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ASSESSING INFLATION TARGETING THROUGH INTERVENTION 
ANALYSIS 
 
1. Introduction 

 

Inflation Targeting (IT) is a ‘new’ monetary policy framework, which has been 

increasingly accepted by a number of countries around the globe ever since New 

Zealand introduced it in 1990. A number of studies have examined empirically the 

extent of the impact of IT on inflation and on other variables, typically GDP, in a 

number of countries. The studies that deal with the empirical aspects of IT, ask a 

number of questions with the most pertinent being whether IT improves inflation 

performance, tackles inflation persistence, and constrains inflationary expectations. It 

would not be an exaggeration, though, to suggest that the empirical results of IT 

investigation are at best mixed (Johnson, 2002, 2003; Levin et al., 2004; Ball and 

Sheridan, 2003). 

 

In view of the mixed nature of these results, we attempt to remove some of the 

uncertainty surrounding them. In this endeavour we apply Intervention Analysis to 

multivariate Structural Time Series Models (STMs), as set out in Harvey (1996). To 

our knowledge, this technique has not been used in Economics with the exception of 

Harvey and Bernstein (2003a), and it has certainly not been utilized in the relevant 

literature of IT. Multivariate STMs are particularly relevant to IT since they “are 

shown to provide an ideal framework for carrying out intervention analysis with 

control groups” (Harvey, op. cit., p. 313). This is precisely what IT models are 

designed to achieve.  
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We proceed as follows. In section 2 we elaborate on the methodology underlying this 

technique, which is utilized throughout this paper. Section 3 reports on the empirical 

results obtained, and section 4 summarizes and concludes. 

 

2. Methodology 

 

2.1 Main ingredients 

 

We assess the impact of the adoption of IT by applying Intervention Analysis to 

multivariate STMs. This framework formulates time series models in terms of their 

most noticeable features, this being a set of ‘unobserved components’ with specific 

dynamic properties, such as trends, seasonals and short-run shocks. We begin our 

explanation of these models by noting that “the basic idea of structural time series 

models is that they are set up as regression models in which the explanatory variables 

are functions of time, but with coefficients which change over time. Model 

specification proceeds on the basis that the researcher has a good idea of what 

components to include from the outset, though any model will always be subject to 

diagnostic checking” (Harvey, 1996, p. 317). As we describe below, these 

‘unobserved components’ are treated as stochastic elements, and the relevant 

variances are estimated. By doing so, a novel element is introduced in relation to other 

commonly used ad-hoc detrending procedures, such as Hodrick-Prescott (1980). The 

latter are prone to introducing spurious cycles, in a way that the STM methodology 

does not (Harvey and Jaegger, 1993).   

 

The decomposition of a series in distinctive ‘unobserved components’ provides an 

intuitively appealing approach for isolating permanent and transitory changes 
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occurring to the series, such as trends and seasonal effects, from those happening due 

to specific events identified a priori by the investigator, in our case IT interventions. 

The analysis of the impact of such incidents is known in the literature of Time Series 

as Intervention Analysis ever since Box-Tiao (1975). The precise identification of the 

effects due to intervention on a specific time series are facilitated if multivariate 

STMs are utilized. This technique makes use of information available on both set of 

countries, that is those that implement the strategy and those that do not implement 

the strategy. As such, STMs provide a significant advantage, which is related to the 

‘fundamental problem of causal inference’ (Holland, 1986). In other words, in 

attempting to identify causality effects it should be necessary to assess the difference 

between the results that a unit produces after it has been subjected to intervention 

from those that would be obtained if the unit were not subjected to intervention. 

Obviously the latter type of evidence is not available, thereby presenting the 

investigator with a logistical problem. Different solutions have been devised to 

address this problem. For example, the programme evaluation literature pioneered by 

Rubin (1974) recommends a solution to this problem by providing a ‘counterfactual’ 

framework for estimating treatment effects across multiple individuals (see, also, 

Angrist et al., 1996).    

 

In the context of Time Series, Harvey (1996) suggests incorporating in the model 

series of units not subjected to intervention, but which contain components that 

correlate highly with similar ones of the series that are subjected to intervention. 

Using the former as the control group, it is possible to obtain a more precise measure 

of the intervention effect. In this context, using auxiliary series not only helps to 

achieve a more satisfactory decomposition of ‘unobserved components’, but it also 

provides a helpful framework for handling control groups. Including in the sample 
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both IT countries and those that do not implement the strategy, goes a long way to 

alleviating the ‘fundamental problem of causal inference’ to which we alluded above. 

There are, thus, clear advantages in employing this framework, summarized by 

Harvey (1996): “Firstly, ..... the higher the correlation between the groups, the greater 

the gain in precision with which the intervention effect may be estimated. Secondly, a 

control group, which is co-integrated with the experimental group is likely to be very 

valuable since it enables a consistent estimator to be constructed. Thirdly, although 

single equation estimation is possible, if appropriate modifications are implemented, it 

is generally better to work with the full system” (p. 323).   

 

We turn our attention next to the multivariate Structural Time Series models. 

