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Abstract
This paper develops an econometric model of the UK economy and uses this to

explain the behavior of the gilt-edged bond market. These macro-finance models typ-
ically assume a homoscedastic error process, but I allow volatility to be conditioned
by the underlying level of inflation. Empirically, this conditional heteroscedasticity
appears to be very significant in UK macroeconomic data. This type of specifica-
tion is now standard in the mainstream finance literature, and I show that it has
regular asymptotic properties even in the presence of unit roots, unlike the standard
homoscedastic macro-finance model. The empirical version of this model provides
a much better explanation of the UK data than the standard macro-finance model.
This research opens the way to a much richer term structure specification, incor-
porating the best features of both macro-finance and mainstream finance models.
Moreover, it also yields insights into the behavior of the macroeconomy, particularly
with respect to the behaviour of inflationary expectations and heteroscedastic nature
of the data. This model rationalizes the much lower level of output; interest rate and
inflation volatility seen in recent years, attributing it to the fall in the underlying
rate of inflation.

∗Department of Economics and Related Studies; ps35@york.ac.uk. I am grateful to John Hutton,
Peter Smith, Andy Tremayne and Mike Wickens for helpful comments on a similar paper and to
Erik Britton of Oxford Economic Forecasts for providing data for the output gap.

1



1 Introduction

The volatility of the world’s leading economies has been much lower over the last
two decades than over the previous two. Nowhere has this fall been more dramatic
than in the UK. During the 1970s the UK had the most volatile economy in the G7
but over the last decade it has had one of the least volatile, as the OECD recognized
in its June 2005 Review of the UK economy. There is no shortage of explanations
for this phenomenon. In the UK, the move to inflation targeting in 1992 and the
new monetary policy arrangements of 1997 are just the front runners King (2003).
France and Italy have joined the EMU. However, the fact that this is an international
phenomenon and is also marked in economies such as the US that have not formally
changed their monetary policy arrangements, should lead us to look for common
factors.
The work reported in this paper is based on a hypothesis that also seems to ex-

plain the fall in volatility in the US (Spencer (2004)). Robert Engle’s Engel (1982)
paper on conditional heteroscedasticity in UK inflation data noted that besides au-
toregressive conditional heteroscedasticity (ARCH), the volatility of inflation might
also depend upon the prevailing level of inflation. This observation is due to Milton
Friedman, who argued in his Nobel lecture Friedman (1977) that the variability of
inflation, output and other macroeconomic variables seemed to be related to the level
of inflation itself. There is an interesting theoretical (see for example Ball (1992))
and extensive empirical literature (see for example Brunner and Hess (1993), Holland
(1995) and Caporale and McKiernan (1997)) on this phenomenon. There is also an
emerging literature on the effect of declining macroeconomic volatility on the equity
risk premium (Lettau, Ludvigson, and Wachter (2004), Brandt and Wang (2003)).
However, as far as I am aware no one has tried to test this hypothesis on bond market
data. Indeed, although there are now a growing number of papers that follow (Ang
and Piazzesi (2003)) and model the effect of macroeconomic variables on US interest
rates and the yield curve, these all assume that volatility is constant as in Vasicek
(1977) 1. This paper extends this homoscedastic macro-finance model to allow the
volatility of the macroeconomic variables to be conditioned by the underlying rate of
inflation, modelled as a latent variable.
This specification provides a neat solution to the problems posed by unit roots in

interest rate data. As Kozicki and Tinsley (2001) and Dewachter and Lyrio (2006)
observe, macroeconomic data are characterized by a non-stationary common trend
which seems to be explained by market perceptions of the underlying rate of inflation.
This situation is very familiar to macroeconomic modelers but poses difficult problems
for term structure researchers. That is because asymptotic (long maturity) forward
rates and yields are not properly defined if the short term (spot) interest rate is
driven by a random walk (a homoscedastic unit root process). Campbell, Lo, and
MacKinlay (1996) show that when the spot rate follows a random walk, forward rates
and yields fall to larger and larger negative values as maturity lengthens, without a
well-defined limit. This reflects the fact that the variance of a random walk increases
with the forecast horizon without limit. Because the bond price function is convex
in the state variables this volatility is valuable to the investor and is offset by the
forward rate.
With the notable exception of Dewachter and Lyrio (2006), macro-finance model-

ers have tried to avoid the unit root problem by assuming that the underling inflation

1Notable examples include Rudebusch and Wu (2003) and Rudebusch and Aruoba (2003). The
model of Dewachter and Lyrio (2006) is similar, but developed in continuous rather than discrete
time.
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variable follows a near-unit root (AR(1)) rather than a unit root (I(0)) process (Ang
and Piazzesi (2003), Rudebusch and Wu (2003)). However, if this variable is station-
ary, it mean-reverts to a constant rather than the variable end-point suggested by
unit root macroeconomic models. As Dewachter and Lyrio (2006) note, this means
that it cannot be interpreted as a long run inflation expectation. In this kind of
model, inflationary expectations are ultimately anchored to a constant which cannot
be influenced by monetary policy.
In contrast, Dewachter and Lyrio (2006) proceed by distinguishing the historical

(or state) probability measure P that drives the macroeconomic data from the the
risk-neutral measure Q that determines asset prices. To do this, they employ the
‘essentially affine’ model of Duffee (2002), which assumes that the difference between
the two measures is due to the effect that the variables of the model have on ‘the
price of risk’: the expected excess returns that the market offers for exposure to risk.
They assume that the underlying inflation variable follows a random walk under
the historical measure but is mean reverting under Q. This risk adjustment drives
a wedge between the two asymptotes, so that the spot rate asymptote is a random
walk under P, but is constant under Q. This conveniently makes the forward rate
(and yield) asymptote constant. However, for this to happen it is necessary to to
assume that a shift in the inflationary trend moves the associated price of risk and
the risk premium in the opposite direction. Although it is not possible to rule this
behavior out a priori, this should arguably be tested empirically rather than assumed
a priori. Moreover, even if the data exhibit a near-unit root rather than a unit root
under Q, so that the asymptotic forward rate is constant, this adopts an extremely
large negative value.
These awkward characteristics reflect the basic mathematical problem with the

homoscedastic framework: it allows yields to become negative. For that reason the
mainstream finance literature typically uses heteroscedastic (stochastic volatility)
interest rate models such as that of Cox, Ingersoll, and Ross (1985). The variance
of the spot rate is proportional to the spot rate in this type of model, ruling out
negative spot and forward rates. This paper adapts this model for use with discrete
time macroeconomic data. This specification is supported by the empirical finding
that the common stochastic trend drives the volatility as well as the central tendency
in these data. Technically, this trend is a martingale (a unit root process that admits
heteroscedasticity) but not a random walk (a martingale with constant variance).
This model naturally generates a sensible forward rate asymptote without placing
constraints on the roots of system or the price of risk.
To investigate these issues empirically, this paper develops a macro-finance speci-

fication which conditions both the central tendency and the variance structure of the
model on a non-sationary nominal latent variable. A second latent (but stationary)
variable is introduced to handle unobservable real rate of return influences. This
model is the macro-finance analogue of the preferred model of Dai and Singleton
(2000), (2004), which as they say: ‘builds upon a branch of the finance literature
that posits a short-rate process with a single stochastic central tendency and volatil-
ity’. The latent variables are estimated using the Extended Kalman Filter, which is
also standard in the finance literature. This specification can accommodate unit and
near unit roots under both measures while generating admissible variance & asymp-
totic term structures. It encompasses the standard macro-finance model, which is
decisively rejected by the data.
The paper is set out as follows. The next section describes the macroeconomic

model and its stochastic structure, supported by appendix 1. Section 3, supported by
appendices 2 and 3, derives the bond pricing model. It discusses the problems posed
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by the unit root in the standard macro-finance specification and shows how these
are avoided in the Dai and Singleton (2000) EA1(N) version. The two respective
empirical models are compared in Section 5. Section 6 offers a brief conclusion.

2 The model framework

This framework consists of a heteroscedastic macroeconomic Vector Autoregression
(VAR) augmented by two latent variables, which is specified under physical or histor-
ical probability measure and a yield model which is specified under the risk neutral
measure.

