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Abstract  
Linear models reach their limitations with nonlinearities in the data. This paper 
provides new empirical evidence on the relative macroeconomic forecasting 
performance of linear and nonlinear models. The well established and widely used 
univariate autoregressive integrated moving average (ARIMA) and multivariate 
vector autoregressive (VAR) models are used as linear forecasting models whereas 
neural networks (NN) are used as nonlinear forecasting models. We endeavour to 
keep the level of subjectivity in the NN building process to a minimum in an attempt 
to exploit its full capability. This paper also investigates whether the historically poor 
performance of the theoretically superior measure of the monetary services flow, 
Divisia, relative to the traditional Simple Sum measure could be attributed to a certain 
extent to the evaluation of these indices within a linear framework. The results 
obtained suggest that nonlinear models provide better within-sample and out-of-
sample forecasts and linear models are simply a subset of them. The Divisia index 
also outperforms the Simple Sum index when evaluated in a nonlinear framework. 
 
1. Introduction  
This paper is concerned with forecasting the inflation rate in the Euro area. Nonlinear 
NN are compared to the more traditional time series univariate ARIMA and 
multivariate VAR forecasting models. The objectives are two-fold:  
(1) Primarily to display how various time series forecasting methods compare in their 
forecasting accuracy of Euro inflation.  
(2) Secondly, given the ubiquitous relationship between inflation and money, to 
compare the inflation forecasting ability of the Euro M3 and a Euro Divisia M3 in 
both linear and nonlinear frameworks.  
 
The reason for carrying out such an empirical analysis is that it can provide useful 
information to monetary policy decision makers of the ECB whose primary objective 
is to maintain price stability in the Euro area. The ECB organises its assessment of 
risks of price stability under two pillars (see ECB, 1999a, b and 2000). Firstly, given 
the widely held belief that development in the price level is a monetary phenomenon, 
development in the amount of money held by the public may reveal useful 
information about future price development and be a useful leading indicator of 
inflation. Therefore in 1998, in its first pillar of monetary policy strategy, the ECB 
decided to give broad monetary aggregate Euro M3 a prominent role. The second 
pillar analyses a broad range of other economic and financial time series indicators 
relevant to future price developments.  
 
Our first objective is particularly relevant to the second pillar of the ECB’s monetary 
policy strategy where inflation forecasts play a very important role. In order to enable 
the monetary authorities to tackle appropriately inflationary pressures that may arise 
in the future it is necessary and crucial to produce accurate and reliable forecasts of 
inflation. A large body of research is devoted to inflation forecasting (see, for 
example, De Brouwer and Ericsson, (1998) for Australia, Stock and Watson (1999) 
for the US, Drake and Mills (2002) for the Euro area). One question that lies in the 
heart of every forecasting exercise is which forecasting method to use? The 
overwhelming majority of studies on inflation forecasting divide forecasts in 2 main 
categories  
(1) forecasts from time series models such as ARIMA models and 
(2) forecasts from macroeconomic models such as the VAR models.  
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However, such models are based on the assumption of linearity in the data and there is 
now growing evidence that macroeconomic series contain nonlinearities (see for 
example, Tiao and Tsay (1994) and Stanca (1999) and thus, though linear models 
have been reasonably successful as a practical tool for analysis and forecasting, they 
are inherently limited in the presence of nonlinearities in data and consequently 
forecasts, as well as other conclusions drawn, from them could be misleading. In view 
of the limitations of the linear models, nonlinear time series have gained much 
attention in the recent decades. Several nonlinear models, such as the threshold 
autoregressive (TAR) models (Tong, 1990) and the exponential autoregressive model 
(EXPAR) (Haggan and Ozaki, 1981), have been developed. However, an immediate 
problem encountered while opting for such nonlinear models in preference to linear 
models is that there exists no unified theory that can be applied to all such nonlinear 
models as they require the imposition of assumptions concerning the precise form of 
nonlinearity. But there are too many possible nonlinear patterns in a particular data set 
and the prespecified nonlinear model may not be broad enough to capture all essential 
characteristics. An alternative way to deal with nonlinearities in data is to use NN. In 
contrast to the above model-based nonlinear methods, NN are data driven and are thus 
capable of producing nonlinear models without prior beliefs about the functional 
forms. NN are also highly flexible as they can approximate any continuous function to 
any degree of accuracy (Hornik et al., 1989). Thus from a statistical viewpoint the 
nonlinear NN would be expected to perform better than the linear models in inflation 
forecasting and since no such work has been carried out for the Euro area we 
investigate the performance of NN vis a vis linear models in forecasting Euro 
inflation.   
 