 

2.2 Multivariate Structural Time Series Models  

 

In this approach, countries that have not implemented IT are considered along with 

those countries that have introduced this form of intervention. The multivariate STM 

is used to assess the impact of inflation targeting. It is important to note at the outset 

that for the purposes of this paper we employ the Local Linear Trend version of STM, 

conveniently generalized to account for intervention analysis. This model consists of a 

set of equations as follows: 
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Also, tπ  is an Nx1 vector, representing inflation levels for N countries in time period 

t, which, in turn, depends on a number of vectors of ‘unobserved components’, 

namely ,  ,,,,,,, tttttttt κζηβεωδγµ ⋅  shown and defined as appropriate in 

equations (1) to (3). Vector µt  in the measurement equation (1) represents stochastic 

trends, i.e. levels, corresponding to each of the countries included in the sample, and 

receives shocks both in its level and slope ( )tβ , as shown in the level equation (2). 

The local equation (3) assumes that ( )tβ  follows a random walk. γ t , in the 

measurement equation purports to capture seasonal movements. We may note in this 

context that a trigonometric form is chosen for the stochastic seasonality, 

where 2j jλ π= ⋅ , which is a frequency in radians; represents the current state of 

the seasonal cycle, while  is included by construction for the purpose of defining 

tγ

*
tγ

tγ , and has no intrinsic importance. ωt  is the intervention variable, where δ registers 

the impact on inflation following intervention, tε  are perturbations (or ‘irregulars’) in 

the measurement equation, tη are perturbation-driving levels in equation (2), and tζ  

are the errors corresponding to slopes.  are the seasonal perturbations, with  

included by construction, just as in the case of , i.e. for the purpose of defining 

*, tt κκ *
tκ

*
tγ tκ , 
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and has no intrinsic importance. All perturbations are NID distributed with zero 

means and with , , ,  being the corresponding disturbance matrices.εΣ ηΣ ζΣ κΣ
1 Note 

that non-diagonal elements in these matrices provide useful information about 

correlations between unobserved components across countries.  

 

In view of its similarity with Zellner’s (1963) Seemingly Unrelated Equations 

(SURE) models, the family of multivariate STMs, including the Local Linear Trend 

model, are labeled as Seemingly Unrelated Time Series Equations (SUTSE) models. 

Just like SURE, these models take advantage of the information embedded in the 

correlation of perturbations, thereby enabling in the process the achievement of more 

efficient estimates for the parameters that are related to the intervention variable. In 

particular, perfect correlations between some of the perturbations can be interpreted as 

having certain of their components in common. This proposition may be elaborated 

more specifically as follows: the long-run correlations between the series are captured 

by the covariances of the off-diagonal elements in ηΣ . If, then, at least one of the 

correlations is equal to 1 , this represents a case of common trends, and it is proved 

that the common non-stationary level can be removed by applying a linear 

combination of the series (Harvey, 1989, p. 451).  

 

In fact, taking common factors into account constitutes a natural generalization of 

SUTSE models and, accordingly, the Local Linear Trend model presented above may 

be re-written as in Harvey (1993):  

                                                 
1 Assumptions made about the covariance matrix of ( κκ , ) and ( ) are usually imposed for 

reasons of parsimony and, also, for the model to be identifiable. See Harvey and Trimbur (2003b) for a 

detailed discussion of trigonometric cyclical models. 

**,κκ
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where the symbols have the same meaning and behaviour as in the case of the Local 

Linear Trend model, with the exception of  , which is a Kx1 vector of common 

trends, , which is a vector of N constant elements with 0 in its first K elements and 

the last N-K elements are unconstrained, , which is now distributed as 

~

+
tµ

*µ

+
tη

+
tη ( )

KxK
NID +Σ

η
,0 , and Θ , which is an NxK matrix of factor loading (N≥K). This 

model is cointegrated of order (1,1), where the cointegrating vectors are the N-K rows 

of a matrix  such as , leading to 

, in the measurement equation, where 

NKNA ,− 0' =Θ⋅A

tttt AAAAA εωδγµπ ⋅+⋅⋅+⋅+⋅=⋅ *
tA π⋅  

is an (N-K)x1 stationary process. In this case, the resulting estimator can be expected 

to have a much smaller variance than the one constructed in the case of the univariate 

model. 

 

In employing SUTSE models, a crucial property of the estimators of the intervention 

variable, is that efficiency gains are obtained. This proposition is demonstrated by 

Harvey (1996) in the case of the bivariate model with fixed trends, treating one of the 

series as a control group. Harvey (op. cit.) compares the variance of the coefficient 

corresponding to the intervention estimated by means of SUTSE models with the 

variance obtained for the coefficient estimated with the univariate model. The model 

employed is as in equation (7): 
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where, again, the symbols are as above. We may note that ( )tt 21 ,εε  is normally 

distributed with zero mean, and ( ) ( ) ;; 2211 σεσε == tt VarVar  both t1ε  and t2ε  

perturbations are serially uncorrelated and ( ) 0'
21 =⋅ stE εε  for t ≠ s. Furthermore, by 

applying a standard result on multivariate normal distribution (see, for example, 

Harvey, 1993, p. 103), equation (7) may be rewritten as: 
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with tttttt 12
*

12
*

12 ,, εθεεµθµµσσρθ ε ⋅−=⋅−=⋅= , where ερ  is the correlation 

between t1ε  and t2ε . If θ  is known then: ( ) ( ) ([ ]) ;11~ 2
2 υυρσδ ε −⋅⋅−⋅= TVar sutse  

( ) TTwith 1+−= τυ , where T is the number of observations.2 Comparing this result 

with the corresponding one calculated when applying the univariate model, we may 

have: ( ) ([ )]υυσδ −⋅⋅= 1~ 2
2 TVar univ  from which it is apparent that the variance 

estimated with SUTSE is lower by the factor ( )ερ−1 , which decreases the higher the 

correlation between the perturbations is. 