2.1 The macroeconometric model
The macro-model is based on the specification developed by Svensson (1999); Rude-
busch (2002); Smets (1999) and others. It represents the behavior of the macroecon-
omy in terms of the output gap (gt); the annual CPI inflation rate (πt) and the 3
month Treasury Bill rate (r1,t). These are part of an n−vector zt of macroeconomic
variables driven by the difference equation system:

zt = K +Φ0yt +Σ
L
l=1Φlzt−l +Gηt (1)

where G is a lower triangular matrix, ηt is an n−vector of orthogonal errors and yt
is a k−vector of latent factors. These follow the first order process:

yt = θ + Ξyt−1 + εt (2)

where εt is an k−vector of orthogonal errors and Ξ = Diag{ξ1,...,ξk}2 . It is assumed
that zt is observed without measurement error and that yt is known to the monetary
authorities and markets but has to be inferred by the econometrician. I do this using
the Extended Kalman Filter (Harvey (1989), Duffee and Stanton (2004)) as described
in appendix 4 .
The specific model developed in this paper defines zt = {gt, πt, r1,t} and yt =

{y1,t, y2,t} (with n = 3 and k = 2). (Preliminary regression analysis suggested l = 3,
giving N = 11.) I assume that the inflation asymptote π∗ is equal to y1,t plus a shift
constant ϕ1. Similarly the real interest asymptote is y2,t plus another shift constant
ϕ2. The equilibrium conditions π∗t = y1,t + ϕ1; g

∗
t = 0 and r∗t = y1,t + y2,t + ϕ1 + ϕ2

are enforced by imposing a set of restrictions on (1):

Φ0 = (I − ΣLl=1Φl)R; K = Φ0ϕ; (3)

where : ϕ0 = {ϕ1, ϕ2}; R =

⎡⎣1 0
0 0
1 1

⎤⎦
to give the steady state solution z∗t = (I − ΣLl=1Φl)−1Φ0(yt + ϕ) = R(yt + ϕ).
This system can be consolidated by defining xt = {y0t, z0t}0; vt = {ε0t, η0t}0; and

combining (1) and (2) to get the l−the order difference system:

xt =

∙
θ

K +Φ0θ

¸
+ΣLl=1Γlxt−l + wt (4)

2 In this paper, Diag{y} represents a matrix with the vector y in the diagonal and zeros elsewhere.
0a denotes an (a × 1) zero vector; 0a,b the zero matrix of dimension a × b; and Ia an a2 identity
matrix.
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where:

wt = Γvt; Γ =

∙
Ik 0k,n
Φ0 G

¸
;

Γ1 =

∙
Ξ 0k,n
Φ0Ξ Φ1

¸
;Γl =

∙
0k2 0k,n
0n,k Φl

¸
; l = 2, ..., L.

The yield model employs the state space form, obtained by arranging this as first
order difference system describing the dynamics of the state vector (see appendix 1):

Xt = Θ+ΦXt−1 +Wt (5)

where Xt = {y0t, z0t, ..., z0t−l}0 is the state vector, Wt = C.{ε0t, η0t, 01,N−k−n}0 and Θ,Φ
& C are defined in appendix 1. Xt has dimension N = k + nl.
The macroeconomic data are shown in chart 1. I use the Retail Price Index

excluding mortgage interest payments (RPIX) to measure inflation (πt). This was
the policy objective (with a target rate of 2.5 %) between November 1992 and April
2004, when it was replaced by the Consumer Price Index. As in previous macro-
finance studies, inflation is measured on an annual basis. The three month Treasury
Bill rate is used to represent the spot rate (rt). Both of these series were taken from
Datastream. Quarterly estimates of the GDP output gap (gt) were kindly provided
by Oxford Economic Forecasts3. These data dictated the use of a quarterly time
frame. The macro data are shown in chart 14.
The gilt-edged yield data were taken from the Banks of England’s website and

are derived using the methodology discussed in Anderson and Sleath (2001). To
represent this curve I use 1,2,3,5,7,10 and 15 year maturities, the longest one for which
a continuous series is available. These yield data are available on a monthly basis, but
the macroeconomic data dictated a quarterly time frame (1961Q4-2004Q1, a total of
170 periods). The quarterly yield data are shown in chart 2. The 15 year yield is
shown at the back of the chart, while the shorter maturity yields are shown at the
front. Table 2 shows the means, standard deviations and first order autocorrelation
coefficients of these data, as well as KPSS and ADF test results. The inflation
and interest rates all exhibit non-stationarity. Further tests show that inflation and
interest rates are cointegrated. Consequently, this paper follows Dewachter and Lyrio
(2006) in analyzing a macroeconometric model characterized by a common stochastic
trend.

2.2 The stochastic structure
The standard macro-finance model assumes that the volatility structure is homoscedas-
tic and Gaussian: Wt ∼ N(0N ,Ω). However, mainstream finance models usually as-
sume that volatility is stochastic. In the affine model developed by Duffie and Kan
(1996) and Dai and Singleton (2000) & (2002), conditional heteroscedasticity in the
errors is driven by square root processes in the state variables5. In the ‘admissible’
version of this specification developed by Dai and Singleton (2000), regularity or

3This measure is based on the production function approach, building up potential GDP from
estimates of the capital stock, labour force and productivity, and then subtracting GDP to obtain
the estimate of the output gap. This was used in preference to the OECD measure based on the
trend filtering approach, since this indicates that output was above trend in 2004, in contrast to the
impression given by the behaviour of inflation and other macroeconomic variables.

4These are annual rates in percentages. In the empirical model these were appropriately converted
to quarterly decimal fractions by dividing by 400.

5Preliminary tests showed no significant evidence of Autoregressive Conditional Heteroscedastic-
ity (ARCH) in this quarterly data set.
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admissibility conditions are imposed to ensure that the variance structure remains
non-negative definite. Variations in the risk premia depend entirely upon variations
in volatility in these models. In the ‘Essentially Affine’ model of Duffee (2002) state
variables can affect risk premia through the price of risk as well as through volatility.
In the notation of Dai and Singleton (2002) an admissible essentially affine model
with N state variables and m independent square root factors conditioning volatility
is classed as EAm(N). Thus the standard macro-finance model (which is ‘essentially
affine’ and homoscedastic) is denoted EA0(N).
This paper compares EA0(N) with the EA1(N) specification: a model with a

single stochastic volatility term. Both of these generate affine yield models. That is
because the probability distributions underpinning these models are all ‘exponential-
affine’ in the sense of Duffie, Filipovic, and Schachtermayer (2003). They define a
process as exponential-affine under any measureM if the conditional Moment Gen-
erating Function (MGF) for Zt+1 (LM[u, Zt] = EMt [exp[u

0Zt+1] | Zt], which is the
Laplace Transform of the density of Zt+1 where u is a vector of Laplace coefficients) is
an exponential-affine function of Zt. This makes bond prices exponential-affine (i.e.
loglinear) and yields affine in the state variables as shown in appendix 2. For exam-
ple EA0(N) assumes that ε1,t is normally distributed with mean zero and standard
deviation δ01 and we use the formula for the MGF of a normal variable:

Et[exp[ν.y1,t+1|y1,t]] = exp[ν(θ1 + ξ1y1,t) +
1

2
ν2δ01] (6)

which is familiar from the expression for the expected value of a lognormally distrib-
uted variable. Et denotes the expectation under the measure P describing the state
price density.
In EA1(N), volatility is driven by the first latent variable y1,t which is independent

of the other state variables. This is the single factor specification of Cox, Ingersoll,
and Ross (1985). Using this to drive the volatility of the remaining (k + n − 1)
volatility terms makes the model admissible in the sense of Dai and Singleton (2000)
and (2002). In discrete time, y1,t+1 has a non-central χ2 conditional distribution
conditional upon y1,t:

y1,t+1 ∼ χ2[2cy1,t+1; cθ1; 2ξ1cy1,t] (7)

where 2c is the scale factor, 2ξ1cy1,t is the non-centrality parameter and cθ1 shows
the degrees of freedom. This process is of the exponential-affine class because its
conditional Moment Generating Function (MGF) is an exponential function of y1,t:

Et[exp[ν.y1,t+1|y1,t]] = exp[
νξ1y1,t
1− ν/c

− cθ1 ln[1−
ν

c
]] (8)

provided that: ν < c (Johnson and Kotz (1970)). Differentiating the MGF (8) w.r.t.
ν once, twice and then setting ν to zero gives the conditional mean and variance:

Et[y1,t+1|y1,t] = θ1 + ξ1y1,t; Vt[y1,t+1|y1,t] = δ01 + δ11y1,t; (9)

where : δ01 = θ1/c, δ11 = 2ξ1/c.