In the first pillar of the ECB’s monetary policy strategy, Euro M3, constructed by 
simple summation, plays a very important role (see ECB 1999a,b, 2000 for more 
details). However, there is some debate (see, Barnett, 1980, 1982) that monetary 
aggregates constructed by simple summation are flawed and the weighted Divisia 
monetary aggregates are a theoretically superior measure of monetary services flow 
and hence Drake et al. (1997) among others have suggested the use of a Euro Divisia 
M3 instead of Euro M3 in the first pillar of the ECB’s monetary policy strategy. 
However, despite its theoretical superiority the Divisia index does not always 
outperform its Simple Sum counterpart empirically (Chrystal and MacDonald, 1994, 
Herrmann et al., 2000), explaining the reluctance of the ECB and other central banks 
in adopting such a monetary index for their monetary policy strategy. To provide an 
explanation for the historically poor performance of the Divisia index, researchers 
have focussed on measurement problems (see for example Drake et al., 1997). 
However, none of them have put the validity of the linear statistical methods used to 
evaluate them into question despite the fact that, as stated earlier, there is increasing 
evidence of nonlinearity in macroeconomic data and more importantly the fact that 
Barnett and Chen (1986, 1988a, b), Barnett and Hinich (1992, 1993), Chen (1988), 
and DeCoster and Mitchell (1991) have provided evidence of nonlinear structures 
inherent in the Divisia index. Thus if the Divisia index performs poorly relative to the 
Simple Sum index when compared in a linear framework one cannot say whether it is 
the Divisia index to be blamed or the linear models which may not be able to capture 
nonlinear behaviour. Given the ubiquitous relationship between inflation and 
monetary aggregates this study can therefore be used to shed some light on the issue 
of whether the historical poor performance of the Divisia index relative its Simple 
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Sum counterpart could be attributed to a certain extent to incorrectly using linear 
statistical models in evaluating them. More specifically, we construct multivariate 
linear and nonlinear forecasting models and interchange Euro M3 and Euro Divisia 
M3 to investigate their comparative forecasting performance. Hence this study allows 
us to evaluate the forecasting potentials of linear univariate and multivariate models 
and nonlinear NN in predicting Euro inflation and to compare the relative 
performance of Euro M3 and Euro Divisia M3 in linear and nonlinear frameworks. 
 
This paper is organised as follows: The next section provides a brief review of the 
literature comparing linear and nonlinear forecasting models. Section 3 describes the 
data and associated preliminary analysis. In section 4 the different models are 
specified and estimated. Forecasts results are presented and discussed in section 5 
while conclusions and suggestions for future development are offered in section 6. 
 
2. Literature Comparing Forecasting Method Effectiveness  
This section attempts to provide a brief review of recent research on comparing linear 
models, like ARIMA and VAR models to nonlinear NN, but makes no attempt to be 
exhaustive. 
 
NN have gained enormous popularity in the recent years, especially in time series 
forecasting. Most applications, however, are in areas where data are abundant as NN 
are very data intensive. In macroeconomics, due to the scarcity of large data samples, 
there exists only a few studies involving the use of NN that can be used to gauge its 
usefulness in the field. Recent ones include that of Johnes (2000) and Moshiri and 
Cameron (2000). Johnes (2000) contrasts models of the UK economy constructed 
using NN and a variety of econometric models. Moshiri and Cameron (2000) use NN 
to forecast Canadian inflation and compare the results to those from time series and 
econometric models. The results in these studies, based on out-of-sample forecasts, do 
not permit a demarcation between the linear models and NN as the latter is able to 
justify its theoretical superiority in only some of the cases. In fact, these observations 
reflect the results of quite a large number of such comparative studies across different 
fields. This has led to questions being raised on whether studies implement NN in 
such a way that it stands a reasonable chance of performing well (Adya and Callopy, 
1998).  Indeed, the risks of making bad decisions are extremely high while building a 
NN as there are no established procedures available to decide on the choice of the 
parameters of the NN, which basically is problem dependent. Although there have 
been attempts in several studies to develop guidelines in making these choices (see, 
for example, Balkin and Ord  (2000),  Gorr et al. (1994)), so far this matter, is still 
subject to trial and error. Thus, despite the many satisfactory characteristics of the 
NN, building a NN for forecasting a particular problem is a nontrivial task. 
Consequently, tedious experiments and time-consuming trial and error procedures are 
inevitable. However, this has not been the case in most of the comparative studies as 
in the absence of any a priori information about the parameters of the NN, their choice 
has involved a lot of subjectivity (Nag and Mitra, 2002). Such an approach 
considerably reduces the possibilities of exploiting the true potentials of the NN and 
ultimately leads to results from a large number of studies being dubious. For example, 
Moshiri and Cameron (2000) perform some experimentation in finding the optimum 
number of hidden units, however their choice for the amount of training required, 
another equally critical parameter, is rather subjective, thereby limiting the power of 
the NN. In this study, we endeavour to keep the level of subjectivity to a minimum 