 

                                                 
2 Note that, as Harvey (1996) poses it, “this expression [in our case equation 8] continues to hold 

approximately if θ  is estimated” (p. 319; the expression in brackets is our addition).  
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Finally, the statistical application of STMs is performed by defining it in a state space 

form. The Kalman filter is, then, used to estimate the different components of the 

series as a recursive method for calculating the optimal estimator, given all the 

information available up to the point of the estimation. Signal extraction (smoothing) 

is used to estimate the unobserved components, accounting for all the information 

available in the sample. Predictions can be derived by filtering forward, with the 

likelihood function based on innovations characterised by one-step-ahead predictions. 

 

In the next sub-section we turn our attention to the form selected for modelling the 

intervention due to inflation targeting.  

 

2.3 Intervention analysis 

 

The intervention variable, ωt , may be defined in the following different forms. First, 

outliers may be captured by means of pulse variables, which take the value of 1 at the 

point of intervention, occurring, say, at time t = τ, and 0 otherwise. Second, step 

variables can be used to identify a shift in the level of the series. These may be 

considered in the measurement equation, taking the value of 0 for the time periods 

previous to the intervention and 1 for all the following ones. The same model results 

from defining a pulse variable in the level equation, i.e. equation (2). Third, a change 

in the slope could be accounted for by postulating ωt  as null, up to the point of 

intervention, and then increase it gradually, such as, for instance, ω τt t= −  after the 

intervention period, which implies a change in the slope. Fourth, there is the 

possibility of defining a dynamic response to this intervention to account for effects 

that gradually die away. In this case, ωt  may, for instance, take the form: 
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The key characteristic of this method, therefore, is that the dynamics following an 

intervention have to be defined by the investigator, based on prior knowledge, and 

then submit them to diagnostic testing (Harvey and Durbin, 1986; Harvey, 1996). We 

utilize a step variable for the purposes of the current paper. This is clearly predicated 

on the reasonable assumption that the underlying level of the series presents a 

sustained change after the adoption of IT. This approach is particularly pertinent in 

view of the fact that all the countries in our sample that adopted IT have not 

abandoned it over the period of investigation.  

 

We examine next the application of this approach in the case of the countries included 

in our sample as explained immediately below. 

 

3. Empirical Evidence 

 

In 1990, New Zealand was the first country to apply IT, when Government and 

Central Bank publicly announced their aim to achieve inflation levels of around 3-5% 

in the following year. Subsequently, a heterogeneous group of countries started to 

implement some form or another of this strategy in the 1990s and subsequently 

(Mishkin and Schmidt, 2001; Sterne, 2002). In order to analyze a relatively 

homogeneous group, the success of this approach is assessed in this paper on each 
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country’s headline CPI, by including in our sample only OECD countries: Australia, 

Canada, Finland, South Korea, New Zealand, Norway, Spain, Sweden, Switzerland 

and the United Kingdom. The United States (US) and the European Union (EU), two 

cases that do not pursue IT, are chosen as the control group, hence producing ten 

multivariate time-series models, one for each IT country, so that tπ  is a vector of 3x1 

(composed of the inflation at time t prevailing in the corresponding IT country, and 

also the inflation at time t in the two non-IT cases used as the control group). Our data 

series cover the period 1980(Q1) to 2004(Q4).   

 

3.1 Empirical Evidence: Time Trend and Seasonality  

 

We begin our discussion on the empirical evidence with the question of model 

selection, and in particular with the question of the type of the appropriate time trend 

and the existence of seasonality effects. We take the issue of the type of the time trend 

first. 

 

The model we choose for µt  is the most general Local Linear one as described above. 

This is subject to diagnostic checking which is reported and discussed in sub-section 

3.2 (see, also, Table 3 below); the discussion therein supports this choice. It is also for 

the reason of wishing to employ a model, which is as general as possible, that we 

include slopes in all models tested in what follows.   

 

Turning to the seasonality aspect, we note that inclusion of seasonality in our model is 

supported by visual inspection of the evidence presented in Figure 1, and by the more 

rigorously evidence-based results reported in Table 1. Figure 1 shows quarterly data 

of inflation levels for the case of IT and non-IT countries, US and the EU, over the 
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period 1980(Q1) to 2004(Q4). The seasonal pattern in most of the countries is 

apparent. Further insights are obtained by regressing inflation in differences simply 

against dummies representing the effects of each quarter, which purport to register 

seasonality effects. We label this variables as Qj, with j=1,…,4, being Qj = 1 if the 

time period of the observation corresponds to quarter j and 0 otherwise. We only 

consider Q2 to Q4 to avoid perfect multi-colinearity. The results of this exercise for 

all countries are presented in Table 1. We employ two statistics designed to assess the 

goodness of fit of these models, the R2 and the F-test. They confirm the impression 

gauged by the visual inspection of Figure 1, that including a seasonal component in 

all models is necessary. Almost all selected countries, with the exception of Australia 

and New Zealand, have at least one significant seasonal dummy, and in almost all 

cases the F-statistic is higher than its critical value (i.e. 2.70 for all countries except 

for Finland and Spain for which it is 2.74). Therefore, the null hypothesis of all 

seasonal dummies being non-significant is commonly rejected at the 5% level of 

significance. This is also true for the US and the EU countries, which are considered 

as the control group. Consequently, a seasonal component is included. 