This distribution approaches the Gaussian either as cθ1 approaches infinity (with
ξ1cy1,t held constant) or as ξ1cy1,t approaches infinity (with cθ1 constant). This paper
investigates the limit of a unit root. In this case the degree of freedom parameter
is zero, the situation studied by Seigel (1979) and (in the case of the non-central
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Gamma distribution) Gourieroux and Jasiak (2002). Key results are reported in
Chapter 29 of Johnson and Kotz (1970). In the limit:

ξ1 = 1; θ1 = δ01 = 0; c = 2/δ11; (10)

the MGF simplifies to:

Et[exp[ν.y1,t+1|y1,t]] = exp[
νy1,t
1− ν/c

]; (11)

and (9) & (11) simplify to:

Et[y1,t+1|y1,t] = y1,t; Vt[y1,t+1|y1,t] =
1

2
δ11y1,t. (12)

This process is a martingale: the expectation of any future value is equal to the
current value. However, unlike the random walk model, the error variance is also
proportional to this value. Models (6), (9) and (12) can be represented as a discrete
first order process:

y1,t+1 = θ1 + ξ1y1,t + w1,t+1 (13)

In EA1(N), this stochastic trend also conditions the volatility of the other vari-
ables. It is ordered as x1,t = y1,t, the first variable in xt. The other contempo-
raneous variables are put into an n − 1 vector (x2,t) : xt = {y1,t, x02,t}0. Similarly:
vt = {w1,t, v02,t}0 and wt = {w1,t, w02,t}.0 I partition (4) conformably and write Γ as:

Γ =

∙
Ik 0k,n
Φ0 G

¸
=

∙
1 01,(k+n−1)
Γ21 Γ22

¸
Γ22 is an (k + n − 1)2 lower triangular matrix with unit diagonals and Γ21 is a
(k+n−1) column vector. The errors in x2,t+1 are decomposed into components that
are related to w1,t+1 & y1,t and an orthogonal component v2,t+1:

w2,t+1 = Γ21w1,t+1 + Γ22(
√
y1,tu2,t+1 + v2,t+1) (14)

where:

Et[u2,t+1] =Et[v2,t+1] = 0(k+n−1); E[v2,t+1u
0
2,t+1] = 0(k+n−1)2 ;

E[v2,t+1w1,t+1] = E[u2,t+1w1,t+1] = 0(k+n−1);

E[v2,t+1v
0
2,t+1] =∆02; E[u2,t+1u

0
2,t+1] = ∆12;

∆s2 =Diag[δs2, ..., δsn]; s = 0, 1.

Similarly, writing Xt = {y1,t,X 0
2,t}0 and partitioning Wt,Θ,Φ, C conformably

(appendix 1), (5) becomes:∙
y1,t+1
X2,t+1

¸
=

∙
θ1
Θ2

¸
+

∙
ξ1 0

0
N−1

Φ21 Φ22

¸ ∙
y1,t
X2,t

¸
+

∙
w1,t+1
W2,t+1

¸
(15)

In this paper subscripts 1 and 2 denote partitions of N (or n) dimensional vectors and
matrices into 1 and N − 1 (or n− 1). The stochastic structure for (15) is described
in appendix 1. I also normalize the second latent variable by assuming: θ2 = 0 (ϕ2
and θ2 play a similar role and cannot be separately identified). This means that y2,t
reverts to a zero mean and the spot rate asymptote is thus r∗t = y1,t + ϕ1 + ϕ2.
This model is admissible in the sense of Dai and Singleton (2000). That is because

y1,t, the variable driving volatility has a non-central χ2 distribution and is non-
negative, keeping the variance structure non-negative. It is estimated by quasi-
maximum likelihood and the Extended Kalman filter (which gives the optimal linear
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estimate of the latent variables in this situation). At the estimation stage it is
assumed that y1,t is approximately normal (appendix 4)6. Using the mean and
variance given by (9) or (12):

y1,t+1 ∼ N(θ1 + ξ1y1,t, δ01 + δ11y1,t) (16)

This Gaussian specification is also used (with δ11 = 0) in place of (8) to generate the
bond prices in the EA0(N) model (6).

2.3 The risk neutral measure
The aim of this paper is to use these exponential-affine MGFs to model the macro-
economy and the yield curve jointly. The macro model is naturally defined under
the state probability measure P, but assets are priced under the risk neutral mea-
sure Q. This is obtained by adjusting the state probabilities multiplicatively by a
state-dependent subjective-utility weight Nt+1 (with the logarithm nt+1):

EQt [Xt+1| Xt] = Et[Nt+1Xt+1| Xt] (17)

where EQt denotes the expectation under Q. For the homoscedastic model: −nt+1 =
ωt + λ0tvt+1, where λt is an (k + n)× 1 vector of coefficients related to the prices of
risk associated with shocks to xt+1. In the basic Affine model these are constant and
in the ‘Essentially Affine’ specification of Duffee (2002) they are linear in xt. Define
the N × 1 deficient vector Λt = [λ0t, 00N−(k+n)]0 and partition this conformably with
(15): ∙

λ1,t
Λ2,t

¸
=

∙
λ10
Λ20

¸
+

∙
λ11 Λ12
Λ21 Λ22

¸ ∙
y1,t
X2,t

¸
(18)

The error structure of the EA1(N) model is richer than that of EA0(N) and the
effects of V2,t+1 and U2,t+1 on nt+1 should both be allowed for when specifying nt .
This can be achieved by multiplying the former by Λ02,tC22 and the latter by Z

0
21C22,

where Z21 is an N−1 vector resembling Λ21. However Z21 and Λ21 are not separately
identified - they capture the effect of y1,t on the risk premia working through volatility
and the price of risk respectively. To identify the model and facilitate comparisons
with EA0(N) I set Z21 = 0N−1 and use the model:

−nt+1 = ωt + λ1,ty1,t + Λ
0
2,tC22V2,t+1 (19)

Admissibility under Q in EA1(N) requires Λ12 = 0N−1. I follow Dewachter and
Lyrio (2006) in using this restriction in the EA0(N) model as well, to save degrees
of freedom and help nest it within EA1(N). λ11 is redundant in EA1(N) since the
effect of y1,t on the risk premia comes through its effect on volatility not the price of
risk. Setting this to zero:

λ1,t = λ10. (20)

.
6The approximation is a reasonable one in this case, since the empirical values of the non-

centrality parameter are large, except at the low point in 2000Q1. This distribution approaches
the normal for large values of the non-centrality parameter. Johnson and Kotz (1970) note that
this effect is clearly apparent in their figure 29.2, which shows the density for selected values of this
parameter over the range [2,15] (given zero degrees of freedom). For model M1, reported below the
non-centrality parameter 4y1,y/δ11 varies from 10.8 in 2001Q1 to 383.1 in 1981Q3.
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3 Bond prices in the EA0(N) and EA1(N) models

The stochastic processes of the previous section are exponential-affine and admissible
under measure P and appendix 3 shows that (19) and (20) preserve these properties
under measure Q. The dynamics of Xt under Q is generated by a process resembling
(15): ∙

y1,t+1
X2,t+1

¸
=

∙
θQ1
ΘQ2

¸
+

∙
ξQ1 00N−1
ΦQ21 Φ

Q
22

¸ ∙
y1,t
X2,t

¸
+

∙
wQ1,t+1
WQ
2,t+1

¸
(21)

where the time t expectations of the error terms are zero under Q. Appendix 3 shows
that ΦQ22 = Φ22 −Υ2 is the same for both models. The other parameters differ and
are denoted with a superscript Qm for each model EAm(N) : m = 0, 1. They are
shown in the second and third columns of the table:

Table 1: Dynamic coefficients for different models and measures
measure: P Q Q
model: EA0(N) EA1(N)

θ1 θQ0

1 = θ1 − δ01λ10 θQ1

1
θ1

1+λ10/c

ξ1 ξQ0

1 = ξ1 − δ01λ11 ξQ1

1 = ξ1
(1+λ10/c)2

Θ2 Θ
Q0

2 = Θ2 −Υ0 − δ01λ10C21 Θ
Q1

2 = Θ2 −Υ0 − λ10
(c+λ10)

θ1C21

Φ21 Φ
Q0

21 = Φ21 −Υ1 − δ01λ11C21 ΦQ1

21 =
Φ21

(1+λ10/c)2
−Υ1

Φ22 ΦQ22 = Φ22 −Υ2 ΦQ22 = Φ22 −Υ2

where Υi = Σ0Λ2i, i = 0, 1, 2 are matrices of parameter products showing how the
stochastic structure and the price of risk affect the change of measure. The solution
for EA1(N) is regular provided that:

c+ λ10 > 0. (22)

Appendix 2 shows that an exponential-affine MGF yields an exponential-affine
bond price (affine yield) model of the form:

Pτ,t = exp[−γτ −Ψ0τ Xt]; τ = 1, ...,M. (23)

Taking logs and maturity differencing gives the forward rate:

fτ,t = γτ+1 − γτ + [Ψτ+1 −Ψτ ]0Xt; τ = 1, ...,M. (24)

where: pτ,t = lnPτ,t. The price coefficients are derived in appendix 3. At this stage,
it is convenient to partition Ψτ conformably with (15) as Ψτ = {ψ1,τ ,Ψ02,τ}0. This
system is time-recursive. It is also recursive in the sense that Ψ2,τ does not depend
upon ψ1,τ−1 (or γτ−1). This sub-structure is also common to both models:

Ψ2,τ = (Φ
Q
22)

0Ψ2,τ−1 + J2,r (25)

= (I − (ΦQ22)0)−1(I − ((ΦQ22)0)τ )J2,r

I assume that the roots of this system are stable under Q, so this has the asymptote:

Ψ∗2 = limτ→∞Ψ2,τ = (I − (ΦQ22)0)−1J2,r (26)

where ΦQ22 is defined in table 1.
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3.1 The EA0(N) specification
In EA0(N), the first slope coefficient follows the recursion:

ψ1,τ = ξQ0
1 ψ1,τ−1 +Φ

Q0
12 Ψ2,τ−1. (27)

while the intercepts follow:

∆γτ = γτ − γτ−1 = Ψ
0
2,τ−1Θ

Q0
2 + ψ1,τ−1θ

Q0
1 −

1

2
Ψ02,τ−1Σ0Ψ2,τ−1 −

1

2
δ01[ψ1,τ−1 +Ψ

0
2,τ−1C21]

2

τ = 2, ...,M. (28)

with the parameters defined in table 1. The two quadratic terms show the Jensen
effects implied by the constant volatility specification.
Suppose that ξQ0

1 = 1 but that the other roots of the system are stable. Then
(27) yields a well-defined asymptote for Ψ2,τ , but (27) has a unit root and in the
limit ψ1,τ trends in line with τ : limτ→∞(ψ1,τ+1 − ψ1,τ ) = Φ

Q0
12 (I − (ΦQ22)0)−1J2,r.