 5

and appropriately deal with other issues prone to affect the performance of NN in an 
attempt to obtain the best possible NN models. Since it is beyond our reach to 
evaluate the performance of NN against the entire class of linear models, we chose the 
well-established and extensively used ARIMA and VAR models as our 
representatives for linear models in recognition of their ability to produce reliable 
forecasts.  
 
3. Data and Preliminary Analysis 
Many economic indicators help predict inflation. For example Stock and Watson 
(1999) have recently shown that 168 variables can be used to forecast US inflation. In 
our study instead of using so many variables, we limit the list of variables to those 
that are more closely linked to inflation by economic theory or that have been 
regularly used in previous empirical studies. Thus, in keeping with previous studies 
such as Hendry and Doornik (1994) and Lutkepohl and Wolters (1998)), the variables 
required for multivariate forecasting are: inflation, monetary aggregates- Euro M3 and 
Euro Divisia M3, GDP, GDP deflator and the opportunity cost variables of the 
corresponding Divisia and the Simple Sum aggregates. These are quarterly seasonally 
adjusted data, for the period 1980Q1 to 2000Q4, defined by the availability of the 
Euro-area data. Data on monetary assets, their respective rates of return, GDP and 
GDP deflator have been obtained from Stracca (2001). After allowing for lags and 
transformations estimation is conducted using data from 1981Q2 to 1998Q2, while 
the remaining 10 observations (1998Q3 to 2000Q4) are kept for forecast evaluation 
(testing). The Simple Sum index is constructed by simply summing over the monetary 
components while the Divisia index is constructed using equation (9) in Barnett et al. 
(1992, pp. 2097). We use the Divisia price dual (Barnett, 1980) as the opportunity 
cost variable for Divisia. Following Lutkephol and Wolters (1998) the opportunity 
cost variable for the Simple Sum aggregate is calculated as )( tt rR −  where tR is a 
long term interest rate and tr is the own rate of M3. The log of all variables have been 
taken and thus tm3 is the log of real Simple Sum M3, td3 is log of real Euro Divisia 
M3, ty is the log of real GDP, tdualm3 is the log of the opportunity cost variable for 
Euro M3 and tduald3 is the log of the opportunity cost variable for Euro Divisia M3. 

tp  is the logarithm of the GDP deflator and 1−−=∆ ttt ppp  is the quarterly inflation 
rate.  

[Figure 1 about here] 
tm3  and td3  are contrasted in figure 1. The Simple Sum aggregate begins to increase 

faster than its Divisia counterpart in 1980 and diverges significantly afterwards as the 
literature suggests (see, for example, Drake et al.  (2000, pp. 52). To check the 
stationarity properties of the series the Augmented Dickey and Fuller (1979) unit root 
test is used. The results reported in table 1 show that for the majority of the variables 
the null hypothesis of unit root and hence nonstationarity in the levels cannot be 
rejected i.e., most variables are not I(0). The variables tdualm3  and tduald3  are more 
marginal, however, as the hypothesis of stationarity in levels is not rejected at 5% 
level but rejected at the 1% level. Unit root tests on the first differences of the variable 
reveal that all of them are stationary. Hence all variables are I(1) at the 1% level.  