 

[FIGURE 1] [TABLE 1] 

 

3.2 Empirical Evidence: Whole Model 

 

A clear pattern of a downward trend in the inflation rates of the countries considered 

is evident from Figure 1. The question that arises, then, is the extent to which 

introduction of IT in the relevant countries can contribute in explaining this trend. The 

hypothesis adopted for the intervention analysis is that the introduction of IT induced 

a downward shift, once and for all. This can be captured by a step variable in the 
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corresponding measurement equation, as explained in sub-section 2.3. Multivariate 

STMs are used to carry out intervention analysis with control groups. The inclusion of 

the latter is predicated on the reasonable assumption that the inflation series of the 

countries included in the control group are reasonably correlated with the inflation 

series of the countries of interest. It is sensible, therefore, to expect common factors 

between IT and non-IT countries. In fact, as reported in Table 2, correlation 

coefficients between the inflation rates of the IT countries and non-IT countries 

included in our sample, are in most cases higher than 0.5. The correlation coefficients 

between US and New Zealand, as well as between US and Australia, constitute 

exceptional cases, with correlation coefficients around 0.3. As noted above, this 

methodology would contribute to obtaining a more precise assessment of the 

intervention effects, when all these series are considered in a multivariate model.3  

 

In Table 3, we report the main summary statistics, designed to diagnose the 

performance of the model as depicted in equations (4) to (6), and estimated for the full 

sample.4 We also report in the same table and under ‘Component’, the variances of 

the disturbances that drive the different components for all series in the models, called 

in the literature the hyperparameters (Harvey, 1989). The main summary statistics are 

presented in the first part of each country’s reported table. H(h) is a test for 

heteroscedasticity, and it is distributed approximately as F(h,h), where h is equal to 31 

in all countries, except for Finland and Spain for which h = 23; DW is the Durbin-

Watson statistic, which, in a correctly specified model, is approximately distributed as 

N(2, 4/T), where T is the number of observations; Q(P,d) is the Box-Lung Q-statistic 

                                                 
3 While considering a slope is more debatable, it is, nonetheless, included in all models, which enables 

us to start with the most general Local Linear Trend model. 

4 All estimations were run using STAMP as in Koopman et al. (1999). 



 15

based on the first P residual autocorrelations and distributed approximately as  with 

d degrees of freedom, where d is equal to (P + 1) minus the number of estimated 

parameters; seasonality is tested utilizing a statistic with 3 degrees of freedom, 

which tests the null hypothesis of no-seasonality only if the seasonal pattern is 

persistent throughout the series. However, as the seasonal pattern usually changes 

relatively slowly, this statistic is used only as a guide to the relative importance of the 

seasonal effects.  is the coefficient of determination, calculated as 

2χ

2χ

2
SR

( )[ ]SSDSMdTRS
22 ~1 σ⋅−−= , where SSDSM stands for the sum of squared errors 

obtained by subtracting the seasonal mean from the dependent variable in differences 

(Koopman, el al., 1999). In the second part of each country’s table, labeled as 

‘Components’, the estimated hyperparameters are reported. The mnemonics are as 

follows: Irr stands for ‘irregulars’, and estimates the variance of pertubations in the 

measurement equation ( 2~
itε

σ ); Lvl corresponds to the variance of the perturbations 

driving levels ( 2~
itησ ); Slp accounts for the estimation of the variance of errors 

corresponding to slopes ( 2~
itζσ tζ ); and Sea stands for the estimated variance of the 

seasonal perturbations ( 22
*

~~
itit κκ

σσ = ).  

 

Heteroscedasticity is not a problem in the case of all countries at the 1% significance 

level. The Durbin-Watson statistic rejects the hypothesis of autocorrelation except in 

the case of South Korea. The Box-Lung Q statistic is below the critical value at the 

1% level (16.81) in all cases, with the exception of the UK, so neither is there a 

problem of autocorrelation. The seasonality statistic rejects the absence of seasonality 

patterns in the control-group case at the 10% level of significance. The same occurs in 

five IT cases (Canada, Finland, Norway, South Korea and Switzerland), which 
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suggests that accounting for the seasonal components in all models is very pertinent. 

All R2s appear to be reasonable. Note that almost all components are different from 

zero, with the exception of Canada in the case of the level (labeled as ‘Lvl’), thereby 

confirming satisfactory model selection. Where the hypothesis is rejected (levels in 

the Canadian model), the model was replicated with a fixed (i.e. non-stochastic) trend 

with very similar results. 