Substituting these coefficients into (28) and (27) shows that the asymptotic behavior
of the forward rate is determined by the final term in (28), which is the Jensen effect
associated with ψ1,τy1,t. This behaves as (-)

1
2δ
2
01τ

2 in the limit.
In the specification of Dewachter and Lyrio (2006), y1 has a unit root under P

(θ1 = 0, ξ1 = 1) but is mean-reverting under Q: (
¯̄̄
ξQ0
1

¯̄̄
= |ξ1 − δ01λ11| < 1). In

this case, y1 obeys a near-unit root process and ψ∗1 and f∗ are constant. However,
because ξQ0

1 is close to unity empirically7, these asymptotes adopt very large numer-
ical values (respectively positive and negative). Moreover, this specification requires
the restriction λ11 > 0. This restriction seems hard to justify a priori and ideally it
should be tested in a framework (like EA1(N)) that does not require it as a regular-
ity condition. For example it means that the last term in the expression for the risk
premium :

ρτ,t =−Ψ02,τ−1(Υ0 + δ01λ10C21 + (Υ1 + δ01λ11C21)y1,t +Υ2X2,t) (29)

− ψ1,τ−1δ01(λ10 + λ11y1,t)

is negative. This shows the the excess return that investors expect on a portfolio
that is only exposed to movements in y1,t

8 . If ξQ0
1 is close to unity, this portfolio is

closely approximated by a long term bond, since ψ∗1 is extremely large relative to Ψ
∗
2

for long maturities. In other words, long term bond yields are approximately linear
in y1,t. In the US at least, their excess returns tend to be positively related to the
yield gap, which can be approximated by y1,t− r1,t in this framework. This suggests
that the long term risk premium is positively related to y1,t (and negatively related
to r1,t).

3.2 The EA1(N) specification
In contrast, EA1(N) generates a well-defined yield curve asymptote without any
restrictions on ΦQ. That is because the volatility of y1,t is linear in y1,t and so the
equation determining its slope coefficient includes non-linear Jensen terms:

ψ1,τ =
ξ1[ψ1,τ−1 + λ10 +Ψ

0
2,τ−1C21]

1 + [ψ1,τ−1 + λ10 +Ψ02,τ−1C21]/c
− ξ1λ10
1 + λ10/c

−Ψ02,τ−1Υ1−
1

2
Ψ02,τ−1Σ1Ψ2,τ−1.

(30)

7For example, the values of δ01 and λ11 for M0 reported in table 4b imply ξ
Q0
1 = 0.9940.

8This term is the product of ψ1,τ−1 (which shows the exposure of the τ−maturity log price
to unanticipated shocks to y1,t) and the associated factor risk premium (the excess return that
investors expect for bearing this exposure): ρ1t = −δ01(λ10 + λ11y1,t) .

10



To ensure a regular solution I assume that (22) holds and similarly:

[ψ1,τ−1 + λ10 +Ψ
0
2,τ−1C21] + c > 0. (31)

As Campbell, Lo, and MacKinlay (1996) note in a similar heteroscedastic yield curve
model9, the slope parameter ψ∗1 is determined by a quadratic rather than a linear

equation and is well-defined even if
¯̄̄
ξQ1
1

¯̄̄
≥ 110 . For the intercept:

∆γτ = (Θ2−C21θ1−Υ0)0Ψ2,τ−1−
1

2
Ψ02,τ−1Σ0Ψ2,τ−1+cθ1 ln[

c+ ψ1,τ−1 + λ10 +Ψ
0
2,τ−1C21

c+ λ10
].

(32)
Unit roots are not a problem in EA1(N), indeed, they greatly simplify the model

structure. Because the volatility of y1,t is proportional to y1,t, the associated Jensen
effects are found in (30), but not in the equations defining the intercept (32) and the
forward rate (24). Substituting θ1 = 0 shows that γτ and hence f

∗ is independent of
ψ∗1:

f∗ = (Θ2 −Υ0)0Ψ∗2 −
1

2
Ψ∗02 Σ0Ψ

∗
2 (33)

where Ψ∗2 = (I − (ΦQ22)0)−1J2,r). The forward and expected spot rate asymptotes
f∗ and r∗t behave very differently in the unit root EA1(N) framework: the former
is constant, but the latter is driven by a martingale, with the implication that its
asymptote changes in line with the inflation trend y1,t

11 .
The risk premium for the EA1(N) model is:

ρτ,t = cθ1 ln

Ã
c
¡
c+ ψ1,τ−1 + λ10 +Ψ

0
2,τ−1C21

¢
(c+ λ10)

¡
c+ ψ1,τ−1 +Ψ

0
2,τ−1C21

¢!

−{
ξ1cλ10

¡
Ψ02,τ−1C21 + ψ1,τ−1

¢ ¡
2c+ λ10 +Ψ

0
2,τ−1C21 + ψ1,τ−1

¢¡
c+ λ10 +Ψ02,τ−1C21 + ψ1,τ−1

¢
(c+ λ10)

¡
c+ ψ1,τ−1 +Ψ

0
2,τ−1C21

¢}y1,t
−Ψ02,τ−1(Υ0 +Υ2X2,t +Υ1y1,t) (34)

The non-linear term on the first line vanishes if there is a unit root (θ1 = 0). The
non-linear term on the second line compensates for exposure to shifts in y1,t while
the linear term on the last line is the compensation for the bond’s exposure to shifts
in X2,t. The latter is negligible for a portfolio or security like an ultra-long bond,
with a yield that mimics y1,t. Both of the non-linear effects disappear if λ10 = 0.
The second is positively related to the inflationary trend if λ10 ≤ 0; and negatively

9Thier model uses a normal approximation to the Cox, Ingersoll, and Ross (1985) process de-
scribing the spot rate, due originally to Pearson and Sun (1994).
10 Substituting (26) into (30) gives ψ∗1 as the solution to: ψ

∗
1 =

ξ1(ψ
∗
1+λ10+Ψ

∗0
2 C21)

1+(ψ∗1+λ10+Ψ
∗0
2 C21)/c

- ξ1λ10
1+λ10/c

-

Ψ∗02 Υ1-
1
2
Ψ∗02 Σ1Ψ

∗
2. This may be arranged as: 0 =ϑ

2 + ϑ(c(1 − ξ1) − ζ) − cζ where: ϑ = ψ∗1 +

λ10+Ψ∗02 C21; ζ =
λ10(1−ξ1)+λ10/c

1+λ10/c
+Ψ∗02 (C21−Υ1)− 1

2
Ψ∗02 Σ1Ψ

∗
2. The intercept term cζ shows the

product of the roots and is a very large negative number empirically. Consequently, one root is a
large negative and the other a large positive number. Phase analysis reveals that the recursion (30)
selects the positive root.
11 Jensen effects associated with the volatility of y1 (working through its price coefficient ψ∗1) drive

a wedge between r∗t and f∗. Condition (30) ensures that ψ∗1 increases to point at which the effect
of changes in y1,t on the first moments of the system and r∗t are exactly offset by the Jensen effects
working through the second moments.
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related if λ10 ≥ 0 since:

d2ρt
dy1,tdλ10

= −ξ1c2
Ã
C21Ψ

0
2,τ−1 + ψ1,τ−1

(c+ λ10)
2

!Ã
2c+ 2λ10 + C21Ψ

0
2,τ−1 + ψ1,τ−1¡

c+ λ10 + C21Ψ02,τ−1 + ψ1,τ−1
¢2
!
≤ 0

given (22) and (31).