[Table 1 about here] 
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4. Model Specification and Estimation 
In this section we present our main decisions regarding the specification and 
estimation of the three classes of models (univariate ARIMA, multivariate VAR and 
NN).  While the ARIMA and VAR methods are widely used, the NN method is a 
relatively new method. Thus, we provide only brief accounts for the ARIMA and 
VAR methods and we give a more detailed account for the NN method. 
 
4.1 Univariate Time Series Model 
The ARIMA is a general class of univariate time series models which represents 
current values of a time series by past values of itself (autoregressive term (AR)) and 
past values of stochastic errors (moving average terms (MA)). The acronym I refers to 
the number of times (d) the time series has to be differenced to render it stationary. A 
nonseasonal1 ARIMA(p,d,q) process can be represented as  
                                           tt

d LyLL εθδφ )()1)(( +=−                                              (1) 
where tε  is independent and normally distributed with zero mean constant variance 
and δ is a constant. )(Lφ and )(Lθ are the AR and MA polynomials, respectively 
with orders p and q such that p

p LLL φφφ −−−= L11)( and 
q

q LLL θθθ −−−= L11)( , where L represents the backshift operator such that 

stt
s yyL −= . A slightly modified Box and Jenkins approach (Box and Jenkins, 1970) 

is used for identifying the best model for ARIMA forecasting. Thus, instead of 
inspecting ACF and PACF in the identification stage we estimate a range of models, 
represented in table 2, with 2=d  ( for tp from section 3) and values of p and q 
varying from 0 to 3 in a first step and retain the models which pass the diagnostic tests 
(no autocorrelation and conditional heteroscedasticity, significance of parameters). In 
a second step the best ARIMA model is chosen to be the one which provides the best 
out-of-sample forecast. We also estimate an ARIMA model with the orders of p and q 
equal to 6. We then use Hendry’s (1993) general-to-specific methodology to obtain a 
more parsimonious model.  

[Table 2 about here] 
Thus after the first step only 4 ARIMA models were retained as the others exhibit 
insignificant parameters and out of the 4 remaining models the ARIMA(0,2,1) is our 
preferred ARIMA specification because it outperforms the others in terms of out-of-
sample forecasting accuracy. The estimated model2 is given below and the test 
statistics given are computed from the residuals of the estimated models3. JB 
represents the Jarque-Bera test for normality, LM(k), represents the test for 
autocorrelation of order k, and ARCH(k) representing the test for conditional 
heteroscedasticity of order k (for more details on this tests, see for example, Hendry 
(1995)). None of the diagnostic tests is significant at conventional levels and, hence, 
the residuals appear to be normally distributed and free from autocorrelation and 
autoregressive conditional heteroscedasticity.   

                                           
( )102.0

510.0)1( 1
2

−−=− tttpL εε
                                               (2) 

)92.0(16.0.23.02 == BJR   S.E. of regression = 0.002525 

LM (1) = 0.00 (1.00)  LM (4) = 1.61 (0.81)    LM (8) = 4.91(0.77)        

ARCH (1) = 0.40 (0.52)  ARCH (4) = 7.28 (0.12)              ARCH (8) = 10.81(0.21)  
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4.2 Multivariate Vector Autoregressive (VAR) Models 
The advantage of VAR models over ARIMA models is that they can incorporate more 
information in terms of other time series instead of just past observations and errors of 
the series to be forecast. Having established in section 3 that the variables entering the 
VAR are I(1), we first proceed to investigate whether they are cointegrated, that is, 
verify whether some linear combination of these nonstationary variables is stationary. 
In the absence of cointegration between the variables a common forecasting 
procedure would be to conduct a VAR on the first differences. However, if 
cointegrating relationships can be established between the variables, the VAR should 
also include the lagged cointegrating error term (vector error correction models 
(VECM)) (Granger, 1981). This prevents neglecting long run information contained 
in the levels of the variables and it has been shown that such an approach leads to 
improved forecasting accuracy (Lesage(1990), Shoesmith (1992, 1995)). 
 