 

[TABLE 2] [TABLE 3] 

 

3.3 Empirical Evidence: IT Intervention 

 

Table 4 and Figure 2 report the results regarding the IT implementation. We provide 

the dates when intervention started in each country, as shown in the first and second 

columns of the table. Estimations corresponding to the model in its multivariate form 

follow. The estimates for the intervention parameter δ in the measurement equation 

are cited in the third column for each country. Root Mean Squared Errors (RMSE), t- 

and p-values are reported in the next three columns. The seventh column, labeled 

‘Common Factors’, cites how many and which commom factors are evident in the 

multivariate model. The last column reports the RMSEs corresponding to the model 

in its univariate form. We include the RMSE for both the multivariate and univariate 

case for comparative purposes. In the univariate case RMSEs are calculated by 

including only the IT countries, without the control group, along with the intervention 

variable. We may note that all RMSEs obtained for the parameters corresponding to 

the intervention analysis are higher in the univariate applications than the ones 

obtained by operating on the multivariate STM common factor models. This supports 

the contention that multivariate STM estimations are more efficient than univariate 
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STM estimations. Note that with one exception (Sweden) all of the IT countries 

present at least one common trend (labeled as ‘CFT’). In three of the countries the 

models are estimated with common slopes (labeled as ‘CFSL’) and in one case the 

model is estimated with common seasonal factors (labeled as ‘CFSE’). 

 

The estimated coefficients for the intervention parameter in each IT country are 

included in the third column under the label ‘Coefficient’, with the t- and p-values in 

the two columns next to that of the coefficients. We first wish to highlight the result 

that in most of the cases the sign of the intervention coefficient is negative, while in 

three cases the coefficient is positive but insignificant. It is apparent that only in the 

cases of Canada and South Korea, was the intervention coefficient significant at the 

5% level. These results produce, in the case of Canada a one and for all decrease of 

0.5% per quarter in the underlying inflation level of the series, and a decrease of 

almost 1% in the case of South Korea. In Figure 2 the dates of IT imposition are 

recorded along with the point of intervention, indicated with a vertical bar. Clearly, 

Canada and South Korea achieved a significant reduction in their stochastic trends at 

the time of intervention. This is especially noticeable when compared with the control 

group, which shows a smooth on-going trend at each point of intervention. 

Interestingly enough, only 3 other countries present p-values under the level of 0.30. 

These are Sweden, Switzerland and the UK, for which slightly lower coefficients are 

obtained, though non-significant at the 10% level of statistical significance. As 

expected for these cases, the estimates obtained show a small change in the 

underlying trend. The rest of the IT countries can be grouped in two categories. 

Australia, Norway and Spain where the intervention coefficient is positive but 

insignificant, suggesting that IT may have had a perverse effect. It is true, though, that 

after a while inflation does decrease in all these three cases. This may be interpreted 
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as the result of the time lag in the impact of monetary policy, which may very well be 

longer than in the case of the other countries. The other category includes Finland and 

New Zealand where the downward trend in inflation commences before the IT 

imposition. So that when IT was introduced inflation had already been tamed.     

 

We may therefore conclude on the effect of IT implementation that the results are 

mixed to say the least. The general picture that emerges from Figures 2 along with the 

results reported in Table 4 is that IT appears to have been introduced after the 

countries included in our sample had already managed to tame inflation. However, 

inflation patterns of the IT countries converged to those of the countries included in 

the control group, following the introduction of IT. Consequently, the conclusion that 

IT was totally ineffective may be too hasty. For it is the case that although IT does not 

appear to have been effective when introduced in the majority of cases, subsequent 

persistence in its implementation may have produced a ‘lock-in’ effect for price 

inflation. Given the determination of central banks to conquer and maintain price 

stability, inflation expectations may have so changed that subsequent levels of 

inflation may have been contained within the IT limits. Indeed, a number of authors 

(Bernanke et al., 1999; Corbo et al., 2002; and Petursson, 2004, is a representative 

sample) have argued that IT was a great deal more successful in ‘locking-in’ low 

levels of inflation, rather than actually achieving lower inflation rates. We explore this 

distinct possibility in the rest of the paper.  

  

[TABLE 4] AND [FIGURES 2.1 – 2.10] 

 

3.4 Empirical Evidence: The ‘Lock-In’ Effect 
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We begin by testing for the differences in the inflation variances that correspond to 

two periods: the period prior to the imposition of IT and the period subsequent to 

intervention. Table 5 presents these results for countries, which implemented IT, and 

we do the same for those countries we include in the control group. We consider for 

the latter the different dates at which IT was first implemented in the corresponding 

country. Variances are significantly different for both periods in all countries 

implementing IT at the 10% level of significance, and most of them are significantly 

different at the 5% level. Similar ‘lock-in’ results, however, are evident in the case of  

the non-IT countries in relation to the tests implemented in this section. Superficially 

the results in this table would support the hypothesis of significant ‘lock-in’ effects. 

Surely, though, further and more robust tests are required.   

 

In the rest of this section we test further for the possibility of ‘lock-in’ effects by 

employing STM methods. SUTSE models are estimated for the vector tπ  and for the 

period prior to intervention (t=1,…, τ-1). Then, one-step ahead predictions are 

undertaken for t= τ+1,…,T, and these are compared with the actual values of  

inflation. As a result of this procedure, standardized one step-ahead prediction 

errors ( )tν
~ 5 are computed and, subsequently, graphical procedures and statistical tests 

are employed to examine the possibility of ‘lock-in’ effects. 

 

                                                 
5 2/1

~
tf

t
t

νν = , where tν is the one-step ahead prediction error and is the estimate of its variance 

(Harvey, 1989, pp. 289). 

tf
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We provide CUSUM plots in Figure 3. These depict an initial impression of how 

inflation evolved after intervention. The following formula is utilized to construct 

these plots: 

 

( ) ∑
+=

=
t

j
jtCUSUM

1

~,
τ

ντ  

 

The graphs for each country of this formula depict the path of the cumulative 

standardized residuals. Should the plots be, for instance, always positive and 

systematically increasing, a break away possibility from ‘lock-in’ might be evident. 