4 Specification tests

Preliminary tests indicated the presence of a unit root in the macroeconomic and
yield data as well as suggesting a third order lag structure for (1). Consequently this
research focussed on the EA0(11) and EA1(11) specifications, and followed Dewachter
and Lyrio (2006) by imposing ξ1 = 1

12 . It was found that the risk adjustments asso-
ciated with the real interest rate (the first rows of Υ1 and Υ2) were very poorly deter-
mined in both specifications and could be eliminated without significantly reducing
the likelihood. The resulting empirical version of the EA0(11) specification is reported
as M0 and that for EA1(11) as M1 in table 3. The parameter values for these two
models are reported in tables 3a and 3b. M0 uses 66 parameters (∆0(5),Υ0(4),Υ1(3),
Υ2(12),P (7), G(3),Φ(28),ϕ(2), λ10 and λ11) and has a loglikelihood of 6865.2, as
shown in table 3. M1 uses 69 parameters (∆0(4),∆1(5),Υ0(4),Υ1(3), Υ2(12),P (7),
G(3),Φ(28),ϕ(2) and λ10) but has a much higher loglikelihood: 6942.8. These two
likelihood values are not directly comparable because the models are not nested (
∆1(5) = 05 in M0 and λ11 = δ01 = 0 in M1). However the difference between them
certainly raises questions about the validity of M0.
To find out precisely why M0 does so poorly, I constructed the encompassing

model reported as M2 in table 3. Note that apart from the error model (5) and
(25) are common to both specifications. However, (28) encompasses (32) while (30)
and (27) are non-nested. M2 is formed by taking EA1(11) and first replacing (32)
by (28). This introduces the parameter δ01 into M2. Adding the constant term
−δ01λ11 into the left hand side of (30) then introduces λ11 and allows this hybrid
equation to encompass (27). Thus M2 has 71 parameters and encompasses M0 and
M1. Yet its loglikelihood is hardly any higher than that of M1 and a standard
χ2(2) likelihood ratio test of M1 against M2 gives a very high acceptance value. The
reason for this is both simple and instructive. Non-zero values of δ01 in (28) have the
effect of introducing quadratic terms in ψ1,τ into the intercept and hence the forward
rate structure. This effect is strongly rejected by the data. The optimal value of
the dummy parameter δ01 is almost identically zero and positive values depress the
likelihood sharply.13

However, δ01 dictates the variance of the inflationary trend in M0 and must as-
sume a strictly positive value in that model. For this model to fit the data, the effect
of δ01 and ψ1 on the forward rate structure must be offset by variations in other
parameters. M0 also performs poorly relative to M1 and M2 because it does not
allow for the conditional heteroscedasticity of the macroeconomic variables. Conse-
quently, the χ2(5) likelihood ratio test statistic (χ2(5) = 155.9, p = 0) indicates an
overwhelming rejection of M014, the standard macro-finance model.

12 Subsequent diagnostic tests show that the local maximum is ξ1 = 1.0105 (for M1) which lies
just outside the range consistent with macroeconomic stability. A grid search over the range 0.9
to 1.0 strongly suggests that the corner solutions ξ1 = 1.0 reported here for M0 and M1 are both
global maxima.
13 Since the second additional parameter λ11 only enters M2 in the product δ01λ11, this has

negligible effect on the fit.
14M0 has 5 more degrees of freedom than M2 because it employs the restrictions (∆1 = 05).
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4.1 The empirical macro-model
In view of the poor performance of the EA0(11) specification, I now focus upon the
detailed results for the EA1(11) specification: M1. At the core of this model there is
a heteroscedastic macro VAR with a steady state solution dictated by the restrictions
(3). These ensure that the equilibrium inflation rate is in line with the nominal factor
y1,t (plus ϕ1) while the spot rate is in line with this implicit inflation rate and the real
factor y2,t (plus ϕ2). Model estimates of these factors are shown in Chart 3, along
with their 95% confidence intervals. Most of the work is done by the nominal trend.
Since this has a unit root it can be interpreted as the market’s long run inflation
expectation. This moves down in response to the deep recessions of the early 1980s
and early 1970s. However, the most dramatic fall appears to have occurred in 1997-
98 following the independence of the Bank of England. In contrast, the adoption of
monetary targets in November 1992 appears to have had little effect.
Since y1,t has a non-central χ2 distribution, the downside variance is smaller than

the upside, but this asymmetry is only apparent at the end of the estimation period
when the underlying inflation rate is low. This variable is drives the conditional het-
eroscedasticity in the macro variables. Their one-quarter-ahead forecasts values and
95% confidence intervals are shown in chart 4. This heteroscedasticity is particularly
pronounced in the case of the rate of inflation since the parameter δ04 is effectively
zero making the variance of inflation proportional to the inflation trend. This is
particularly low over the last five years of the estimation period, consistent with the
ex post stability of inflation over this period (chart 4b).
How firmly does this stochastic trend anchor inflation and interest rates? This

question depends upon whether output, inflation & interest rates the real factor y2,t
are contintegrated with the non-stationary nominal factor y1,t. This was checked by
running ADF tests on the residuals of these four equations, which decisively reject
non-stationarity. These variables adjust surprisingly quickly and smoothly to their
equilibrium values. This is clear from the impulse responses, which show the dynamic
effects of innovations in the macroeconomic variables on the system. Because these
innovations are correlated empirically, we work with orthogonalized innovations using
the triangular factorization defined in (4). The orthogonalized impulse responses
show the effect on the macroeconomic system of increasing each of these shocks by
one percentage point for just one period using the Wald representation of the system
as described for example in Hamilton (1994).
This arrangement is affected by the ordering of the macroeconomic variables in

the vector xt, making it sensible to order the variables in terms of their likely degree
of exogeneity or sensitivity to contemporaneous shocks. The unobservables yt are
supposed to reflect exogenous expectational influences and are ordered first in the
sequence. This means that ηt (which are orthogonal to yt) can be interpreted as
surprises in output, inflation and interest rates - shocks that are not anticipated
by the markets. Following convention the output gap is ordered before inflation.
Interest rates are placed after these variables on the view that monetary policy reacts
relatively quickly to disturbances in output and prices.
Chart 5 reports the results of this exercise. The continuous line shows the effect of

each surprise on the spot rate, the dashed line the output effect and the dotted line the
inflation effect. Elapsed time is measured in quarters. Panel (i) shows that a shock
to the stochastic trend increases output, inflation and interest rates immediately. By
construction, there is a one-for-one effect on inflation and interest rates in the long
run and no effect on output. The latent variables both act as leading indicators for
output, inflation and interest rates. In the case of y2,t the output effect reverses after
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the third year in response to an increase in real rates, setting up a damped cyclical
variation. The system is back close to its initial level after 10 years. The other panels
show similarly fast responses. Panel (iii) shows the effect of an output shock. The
initial inflation and interest rate effects are similar, but output falls back after three
years. Panel (iv) shows the effect of an inflation surprise. The initial effect on the
spot rate is muted, so real interest rates fall. However output falls, reflecting real
balance effects. The fall in output then has the effect of reversing the rise in inflation
and interest rates, setting up damped cycles in these variables. The effect of a rise
in the spot rate is shown in the final panel. The initial effect is to depress output,
and then inflation responds with a short lag.
Taken together, this model gives a plausible description of the macroeconomic

dynamics, in contrast to many VAR-type results (Grilli and Roubini (1996)). Its use
of Kalman filters to pick up the effect of unobservable expectational influences seems
to solve the notorious price puzzle - the tendency for increases in policy interest rates
to anticipate inflationary developments and apparently cause inflation. The nominal
filter dictates the long run equilibrium of the macroeconomy and its volatility. These
effects are persistent, but the responses of the macroeconomic variables to deviations
between inflation and its long run trend (πt − y1,t) as well as surprises in output
and interest rates are remarkably rapid. They are largely exponential in nature,
suggesting that monetary policy has been effective in securing its objectives quickly,
without significant policy reversals or cycles.

4.2 The empirical yield model
The behavior of the yield curve is dictated by the factor loadings. These are depicted
in Chart 6, as a function of maturity (expressed in quarters). The first panel shows
the loadings on y1,t (broken line) and y2,t (continuous line). The second panel shows
the loadings on π (doted line), g (broken line) and the spot rate (continuous line). The
spot rate provides the link between the macroeconomic model and the term structure.
Since it is the 3 month yield, this variable has a unit coefficient at a maturity of one
quarter and other factors have a zero loading. The spot rate loadings decline over
the next few years, reflecting the adjustment of the spot rate towards y1,t and y2,t.
This variable determines the slope of the short-term yield curve. Five year maturity
yields are strongly influenced by the behavior of the real rate factor y2,t. The loading
on this factor then fades gradually over the longer maturities, allowing this to act as
a ‘curvature’ factor. In contrast, the loading upon y1,t moves up to unity and then
increases gradually with maturity over the 2 to 15 year maturity range, so that it
acts as a ‘level’ factor. The loadings for output and inflation have a humped shape,
but are relatively small.
Importantly, the effect of the inflation trend y1,t on the risk premia is not restricted

in any way in the EA1 framework. As noted earlier, λ10 largely determines the effect
of the inflationary trend on the risk premium at the long end. This parameter is
significantly negative in M1, meaning that the inflationary trend y1,t has a positive
effect on the risk premia. Reflecting the above-mentioned results of Duffee (2002)
and others for the US, this is matched by a negative spot rate effect, so that the time
variation in the 15 year premia is largely captured by: y1,t − r1,t . Other influences
are small. However, as explained, λ10 is forced to adopt a small positive value in M0
in order to keep the model dynamics stable under Q, so that the effect of this trend
on the long term risk premium is negative in that model.
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5 Conclusion

