042669	.2333532	2.59	0.010	.1469031	1.061631
rho	.5400788	.1652875			.1458554	.7862872

Explanation according to Filippini et al. (2018)

The correlation parameter in biprobit is a weighted average of the correlation parameter from rbiprobit and the coefficient on treatment variable incult

 May 19, 2022
 Italian Stata Conference 2022
 Mustafa Coban
 18/33

Postestimation: Predictions

biprobit workaround

Comparison: biprobit vs. rbiprobit

	count	minimum	difference average	maximum
p11_rbp <p11_bp p11_rbp=p11_bp</p11_bp 	230 1025	3982587	2817366	0239254
pl1_rbp>pl1_bp	1	1.49e-08	1.49e-08	1.49e-08
jointly defined	1256	3982587	0515919	1.49e-08
total	1256			

Incorrecte predictions after biprobit

biprobit doesn't account for recursive nature of the model, e.g. takes observed

 y_{2i} instead of $y_{2i} = 1 \ \forall \ i \ \text{in Pr}(y_{1i} = 1, y_{2i} = 1)$

May 19, 2022 Italian Stata Conference 2022 Mustafa Coban 19/33

Postestimation: Treatment effects

rbiprobit tmeffects: Average treatment effects

```
. rbiprobit tmeffects, tmeffect(ate)
                                        Number of obs = 1,256
Treatment effect
Model VCE : OIM
Expression : Pr(redist=1), predict(pmarg1)
Effect : Average treatment effect
dydx w.r.t. : 1.imcult
                     Delta-method
           | dy/dx Std. Err. z P>|z| [95% Conf. Interval]
       ate | -.355684 .1156057 -3.08 0.002 -.582267 -.129101
. rbiprobit tmeffects, tmeffect(atec)
Treatment effect
                                        Number of obs = 1.256
Model VCE : OIM
Expression : Pr(redist=1|imcult=1)-Pr(redist=1|imcult=0), predict(pcond1)-predict(pc
> ond10)
Effect : Average treatment effect on conditional probability
dvdx w.r.t. : 1.imcult
                     Delta-method
| dy/dx Std. Err. z P>|z| [95% Conf. Interval]
     atec | -.017399 .0300759 -0.58 0.563 -.0763467 .0415488
```

Postestimation: Marginal effects

rbiprobit margdec: Average marginal effects (continuous independent variable)

```
. rbiprobit margdec, dydx(rigleft) predict(pl1) effect(direct)
Average marginal effects
                                  Number of obs = 1,256
Model VCE : OIM
Expression : Pr(redist=1,imcult=1), predict(p11)
dv/dx w.r.t. : rigleft
                   Delta-method
           dy/dx Std. Err. z P>|z| [95% Conf. Interval]
  rigleft | .0341355 .0053522 6.38 0.000 .0236452 .0446257
. rbiprobit margdec, dydx(rigleft) predict(p11) effect(indirect)
                                   Number of obs = 1,256
Average marginal effects
Model VCE : OIM
Expression : Pr(redist=1,imcult=1), predict(p11)
dv/dx w.r.t. : rigleft
                   Delta-method
           | dy/dx Std. Err. z P>|z| [95% Conf. Interval]
   rigleft | -.0025357 .001461 -1.74 0.083 -.0053992 .0003278
```

May 19, 2022 Italian Stata Conference 2022 Mustafa Cohan 21/33

Postestimation: Marginal effects

don't use margins

rbiprobit margdec: Average marginal effects (continuous independent variable)

```
. rbiprobit margdec, dvdx(rigleft) predict(pl1) effect(total)
Average marginal effects
                                         Number of obs = 1,256
Model VCE : OIM
Expression : Pr(redist=1,imcult=1), predict(p11)
dv/dx w.r.t. : rigleft
                      Delta-method
          | dy/dx Std. Err. z P>|z| [95% Conf. Interval]
    rigleft | .0315997 .0047834 6.61 0.000 .0222244 .0409751
```