4.2.1 Testing for Cointegration  
To check for cointegration, the Johansen (1988) procedure is used. Thus let tz  be a 

1×q  vector, here T
t

opp
tttt pRyMz ),,,( ∆=  where tt mM 3= / td3 and 

tt
opp
t dualddualmR 3/3= then tz  can be formulated as the first difference of a VAR 

model of lag length  k  
               ttktktktt Dtzzzz εφδµ ++++Ψ+∆Γ++∆Γ=∆ −−−−− )1(111 L                         (3) 
whereµ  is a constant and the error term, tε , is independently and normally 
distributed, 11 ,, −ΓΓ kL , Ψ and φ  are coefficient matrices, D consists of dummy 
variables4 and t is a trend variable. If rank r=Ψ)( , where << r0  q, implies existence 
of rq×  matrices α  and β  such that 'αβ=Ψ and tz'β is I(0) (Johansen and Juselius, 
1990). r  is the number of cointegrating relationships and each column of β  is a 
cointegrating vector. In the current study, trace tests are used to determine the 
cointegration rank (see Johansen, 1995)5.  
 
The results, however, are sensitive to the choice of the lag length (k). Some model 
selection criteria could be used in determining the lag length but different criteria 
often suggest different orders. A more appropriate method is to combine this with 
misspecification tests by choosing the lag length to ensure that the underlying 
assumptions of the VAR model are satisfied (Johansen, 1995). More specifically, to 
check whether the residuals in the Johansen VAR are free from serial correlation, 
conditional heteroscedasticity and the distribution of the residuals is normal. Our 
experimentation uses a range of lags (VAR lag lengths of 1-8) and is based on the 
misspecifications tests. For a VAR of order 6, the LM and JB tests, represented in 
table 3, do not show any sign of misspecification nor do the univariate ARCH tests6.  

[Table 3 about here] 
In testing for cointegration, the question of whether a constant and trend should enter 
the long run relationship also arises. There are in general 5 possible ways of 
incorporating these deterministic components into the analysis (see Johansen 1992, 
Hansen and Juselius, 1995) but generally the most and the least restrictive ones are 
excluded (see, for example, Drake (1996)). Therefore, the three models of interest to 
us have the following specification. The model that we refer to as model 1 is the most 
restrictive model.  It does not allow for linear trends in the data. The only 
deterministic components in the model are the intercepts in the cointegration relations.  
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A less restrictive model is referred to as model 2. The model allows for linear trends 
in the data, but it is assumed that there are no trends in the cointegration relations. It 
also has a non-zero intercept. The model referred to as model 3 is the least restrictive. 
It also allows for a linear trend in the cointegration space.  

 
In order to determine which of the three possible deterministic specifications is the 
most appropriate in the cointegration, Johansen (1992) suggests applying the Pantula 
(1989) principle. In so doing, the rank order and the presence of the deterministic 
components are jointly determined. In practice this involves estimating all the 3  
models outlined above and conducting the trace test to determine the cointegration 
rank sequentially from the most restrictive to the least restrictive specification. The 
first time the null hypothesis of r cointegrating vectors is not rejected indicates both 
the cointegration rank and the appropriate specification for the deterministic 
components. Results from the application of the Pantula (1989) principle, reported in 
table 4, suggest that model 2 should be used for the Simple Sum system and the rank 
is 2 whereas model 2 should be used and the rank is 3 for Divisia system. The 
cointegrating vectors for both systems are presented in table 5. 

[Table 4 about here] 

[Table 5 about here] 
4.2.2 Short-run Equations for Inflation 
In this section we present estimation results for single error correction equations of 
inflation. For both Simple Sum and Divisia, the corresponding second cointegrating 
vector is used for specifying their short-run equations of the form (3) for inflation for 
the period 1981Q2 to 1998Q2. These cointegrating vectors have been chosen since 
the signs of the coefficients of their components are consistent with economic theory 
(see Doornik et al., 1998). Money affects prices with long lags, approximately two 
years (Drake et al., 2000) and hence 7 lags of each of the independent variables have 
been used.7  Following the general to specific methodology (Hendry, 1993), 
parameters insignificant at the 5% significance level  were deleted and the equations 
rerun, using the ordinary least squares method, until just significant parameters 
remained. The error correction terms were kept in the equations at all the times and 
eliminated in the final stage if they were not significant. This strategy eventually 
resulted in the equations given by equations (4) and (5) for the Euro M3 and Euro 
Divisia M3 respectively. Here also the diagnostic tests do not show any signs of 
misspecification.  
 