This paper models the relationship between the gilt edged market and the UK econ-
omy in a way that rules out arbitrage and allows for the likely non-stationarity of the
data. To do this I adapt the EA1 model of the mainstream finance literature, han-
dling the asymptotic problems posed by the stochastic trend using a latent variable
with stochastic first and second moments. This variable dictates the asymptotic be-
havior of inflation and short term interest rates but does not influence the asymptotic
forward rate, which is constant in this framework.
The EA1 specification provides a sensible description of the term structure with-

out restraining the parameters dictating the dynamic responses, under either histor-
ical or risk-neutral measures. It gives a better representation of the behavior of the
economy and the bond market than does the standard macro-finance model, which
is decisively rejected by the data. The rejection of EA0 reflects its failure to allow
for the conditionally heteroscedasticity nature of the macroeconomic data as well as
its awkward yield characteristics. Compared to the mainstream finance model of
the bond market, the macro-finance version of the EA1 model can use a relatively
large number of factors (11) because the parameters of the model are informed by
macroeconomic as well as yield data (with a total of 1020 data points). However, the
adjustment speed means that the behavior of the yield curve is largely dictated by
three factors: the inflation asymptote, the real factor and the spot rate. The model
is consistent with the traditional three-factor finance specification in this respect, but
links these factors into the behavior of the macroeconomy.
Besides providing a sensible model of the term structure, the empirical results

reported here provide insights into the working of the UK monetary system and the
macroeconomy. In particular, the significance of the latent variables strongly sug-
gests that to understand the behavior of the economy over this period it is important
to allow for extraneous influences on inflationary expectations and real rates of re-
turn15. The dramatic fall in the underlying rate of inflation when the new monetary
arrangements were introduced in May 1997 provides a good example of this kind of
exogenous influence. The degree and persistence of the conditional heteroscedastic-
ity revealed in UK macroeconomic data is also important from a policy perspective,
suggesting that low inflation can help stabilize the economy. This research opens the
way to a much richer term structure specification, incorporating the best features of
both macro-finance and mainstream finance models.
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6 Appendix 1: The state-space representation of the model

Stacking (4) puts the system into state space form (5), where :

Θ0 = {θ,K +Φ0θ, 0N−k−n,1}; (35)

Φ=

⎡⎢⎢⎢⎢⎣
Ξ 0k,n ... 0k,n 0k,n
Φ0Ξ Φ1 ... Φl−1 Φl
0n,k In .. 0n2 0n2

0n,k 0n2 ... In 0n2

⎤⎥⎥⎥⎥⎦ =
∙
ξ1 0

0
N−1

Φ21 Φ22

¸
.

where the last matrix partitions Φ conformably with (15). Similarly:

C =

⎡⎣ Ik 0k,n 0k,(N−k−n)
Φ0 G 0n,(N−k−n)

0(N−k−n),k 0(N−k−n),n 0(N−k−n)2

⎤⎦ = ∙ 1 00N−1
C21 C22

¸
.

where the last matrix partitions C conformably with (15). Comparing this with the
partition (35), note that:

Φ21 = C21ξ1. (36)

The error structure of (15) follows from (14) as:

W2,t+1 =C21w1,t+1 +
√
y1,tU2,t−1 + V2,t+1 (37)

V2,t+1 ∼N(0N−1,∆02); U2,t+1 ∼ N(0N−1,∆12)

where: Ds2 = Diag[δs2, ..., δs,(k+n), 01,N−k−n]; s = 0, 1. This implies the conditional
MGFs:

Et[exp[ν
0
2C22V2,t+1]] = exp[

1

2
[ν02Σ0ν2] ; (38)

Et[exp[ν
0
2C22U2,t+1]] = exp[

1

2
[ν02Σ1ν2] ;

where: Σs = C22 Ds2C
0
22; s = 0, 1.
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7 Appendix 2: Exponential-affine bond price models

This appendix shows how exponential-affine bond price (affine yield) models and
their risk premia can be derived when the MGF of the state vector is exponential-
affine under both P and Q. The MGF for measure P is Et[exp[ν

0Xt+1] | Xt] where
ν is a vector of Laplace constants. Using (17) allows us to shift to Q:

L[ν, Xt;Λ] =EQt [exp[ν
0Xt+1] | Xt] (39)

=Et[exp[nt+1 + ν0Xt+1] | Xt]

where Λ contains the relevant parameters of Λt. Recall that the defining characteristic
of these processes is that the MGF for Xt+1 is an exponential-affine function of Xt:

L[ν, Xt;Λ] = exp[a(ν;Λ) + b(ν;Λ)0Xt] (40)

Setting Λ to zero gives the MGF under P:

L[ν, Xt; 0] =Et[exp[ν
0Xt+1] | Xt] (41)

= exp[a(ν; 0) + b(ν; 0)0Xt]

The MGF of an exponential-affine process can be used to generate the parameters
and risk premia of the associated yield model, as well as its moments. First, (39)
can be used as a moment generating function to find the expected value of Xt under
Q. This is generated by an affine process resembling (15). Second, the MGF can be
used to generate the arbitrage-free exponential-affine bond price models of the form
(23). To obtain the price coefficients, substitute the risk neutral expectation (17)
into the pricing kernel (or discounted risk neutral expectation, (Campbell, Lo, and
MacKinlay (1996), Cochrane (2000)) :

Pτ,t = e−r1,tEQt [Pτ−1,t+1| Xt]; τ = 1, ...,M. (42)

Using (23) to replace Pτ−1,t+1 in (42) represents Pτ,t by (39) or (40) with ν = −Ψτ−1:

Pτ,t = e−r1,tEQt [exp[−γτ−1 −Ψ0τ−1 Xt+1]| Xt];

= e−γτ−1−rtL[−Ψτ−1, Xt;Λ] (43)

= exp[−γτ−1 − J
0

rXt + a(−Ψτ−1;Λ) + b(−Ψτ−1;Λ)0Xt]. (44)

where Js = {j1,s, J 02,s} is a selection vector such that:

xs,t = J 0sXt = J 02,sX2,t; s = 2, ...,N.

Equating the intercept and slope coefficients in the exponent with those in (23) gives
a recursion relationship for the parameters:

Ψτ = Jr − b(−Ψτ−1;Λ)
γτ = γτ−1 − a(−Ψτ−1;Λ)
τ = 2, ...,M.

Since −pτ,t = r1,t for τ = 1, the coefficients of this system have the starting values:

γ1 = 0; Ψ1 = Jr. (45)
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The coefficients Ψτ and γτ of (23) are functions of (Θ
Q,ΦQ) and determine the

τ−period discount yield:

rτ,t =−pτ,t(ΘQ,ΦQ)/τ (46)

= ατ (Θ
Q,ΦQ) + β0τ (Θ

Q,ΦQ)Xt; where :

ατ = γτ (Θ
Q,ΦQ)/τ ; βτ = Ψτ (Θ

Q,ΦQ)/τ.

The slope coefficients of the yield system βτ are known as ‘factor loadings’ and
depend critically upon the eigenvalues of the adapted macroeconomic system (21).
Stacking them yield equations (46) and adding an error vector et gives a multivariate
regression model for the m -vector of yields rt :

rt = α(ΘQ,ΦQ) +B(ΘQ,ΦQ)0Xt + et (47)

= α0(Θ
Q,ΦQ) +B0

0(Θ
Q,ΦQ)yt +Σ

L
l=1B

0
l(Θ

Q,ΦQ)zt+1−l + et (48)

et ∼N(0, P̄ );

P̄ =Diag[ρ1, ρ2, ..., ρm].

where et is an error vector. The standard assumption in macro-finance models is
that this represents measurement error which is orthogonal to the errors Wt in the
macroeconomic system (5).
Finally, (40) can be used to generate the risk premia. These depend upon the

gross expected rate of return, which is obtained by taking the expected payoff on a
τ−period bond after one period Et[Pτ−1,t+1] and dividing by its current price Pτ,t.
Taking the natural logarithm expresses this as a percentage return and subtracting
the spot rate r1,t then gives the expected excess return or risk premium: ρτ,t =
logEt[Pτ−1,t+1]− log[Pτ,t]− r1,t. Setting Et[Pτ−1,t+1] = e−γτ−1 exp[a(−Ψτ−1; 0) +
b(−Ψτ−1; 0)0Xt] (using (39), (41) and (23)) and substituting (44) into the second term
shows that this depends entirely upon Λ, which determines the difference between
the two measures :

ρτ,t = logL[−Ψτ−1,Xt; 0]− logL[−Ψτ−1,Xt;Λ] (49)

= a(−Ψτ−1; 0)− a(−Ψτ−1;Λ) + (b(−Ψτ−1; 0)− b(−Ψτ−1;Λ))0Xt

τ = 1, ...,M.