- Direct effect of rigleft is positive
- Indirect effect of rigleft is negative
- Indirect effect doesn't offset direct effect entirely

Postestimation: Plots

rbiprobit margdec and rbiprobit tmeffects: Marginsplots

- Marginsplot of total average marginal effects
 - . rbiprobit margdec, dydx(rigleft hhincdec lbf) pr(p11) eff(total)
 - . marginsplot
- Marginsplot of indirect average marginal effects
 - . rbiprobit margdec, dydx(female pareduc) pr(p10) eff(indirect)
 - . marginsplot
- Marginsplot of average treatment effect
 - rbiprobit tmeffects, tmeffect(ate)
 - . marginsplot

Table of Contents

- 1 Motivation
- 2 Econometric Specification
- 3 The rbiprobit package
- 4 Application and Examples
- 5 Conclusion

Conclusion

- rbiprobit is a suitable alternative for ivprobit
- rbiprobit identified even without IV (theoretically)
- Without IV: identification of rbiprobit decisively based on bivariate normality assumption
- rbiprobit takes into account recursive nature of the model in contrast to biprobit or cmp
- Three different treatment effects computable
- Decomposition of marginal effects gives insight about insignificant total marginal effects

Thank you

Version 1.1.0 available

ssc install rbiprobit

In the future, minor updates available via

net install rbiprobit, from("https://cobanomics.github.io/rbiprobit/")

- github.com/cobanomics
- **y** @cobanomics

- mustafa.coban@iab.de
- mustafacoban.de

References

- Alrasheed, D. S. (2019). The relationship between neighborhood design and social capital as measured by carpooling. *Journal of Regional Science*, 59(5):962–987.
- Blasch, J., Filippini, M., and Kumar, N. (2019). Boundedly rational consumers, energy and investment literacy, and the display of information on household appliances. *Resource and Energy Economics*, 56(C):39–58.
- Edwards, L. N., Hasebe, T., and Sakai, T. (2019). Education and Marriage Decisions of Japanese Women and the Role of the Equal Employment Opportunity Act. *Journal of Human Capital*, 13(2):260–292.
- Filippini, M., Greene, W. H., Kumar, N., and Martinez-Cruz, A. L. (2018). A note on the different interpretation of the correlation parameters in the bivariate probit and the recursive bivariate probit. *Economics Letters*, 167:104 107.
- Greene, W. H. (2018). Econometric Analysis. Pearson, New York.
- Han, S. and Lee, S. (2019). Estimation in a generalization of bivariate probit models with dummy endogenous regressors. *Journal of Applied Econometrics*, 34(6):994–1015.
- Hasebe, T. (2013). Marginal effects of a bivariate binary choice model. *Economics Letters*, 121(2):298–301.

May 19, 2022 Italian Stata Conference 2022 Mustafa Coban 27 / 33

Predictions of Interest

1. Joint Probabilities

$$\begin{aligned} & \Pr(y_1 = 1, y_2 = 1 | x, z) = \Phi_2(x'\beta + \alpha, z'\gamma, \rho) \\ & \Pr(y_1 = 1, y_2 = 0 | x, z) = \Phi_2(x'\beta, -z'\gamma, -\rho) \\ & \Pr(y_1 = 0, y_2 = 1 | x, z) = \Phi_2(-x'\beta - \alpha, z'\gamma, -\rho) \\ & \Pr(y_1 = 0, y_2 = 0 | x, z) = \Phi_2(-x'\beta, -z'\gamma, \rho) \end{aligned}$$

2. Conditional Probabilities

$$\begin{split} \mathsf{Pr}(y_1 = 1 | y_2 = 1, x, z) &= \frac{\Phi_2(x'\beta + \alpha, z'\gamma, \rho)}{\Phi(z'\gamma)} \\ \mathsf{Pr}(y_2 = 1 | y_1 = 1, x, z) &= \frac{\Phi_2(x'\beta + \alpha, z'\gamma, \rho)}{\Phi(x'\beta + \alpha)} \end{split}$$