Such a case could be interpreted as evidence against the lock-in effect, since actual 

inflation rates would be systematically under-predicted by the model. Mutatis 

mutandis, in the case of negative and systematically decreasing plots the model would 

be over-predicting. 

 

The CUSUM plots in Figure 3 refer to all IT countries in our sample. A common 

pattern in these graphs is that no substantive or steady trend is obvious in any of the 

countries studied and, especially, that none of them has an important presence on the 

positive side of the graph. There is, instead, some evidence in favor of the application 

of IT, as most of the plots in IT countries are negative, but none of them crosses the 

significance lines and all plots tend to revert to a zero mean. This is evidence, which 

can be interpreted as successful implementation of monetary policies in preventing 

inflation from bouncing back to previously registered high values, or even to lower 

values than those predicted by the model estimated up to intervention. These results, 

however, should be considered with caution as CUSUM is best regarded as a 

diagnostic rather than a formal test procedure (Harvey and Durbin, 1986). 



 21

 

In Table 6 the result of formal statistical tests are reported. CUSUM t-tests are applied 

to the 10 IT countries, as well as to the two non-IT countries. The CUSUM t-test 

provides an assessment of the CUSUM plots. It is calculated as:  

 

( ) ∑
+=

− ⋅−=
t

j
jTCUSUM

1

2/1 ~
τ

ντ   

 

which is distributed as a t-statistic with (T-τ) degrees of freedom. This t-statistic 

should be used when there is suspicion of possible ‘breakaways’ of a certain sign. In 

this case the t-statistic is used to examine whether following intervention, there is a 

consistent pattern that would suggest failure to control inflation at the level that the 

model would predict, should there not be any change in the monetary strategy. If any 

systematic pattern of ‘breakaway’ were noticeable, this would be taken as evidence of 

absence of a ‘lock-in’ effect. CUSUM t-statistics are calculated both for IT countries 

and for the control group. These statistics, as mentioned above, are distributed as tT-τ 

and reported for IT countries in the first column of Table 6. According to these 

statistics ‘breakaways’ are rejected in all IT cases as they are well below the critical 

value, i.e. 1.96, at the 5% level of significance. The same results are evident in the 

case of the control group as well. As reported in the relevant columns for the 

European Union and the United States in Table 6, this occurs to all cases and, 

therefore, for all dates for which IT was implemented. The computed CUSUM t-

values are well below their critical values in all countries. 

 

We are, therefore, able to derive two important conclusions on the basis of these 

results. The first is that IT has been a success story in ‘locking-in’ inflation rates and 
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thus avoiding a ‘bounce-back’ in inflation in the 10 countries considered for the 

purposes of this paper. The second is that a similar conclusion is applicable in the case 

of the two countries included in the control group. This clearly indicates that it may 

very well be the case that the ‘lock-in’ effect alluded to in this paper may be due to 

other factors than IT intervention.6 Which these factors might be are beyond the scope 

of this paper.   

 

[TABLES 4 AND 5] AND [FIGURE 3] 

 

4. Summary and conclusions 

 

In this paper we have attempted to produce empirical evidence in the case of a 

number of OECD countries, applying Intervention Analysis to multivariate STMs. 

Although we have suggested at the outset that the existing overall empirical evidence 

on IT is mixed, the prevailing view is that IT has gone hand-in hand with low 

inflation (King, 1997; Bernanke, 2003a, 2003b). We have demonstrated that although 

this is definitely the case, IT was introduced well after inflation had begun its 

downward trend. We have argued, though, that there is still the distinct possibility that 

IT ‘locks in’ low inflation rates. This is indeed the case for the IT countries. But then 

we have produced evidence that suggests that non-IT central banks have also been 

successful in achieving and maintaining consistently low inflation rates. It follows 

then that this evidence would suggest that a central bank does not need to pursue an 

IT strategy to achieve and maintain low inflation. It would, thus, appear that 

Mishkin’s (1999) statement that the reduction of inflation in IT countries “beyond that 
                                                 
6 It is interesting to note that Ball and Sheridan (2003) reach a similar conclusion utilising a completely 

different approach and technique. 
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which would likely have occurred in the absence of inflation targets” (p. 595) is not 

supported by the available empirical evidence; as such that statement was highly 

premature.  
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TABLES AND FIGURES 
 
Figure 1. Inflation (% change in CPI) 
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Figure 2. Trends and interventions in IT and non-IT countries (%) 
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Figure 3. Plot of CUSUM standardized residuals 
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Table 1. Significance of seasonal dummies 
 
 