The next appendix shows how the these results can be applied to models EA0(N)
and EA1(N).

8 Appendix 3 : The EA0(N) and EA1(N) specifications
This appendix shows how the MGF (39) can be used to derive the adapted dynamic
systems, bond prices and risk premia for models EA0(N) and EA1(N).
First, write the probability density of Xt+1 as the product of the marginal density

of y1,t+1 and the conditional density of X2,t+1| y1,t+1, obtained by substituting (15
) into (15):

X2,t+1 =Θ2 +Φ21y1,t + C21w1,t+1 +Φ22X2,t + C22(
√
y1,tU2,t+1 + V2,t+1)

=F2 + C21y1,t+1 +Φ22X2,t + C22(
√
y1,tU2,t+1 + V2,t+1) (50)

(using 36) where F2 = Θ2 − C21θ1. Putting (19) and (50) into (39) and noting that
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the y1,t+1;V2,t+1 and U2,t+1 are independent:

L[ν, Xt;Λ] =Et[exp[−(ωt + λ1,ty1,t+1 + Λ
0
2,tC22V2,t+1)

+ν1y1,t+1 + ν02(F2 + C21y1,t+1 +Φ22X2,t + C22(V2,t+1 +
√
y1,tU2,t+1)]

= exp[−ωt + ν02(F2 +Φ22X2,t)]

×Et[exp[(ν2 − Λ2,t)0C22V2,t+1]]× Et[exp[ν
0
2C22U2,t+1.

√
y1,t]]

×Et[exp[(ν1 − λ1,t + ν02C21)y1,t+1| y1,t] (51)

In EA0(N) these errors are all Gaussian and are evaluated using (??), (8) and (38):

L[ν, Xt;Λ] = exp[−ωt + ν02(F2 +Φ22X2,t)] + (ν1 − λ1,t + ν02C21)(θ1 + ξ1y1,t)]

× exp[1
2
[(ν2 − Λ2,t)0Σ0(ν2 − Λ2,t) +

1

2
δ01[ν1 − λ1,t + ν02C21]

2] (52)

The probability density integral L[0N , Xt;Λ] is normalized to unity using: ωt =
1
2 (Λ

0
2,tΣ0Λ2,t +

1
2δ01λ

2
1,t) −λ1,t(θ1 + ξ1y1,t). This restriction simplifies the MGF to:

L[ν, Xt;Λ] = exp[ν
0
2(F2 +Φ22X2,t)− ν02Σ0Λ2,t + (ν1 + ν02C21)(θ1 + ξ1y1,t)

+
1

2
ν02Σ0ν2 +

1

2
δ01[ν1 + ν02C21]

2 − δ01λ1,t[ν1 + ν02C21] (53)

Differentiating w.r.t. {ν1, ν2} and setting these parameters to zero gives the
dynamic system underQ1 reported in (21) and table 1. This uses the risk adjustments
(18). The price coefficient systems (25), (27) and (28) follow by substituting ν =
−Ψτ−1 and (18) into (53), putting this in (43) and equating the coefficients of Xt in
the exponent with those in (23). The risk premia follow by substituting ν = −Ψτ−1
into (49) and obtaining L[ν, Xt;Λ] by setting the risk coefficients to zero.
For the EA1(N) model, the density of y1,t+1 is given by (8). Using this to evaluate

the expectation in the last line in (51):

L[ν, Xt;Λ] = exp[−ωt + ν02(F2 +Φ22X2,t)] (54)

× exp{1
2
[(ν2 − Λ2,t)0Σ0(ν2 − Λ2,t) + y1,tν

0
2Σ1ν2]}

× exp{[ ξ1[ν1 − λ1,t + ν02C21]y1,t
1− [ν1 − λ1,t + ν02C21]/c

]− cθ1 ln[1− [ν1 − λ1,t + ν02C21]/c]}.

This probability density is normalized using:

ωt =
1

2
{Λ02,tΣ0Λ2,t −

λ1,tξ1y1,t
1 + λ1,t/c

− cθ1 ln[1 + λ1,t/c]}. (55)

Substituting this back:

L[ν, Xt;Λ] = exp{[ν02F2 +
1

2
ν2
0Σ0ν2 − ν02Σ0Λ2,t − cθ1 ln[1− [ν1 − λ1,t + ν02C21]/c]

+cθ1 ln[1 + λ1,t/c] + ν02Φ22X2,t (56)

+y1,t

∙
ξ1[(ν1 − λ1,t + ν02C21]

1− [ν1 − λ1,t + ν02C21]/c
+

λ1,tξ1
1 + λ1,t/c

+
1

2
ν2
0Σ1ν2

¸
}.
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Substituting (18) then yields:

L[ν, Xt;Λ] = exp{ν02F2 +
1

2
ν2
0Σ0ν2 − ν02Υ0 − cθ1 ln[1− (ν1 − λ10 + ν02C21)/c]

+cθ1 ln[1 + λ10/c] + ν02(Φ22 −Υ2)X2,t (57)

+y1,t

∙
ξ1(ν1 − λ10 + ν02C21)

1− (ν1 − λ10 + ν02C21)/c
+

ξ1λ10
1 + λ10/c

− ν02Υ2 +
1

2
ν2
0Σ1ν2

¸
}.

Differentiating w.r.t. {ν1, ν2} and setting these parameters to zero gives the dynamic
system under Q1 reported in (21) and table 1. The price coefficient systems (25),
(30) and (32) follow by substituting ν = −Ψτ−1, into (39) substituting this into (43)
and equating the coefficients of Xt in the exponent with those in (23).

9 Appendix 4 : The Kalman filter and the likelihood function

In this model the unobservable variables are modelled using the Extended Kalman
Filter with (2) (Harvey (1989), Duffee and Stanton (2004)). This method assumes
that the revisions are approximately normally distributed:

εt+1 ∼N(0, Qt)

where : Qt = Q0 +Q1y1,t

Qi =Diag{δ2i0, δ2i1}; i = 1, 2.

I represent expectations conditional upon the information available to the econome-
trician with a ‘hat’ (so that ŷt = Êt yt; ŷs,t = Êt ys; s ≥ t) and define the covariance
matrices:

P̂t = Êt(yt − ŷt)(yt − ŷt)
0; (58)

P̂t+1,t = Êt(yt+1 − ŷt+1,t)(yt+1 − ŷt+1,t)
0 (59)

=ΞP̂tΞ
0 +Qt;

where:
yt+1,t = Êtyt+1 = θ + Ξŷt. (60)

Similarly, using (1):

zt+1 = K + ẑt+1,t +Gηt+1 +Φ0(yt+1 − ŷt+1,t) (61)

where:
ẑt+1,t = Φ0 ŷt+1,t +Σ

L
l=1Φlzt+1−l; (62)

and using (47):

rt+1 = r̂t+1,t +B0
0(yt − ŷt+1,t) +B0

1(zt+1 − ẑt+1,t) + et+1 (63)

where:
r̂t+1,t = α+B0

0ŷt+1,t +B1
0ẑt+1,t +Σ

L
l=2Bl

0zt+2−l. (64)

The t−conditional covariance matrix for this t+1 system is:⎡⎣
P

rr

P
rz

P
ryP0

rz

P
zz

P
zyP0

ry

P0
zy

P
yy

⎤⎦ = Êt

⎡⎣ rt+1 − r̂t+1,t
zt+1 − ẑt+1,t
yt+1 − yt+1,t

⎤⎦ . £rt+1 − rt+1,t zt+1 − zt+1,t yt+1 − yt+1,t
¤

(65)
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where:

X
rr
= P̄ +B1StB

0
1 + (B1Φ0 +B0)P̂t+1,t(B1Φ0 +B0)

0X
rz
=B1St + (B1Φ0 +B0)P̂t+1,tΦ

0
0X

ry
= (B1Φ0 +B0)P̂t+1,tX

zz
=Φ0P̂t+1,tΦ

0
0 + StX

zy
=Φ0P̂t+1,tX

yy
= P̂t+1,t

St =G[S0 + S1yt,t]G
0

where Si = Diag{δ2i1..., δ2in}; i = 0, 1. This allows the expectations to be updated
as:

ŷt+1 = ŷt+1,t +
£P

yr

P
yz

¤ ∙P
rr

P
rzP

zr

P
zz

¸−1 ∙
rt+1 − r̂t+1,t
zt+1 − ẑt+1,t

¸
(66)

P̂t = P̂t+1,t −
£P

yr

P
yz

¤ ∙P
rr

P
rzP

zr

P
zz

¸−1 ∙∙P
yrP
yz

¸¸
(67)

The (log) likelihood for period t+ 1 is thus:

Lt+1 = k − 1
2
ln

µ
Det

∙P
rr

P
rzP

zr

P
zz

¸¶
(68)