 May 19, 2022
 Italian Stata Conference 2022
 Mustafa Coban
 28/33

Predictions of Interest

3. Marginal Probabilities

$$Pr(y_1 = 1|x) = \Phi(x'\beta + \alpha y_2)$$
$$Pr(y_2 = 1|z) = \Phi(z'\gamma)$$

4. Unconditional Mean Function (see Blasch et al., 2019; Alrasheed, 2019)

$$\begin{split} E[y_1|x,z] &= \Pr(y_2 = 1|z) \cdot E[y_1|y_2 = 1,x,z] \\ &+ \Pr(y_2 = 0|z) \cdot E[y_1|y_2 = 0,x,z] \\ &= \Pr(y_1 = 1,y_2 = 1|x,z) + \Pr(y_1 = 1,y_2 = 0|x,z) \\ &= \Phi_2(x'\beta + \alpha,z'\gamma,\rho) + \Phi_2(x'\beta,-z'\gamma,-\rho) \end{split}$$

An empirical application

Varlist of independent variables

- Independent variables common to both equations
 - Age (age)
 - ► Gender (female)
 - ► Place of residence (urban)
 - Years of education (educyrs)
 - Main activity, last 7 days (1bf)
 - Self-placement on political left-right scale (rigleft)
- Independent Variables only in treatment equation
 - At least one parent is academic (pareduc)
 - Frequency of contact with immigrants beyond workplace and friendships (imcont)
- Independent Variables only in outcome equation
 - Household income (hhincdec)
 - Number of household members (hhmemb)

biprobit workaround for joint/conditional probabilities

	count	minimum	difference average	maximum
p11_rbp=p11_bp p11_rbp>p11_bp	1255 1	1.49e-08	1.49e-08	1.49e-08
jointly defined	1256	0	1.19e-11	1.49e-08
total	1256			

May 19, 2022 Italian Stata Conference 2022 Mustafa Coban 31/33

Postestimation: Treatment effects

rbiprobit tmeffects: Average treatment effect on the treated

$$\mathsf{ATET} = \Phi\left(\frac{x_i'\beta + \alpha - \rho z_i'\gamma}{\sqrt{1-\rho^2}}\right) - \Phi\left(\frac{x_i'\beta - \rho z_i'\gamma}{\sqrt{1-\rho^2}}\right) \quad \forall \ y_{2i} = 1$$

- Ceteris-paribus scenario over sub-sample of treated
- ► Effect of discrete change in treatment on the conditional probability $Pr(v_{1i} = 1 | v_{2i} = 1)$

 May 19, 2022
 Italian Stata Conference 2022
 Mustafa Coban
 32/33

Postestimation: Marginal effects

Incorrect standard errors using margins

```
. margins, dydx(rigleft) predict(p11)
Average marginal effects
                                       Number of obs = 1,256
Model VCE : OIM
Expression : Pr(redist=1,imcult=1), predict(p11)
dy/dx w.r.t. : rigleft
                      Delta-method
           | dy/dx Std. Err. z P>|z| [95% Conf. Interval]
    rigleft | .0315997 .0045339 6.97 0.000 .0227135 .040486
. rbiprobit margdec, dvdx(rigleft) predict(pl1) effect(total)
Average marginal effects
                                        Number of obs = 1,256
Model VCE : OIM
Expression : Pr(redist=1,imcult=1), predict(p11)
dv/dx w.r.t. : rigleft
                      Delta-method
| dy/dx Std. Err. z P>|z| [95% Conf. Interval]
    rigleft | .0315997 .0047834 6.61 0.000 .0222244
```

May 19, 2022 Italian Stata Conference 2022 Mustafa Coban 33/33