  Q1+ Q2 
t-

statistic++ Q3 
t-

statistic++ Q4 
t-

statistic++ Obs. R2 F(3,T-3) 
Australia -0.279 0.026 (0.15) 0.152 (0.86) 0.101 (0.57) 99 0.01 0.37 
Canada 0.721 -0.264 (1.76) -0.4 (2.67)** -0.057 (0.38) 99 0.10 3.47** 
Finland 2.311 -1.651 (4.92)** 0.283 (0.84) -0.943 (2.81)** 79 0.18 5.63* 
New Zealand -0.384 0.38 (1.71) -0.076 (0.34) 0.08 '(0.36) 99 0.03 1.06 
Norway 1.52 -1.244 (5.43)** 0.044 (0.19) -0.32 (1.40) 99 0.25 10.50* 
South Korea 1.165 -0.235 (1.17) -0.776 (3.86)** -0.154 (0.77) 99 0.25 10.95* 
Spain 0.774 -0.986 (5.58)** 0.5 (2.83)** -0.288 (1.63) 79 0.35 13.93* 
Sweden 1.281 -1.233 (4.16)** 0.445 (1.50) -0.493 (1.66) 99 0.19 7.43* 
Switzerland 0.337 -0.373 (2.24)* -0.181 (1.08) 0.217 (1.31) 99 0.08 2.63 
UK 0.329 1.022 (7.50)** -1.436 (10.53)** 0.085 (0.62) 99 0.64 55.83* 
EU 0.34 -0.173 (2.70)** -0.38 (5.93)** 0.213 (3.32)** 99 0.36 17.84* 
US 0.893 -0.234 (1.40) -0.109 (0.66) -0.55 (3.31)** 99 0.12 4.84* 

Notes:  
+ Q1 is computed so that all dummy effects add up to 0. 
++  The numbers in these columns represent absolute values for the  t statistics (as in parentheses). 
*  significant at 1%;  
**  significant at 5%. 
 
 
Table 2. Correlation coefficients between inflation rates in IT and non-IT countries  
 

 European Union United States 
Australia 0.53 0.27 
Canada 0.77 0.62 
Finland+ 0.77 0.65 
New Zealand 0.47 0.33 
Norway 0.66 0.52 
South Korea 0.49 0.71 
Spain+  0.84 0.48 
Sweden 0.59 0.51 
Switzerland 0.52 0.49 
UK 0.61 0.66 

Notes:  
+ The time span for these countries is 1980(Q1)-1998(Q2). 
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         Table 3. Summary statistics for the models estimated for the full sample 

 
 EU US Australia 

H(31) 0.78022 0.38654 0.91779 
DW 1.8396 2.0177 2.0777 
Q(9,6) 10.29 6.1444 5.9673 
Seasonality  18.45** 44.99** 2.04 
Rs^2 0.28499 0.42333 0.33351 
Component    
Irr 0.035864 0.21374 0.29613 
Lvl 0.002381 0.002263 0.066322 
Slp 0.000319 0.000642 7.11E-05 
Sea 0.00019 0.000689 0.000456 
    

 EU US Canada 
H(31) 0.7322 0.41095 1.832 
DW 1.8497 1.9749 1.7062 
Q(9,6) 10.031 4.3251 8.4661 
Seasonality  20.23** 34.38** 35.31** 
Rs^2 0.2935 0.42918 0.33052 
Component    
Irr 0.03816 0.22543 0.26513 
Lvl 0 0 0 
Slp 0.000415 0.000546 0.000306 
Sea 0.000188 0.000671 4.78E-05 
    

 EU US Finland 
H(23) 0.7723 0.11291 0.37578 
DW 1.8177 2.0313 2.3054 
Q(9,6) 7.9046 6.8026 4.3715 
Seasonality  15.32** 6.85* 30.77** 
Rs^2 0.1464 0.34228 0.45396 
Component    
Irr 0.035476 0.2263 0.22348 
Lvl 0.003459 0.002654 0.010901 
Slp 0.00034 0.000926 0.00024 
Sea 0.00017 0.000634 0.000355 
    

 EU US New Zealand
H(31) 0.72191 0.38046 0.09022 
DW 1.8353 1.9825 1.9585 
Q(9,6) 9.419 5.2527 9.4924 
Seasonality  17.67** 31.65** 1.43 
Rs^2 0.27244 0.40419 0.15651 
Component    
Irr 0.037656 0.21996 0.43684 
Lvl 3.09E-05 0.000233 0.29128 
Slp 0.000412 0.000624 0.00077 
Sea 0.000201 0.000733 0.0002 
    
 EU US Norway 
H(31) 0.74569 0.36518 0.73103 
DW 1.8902 2.0126 2.0577 
Q(9,6) 10.979 6.1745 3.6333 
Seasonality  19.80** 41.55** 6.95* 
Rs^2 0.3021 0.4379 0.53959 
 Component    
Irr 0.03294 0.21054 0.26019 
Lvl 0.004956 0.004471 0.005437 
Slp 0.000213 0.000593 0.000281 
Sea 0.000219 0.000733 0.002051 
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 EU US South Korea

H(31) 0.70406 0.42308 0.35353 
DW 1.7913 2.0101 1.5033 
Q(9,6) 9.9965 5.3027 11.449 
Seasonality  20.49** 31.14** 53.23** 
Rs^2 0.29517 0.5007 0.31068 
 Component     
Irr 0.036931 0.21206 0.9112 
Lvl 0.000719 0.00035 0.001645 
Slp 0.000354 0.000707 0.007695 
Sea 0.000201 0.000763 0.000336 
    

 EU US Spain 
H(23) 0.73764 0.099716 0.40306 
DW 1.7552 1.9903 2.2334 
Q(9,6) 6.8144 5.9274 14.205 
Seasonality  16.06** 8.85* 0.54 
Rs^2 0.13333 0.32758 0.52371 
Component    
Irr 0.036398 0.23119 0.19152 
Lvl 0.001674 0.001735 0.000594 
Slp 0.00041 0.000914 0.000344 
Sea 0.000205 0.000581 0.002636 
    