−1
2

£
rt+1 − rt+1,t zt+1 − zt+1,t

¤ ∙P
rr

P
rzP

zr

P
zz

¸−1 ∙
rt+1 − r̂t+1,t
zt+1 − ẑt+1,t

¸
. (69)

The loglikelihood for the full sample follows by iterating (59), (60), (66) and (67)
forward given suitable starting values; substituting (62) and (64) then averaging (68)
over t = 1, ...T.
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Table 2: Data Summary Statistics 1979Q4-2004Q2

 g r1 r4 r8 r12 r20 r28 r40 r68

Mean 5.16216 -2.28634 8.85314 8.51549 8.58569 8.64373 8.7401 8.8052 8.80275 8.43876
Std. 3.86526 2.36017 3.72524 3.15488 2.98795 2.91517 2.88369 2.90559 2.91513 2.71249
Skew. 1.90093 -0.25013 0.378187 0.16422 0.122675 0.11968 0.09619 0.07360 0.07454 0.07454
Kurt. 3.3376 1. 5923 0.9843 0.8858 0.9994 1. 1071 1. 1480 1. 1128 1. 3689 1. 3689
Auto. 0. 9921 0.4632 0.9815 0.9892 0.9923 0.9944 0.9953 0.9963 0.9969 0.9971
KPSS 0.7611 0.2677 0.941 1.0010 1.1030 1.1260 1.1394 1.1413 1.1384 1.1174
ADF -4.1295 -3.1735 -2.3045 -2.1995 -1.9975 -1.7735 -1.3685 -1.2255 -1.0665 -0.9975

Output gap (g) is from Oxford Economic Forecasts; Inflation () and 3 month Treasury bill rate (r) are from Datastream. Yield data are
UK Gilt edged discount bond equivalent data compiled by Bank of England. Mean denotes sample arithmetic mean expressed as percentage
p.a.; Std. standard deviation and Skew.& Kurt. are standard measures of skewness (third moment) and excess kurtosis (fourth moment). KPSS
is the Kwiatowski et al (1992) statistic testing the null hypothesis of level stationarity and ADF is the Adjusted Dickey-Fuller statistic testing
the null hypothesis of non-stationarity. The 5% significance levels are 0.463 and 2.877 respectively.



Table 3: Model Evaluation

Model Parameters Loglikelihood 
(M) Specification* k(M) k(2)-k(M) L(M) 2x(L(2)-L(M))

0 EA0(N) 65 6 6865.20 155.80
χ95 12.59
p 0.00

1 EA1(N) 69 2 6942.80 0.60
χ95 5.99
p 0.74

2 Hybrid 71 6943.10

(*) Model specification EAm (N), where: 
 m = number of variables conditioning volatility
 N = number of state variables. 



Table 4a: The dynamic structure of Model M1
(asymptotic t-values in parentheses.)
Parameter M0 M1

Φ1

φ1,11
0.9107
(6.03)

0.9080
(6.33)

φ1,12
0.0975
(4.06)

0.1051
(4.33)

φ1,13
−0.0414
(1.19)

-0.0357
(1.02)

φ1,21
0.5489
(6.00)

0.5175
(5.66)

φ1,22
0.5175
(9.66)

0.4861
(8.56)

φ1,23
0.0411
(0.10)

0.0410
(0.09)

φ1,31
−.0302
(0.41)

-0.0290
(0.37)

φ1,32
0.0028
(0.01)

0.0030
(0.01)

φ1,33
0.8429
(6.14)

0.8231
(6.12)

Parameter M0 M1

Φ2

φ2,11
0.2614
(1.93)

0.2273
(1.81)

φ2,12
−0.1635
(2.21)

-0.1629
(2.21)

φ2,13
−0.0201
(2.01)

-0.0166
(1.47)

φ2,21
−0.3842
(3.33)

-0.3924
(3.53)

φ2,22
0.4844
(4.93)

0.4724
(5.19)

φ2,23
−0.0147
(0.23)

−0.0147
(0.21)

φ2,31
0.0973
(1.83)

0.0928
(1.84)

φ2,32
0.0641
()

0.0568
(1.11)

φ2,33
−0.0026
(0.02)

-0.0084
(0.60)

Parameter M0 M1

ϕ1
0.4111
(4.51)

0.347 34
(4.33)

ϕ2
2.5444
(13.59)

2. 229 7
(14.83)

ξ2
0.8632
(25.92)

0.8692
(23.81)
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Table 4b: The variance and risk structure of Model M1
(asymptotic t-values in parentheses.)

Parameter M0 M1

Δ0

01
6.309  10−4

2.35
−

02
3. 0081  10−5

1.27
7. 8417  10−6

0.95

03
3. 5608  10−6

2.66
1. 5213  10−7

1.09

04
6. 9169  10−6

4.02
2.5801  10−10

−

05
3. 4596  10−6

2.16
3. 0976  10−8

1.00
:

Parameter M0 M1

Δ1

11
− 0.0133

2.63

12
− 0.0298

2.17

13
− 0.0161

4.36

13
− 0.0211

2.31

15
− 0.0161

2.00



0

0,1
−5.375  10−4

1.57
2.767  10−5

0.18

0,2
3.651  10−4

2.11
−1.9328  10−3

6.21

0,3
1.059  10−3

3.42
6.4071  10−4

5.44

0,4
2.5221  10−3

4.28
2.4000  10−3

4.27

1

1,1
− −

1,2
−0.0253
1.04

−0.0392
0.95

1,3
−0.0374
1.64

−0.2202
2.99

1,4
0.0777
1.97

0.0627
1.68



Parameter M0 M1
22

22,12
0.1559
2.48

0.2033
2.89

22,13
0.6927
1.45

0.0556
1.58

22,14
0.1228
2.72

0.04953
2.77

22,32
0.0139
3.03

0.0214
1.91

22,33
0.0139
0.17

0.0102
0.32

22,34
−0.0453
0.66

−0.0512
0.65

Parameter M0 M1

22,22
−0.0332
10.85

−0.0184
10.42

22,23
−0.1135
1.64

−0.0672
1.99

22,24
−0.0188
1.56

−0.0046
4.67

22,42
0.1324
3.55

0.1136
3.17

22,43
0.0283
0.29

0.0730
0.78

22,44
−0.0841
0.99

−0.0931
2.04



M0 M1
P

1
5.6928  10−4

4.33
5.7071  10−4

4.08

2
2.6701  10−4

1.86
2.5516  10−4

1.38

3
3.0499  10−4

10.11
3.4917  10−4

10.50

4
1.9221  10−4

10.78
2.1341  10−4

10.15

5
2.8221  10−4

4.55
2.8401  10−4

3.99

6
2.8651  10−4

6.64
1.2156  10−4

6.00

7
8.1120  10−4

10.59
5.9992  10−4

10.45

M0 M1
G

g21
−0.3741
7.23

−0.3375
7.02

g31
0.2295
3.76

0.2713
4.00

g32
0.4444
6.93

0.4185
5.91



10
1.2771  10−4

2.05
−31.7885
20.10

11
9.4951
1.99

−



Chart 1: Macroeconomic variables
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Chart 2: Gilt edged discount yields 
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(with 95% confidence band) 
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Chart 3(b) Real rate factor 

(with 95% confidence band)
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Chart 4a: Output gap variability

(One step ahead estimate plus 95% confidence interval)
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Chart 4b: Inflation variability

(One step ahead estimate plus 95% confidence interval)
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Chart 4c: Spot rate variability

(One step ahead estimate plus 95% confidence interval)

0

2

4

6

8

10

12

14

16

18

20

1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

%

Chart 5: Model M1 macroeconomic impulse responses

10 20 30 40
Time

0.2

0.4

0.6

0.8

1

1.2

% response

(i) Nominal factor (y
1
) shock

10 20 30 40
Time

-0.1

0.1

0.2

0.3

0.4

% response

(ii) Real factor (y
2
) shock

10 20 30 40
Time

-0.2

0.2

0.4

0.6

0.8

% response

(iii) Output shock

10 20 30 40
Time

-0.4

-0.2

0.2

0.4

0.6

0.8

% response

(iv) Inflation shock



10 20 30 40
Time

-0.4

-0.3

-0.2

-0.1

0.1

0.2

0.3

0.4

% response

(iv) Spot rate shock

Key - e ects on:
- - - output
........ inflation
–– spot rate

Each panel shows the e ect of a shock to one the five orthogonal innovations
( ) shown in (1) and (2). These shocks increase the each of the five driving
variables in turn by one percentage point compared to its historical value for just
one period. Since 1 is a martingale, the first shock ( 1) has a permanent e ect
on inflation and interest rates, while other shocks are transient. The continous
line shows the e ect on the spot rate, the dashed line the e ect on output and
the dotted line the e ect on inflation. Elapsed time is measured in quarters.

Chart 4 : Model M1 Factor loadings
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The factor loadings show the cumulative e ect of changes in the three macro

variables on yields at di erent maturities (quarters).