 EU US Sweden 
H(31) 0.6974 0.39543 0.54224 
DW 1.8438 2.0613 2.4153 
Q(9,6) 10.602 5.671 16.752 
Seasonality  21.74** 36.94** 1.96 
Rs^2 0.2981 0.41899 0.57177 
Component    
Irr 0.037218 0.2176 0.69478 
Lvl 0.001964 0.005922 0.014171 
Slp 0.000317 0.000524 0.000119 
Sea 0.000161 0.000616 0.001874 
    

 EU US Switzerland 
H(31) 0.66693 0.41231 0.28787 
DW 1.8428 2.0754 1.9181 
Q(9,6) 9.4764 6.8999 5.7541 
Seasonality  20.99** 45.13** 10.28** 
Rs^2 0.30655 0.43058 0.48714 
Component    
Irr 0.034311 0.21731 0.19009 
Lvl 0.00542 0.002814 0.021233 
Slp 0.000202 0.000661 0.000121 
Sea 0.0002 0.000869 0.004851 
    

 EU US UK 
H(31) 0.7616 0.46564 0.44931 
DW 1.8833 1.9718 2.0544 
Q(9,6) 9.7154 6.5422 21.53 
Seasonality  20.41** 32.27** 3.36 
Rs^2 0.27923 0.47714 0.40184 
Component    
Irr 0.03866 0.22229 0.17871 
Lvl 0.002267 0.003401 0.006243 
Slp 0.000313 0.000674 0.000893 
Sea 0.000121 0.000405 0.000681 
Notes:  
*  Null of non-seasonality rejected at 1%; 
** Null of non-seasonality rejected at 5%. 
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Table 4. Intervention Estimates 
 
    Multivariate STM estimates   

 
Dates of 

Intervention Coefficient
 

RMSE t-value p-value 
Common 
Factors 

Univariate 
RMSE 

Australia 1994/Q3 0.243 0.524 0.4634 [0.6441] 1CFT 0.557 

Canada 1991/Q1 -0.507 0.212 -2.3947 [0.0186] 2CFT 0.442 

Finland 1993/Q1 -0.186 0.290 -0.6420 [0.5230] 2CFT 0.409 

New Zealand 1990/Q1 -0.140 0.892 -0.1569 [0.8757] 1CFT 0.912 

Norway 2001/Q1 0.090 0.337 0.2672 [0.7899] 2CFT, 1CFSL 0.409 

South Korea 1998/Q1 -0.994 0.497 -1.9995 [0.0484] 2CFT, 1CFSL 0.906 

Spain 1994/Q4 0.148 0.173 0.8531 [0.3966] 2CFT 0.355 

Sweden 1993/Q1 -0.410 0.393 -1.0426 [0.2998] 1CFSE 0.598 

Switzerland 2000/Q1 -0.338 0.284 -1.1908 [0.2367] 2CFT 0.395 

United Kingdom 1992/Q4 -0.235 0.200 -1.1763 [0.2424] 2CFT, 1CFSL 0.375 
 Notes:  

The period of estimation is 1980(Q1)-2004(Q4) for all countries with the exception of Finland and 
Spain for which it is: 1980(Q1)-1998(Q2). 

 
 
Table 5. Variances in pre-IT and post-IT periods 
 
  IT   Country European Union United States 

  Pre-IT Post-IT Pre-IT Post-IT Pre-IT Post-IT 
Australia  0.980 0.409* 0.657 0.077* 0.744 0.325* 
Canada  0.682 0.443*** 0.749 0.132* 0.894 0.259* 
Finland+ 1.101 0.241* 0.683 0.108* 0.798 0.121* 
New Zealand  2.561 0.197* 0.804 0.151* 0.941 0.314* 
Norway  1.398 0.761*** 0.693 0.095* 0.618 0.617 
South Korea  4.071 1.268* 0.678 0.078* 0.670 0.419*** 
Spain + 1.179 0.212* 0.658 0.072* 0.137 0.732* 
Sweden  1.977 0.469* 0.683 0.102* 0.798 0.295* 
Switzerland  0.531 0.280** 0.710 0.077* 0.632 0.565 

UK  1.457 0.161* 0.681 0.100* 0.841 0.276* 
Notes:  

*   The null of equal variances rejected at a 1% significant level. 
**   The null of equal variances rejected at a 5% significant level. 
*** The null of equal variances rejected at a 10% significant level. 

        +  The time span for these countries is 1980(Q1)-1998(Q2). 
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Table 6. Predictive capacity of models: CUSUM t-test  
 
 IT Country European Union United States 

Degrees of 
freedom 

Australia 0.730 0.441 -0.102 41 
Canada -0.547 0.058 -0.179 55 
Finland + 1.120 -0.204 -0.124 23 
New Zealand 0.365 0.669 -0.200 59 
Norway -0.838 -0.474 -0.001 15 
South Korea -0.902 -0.307 1.633 27 
Spain + -0.042 -0.004 -0.074 16 
Sweden -0.137 0.069 0.027 47 
Switzerland -0.252 0.043 -0.294 19 
UK 0.008 1.219 1.353 48 

Notes:  
  No failures detected at the 5% significant level with 1.96 critical value. 

         +    The time span for these countries is 1980(Q1)-1998(Q2). 
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