Simple Sum  

                   
( ) ( ) ( )000026.0102.0054.0

Re000062.0533.03121.0 11
2

2
2

ttttt spmp ε++∆−∆=∆ −−−                       (4) 

Res = is 2nd  cointegrating vector for a VAR lag = 7 

)81.0(41.0.30.02 == BJR   S.E. of regression = 0.002454 

LM (1) = 0.38 (0.54)  LM (4) = 1.61 (0.81)    LM (8) = 8.61(0.38)        

ARCH (1) = 1.70 (0.19)  ARCH (4) = 1.61 (0.81)              ARCH (8) = 2.22 (0.97)  
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Divisia  

                  
( ) ( ) ( )000027.0102.0054.0

Re000070.0537.03141.0 11
2

3
2

ttttt spdp ε++∆−∆=∆ −−−                        (5)                      

Res = is the 2nd cointegrating vector for a VAR lag = 7 

)88.0(24.0.32.02 == BJR   S.E. of regression = 0.002908 

LM (1) = 1.34 (0.25)  LM (4) = 3.18 (0.53)    LM (8) = 5.94(0.65)            

ARCH (1) = 0.05 (0.83)  ARCH (4) = 5.64 (0.23)              ARCH (8) = 8.81 (0.36)  

 
4.3 Nonlinear Models: Neural Networks 
Neural networks are composed of highly interconnected processing elements (nodes) 
that work simultaneously to solve specific problems. In time series analysis they are 
used as nonlinear function approximators. They take in a set of inputs and produce a 
set of outputs according to some mapping rules predetermined in their structure.  

[Figure 2 about here] 
This paper considers the most popular form of NN called the feedforward network. 
Figure 2 depicts such a network that consists of layers of nodes. The input layer and 
output layer represent the input and output variables of the model. Between them lie 
one or more hidden layers that progressively transform the original input stimuli to 
final output and hold the networks ability to learn nonlinear relationships. For a 
feedforward NN with one hidden layer, the general prediction equation, given by 
Faraway and Chatfield (1998), for computing a forecast of ty  using an input vector 
( )mxxx ,,, 21 L  may be written in the form 
                                ))((ˆ ∑∑ ++=

i
iih

h
chhocot xwwgwwfy                                        (6) 

where chw  denote the weights for the connections between a constant input, usually 
taken as 1, and the hidden nodes and cow denotes the weight of the direct connection 
between the constant input and the output. The weights ihw and how  denote the 
weights for the other connections between the input and hidden nodes and between 
hidden and the output nodes respectively.  The two functions f and g denote the 
activation functions used in the hidden layer and the output layer respectively.  
 
NN have to be trained in order to be able to use them to perform certain tasks like 
predicting a response corresponding to a new input pattern. The training procedure 
involves iteratively modifying the randomly initialised weights of the NN to minimise 

some kind of error function usually the mean square error (MSE), 2)ˆ(1
tt yy

n
−∑ . 

Various standard optimisation techniques such as the conjugate gradient and quasi-
Newton methods exist for minimising the error function, however, in application 
studies, the backpropagation algorithm (Rumelhart et al., 1986) developed by the 
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neural network community is the most popular training algorithm used. Standard 
optimisation techniques tend to converge faster than the backpropagation algorithm 
but this advantage is overshadowed by the fact that the latter is computationally more 
efficient (Monterola et al., 2002). Moreover, the backpropagation algorithm generally 
has better generalisation (performs well on unseen data) than standard optimisation 
techniques (Cubiles-de-la-Vega et al., 2002), hence is our preferred algorithm despite 
the greater time required for convergence. 
 
However, it is well known that the backpropagation algorithm used for training 
suffers from the local minimum problem. Randomly selecting initial weights for 
training is a common approach, however, if these initial weights are located close to 
local minima, the algorithm is likely to converge to a local minimum. Some 
researchers have tried to overcome this problem by, for example, using genetic 
algorithms (Shazly and Shazly, 1999) and simulated annealing (Masters, 1993). Even 
then there is no assurance that such measures will help the optimisation algorithm to 
converge to a global minimum. We follow the most commonly used method to find 
the best local minimum or even the global minimum, more specifically, we restart the 
training with different weights. The actual number of restarts employed in practice is 
generally limited by the computing time required to train a NN (Plasmans et al., 
1998). In this work we therefore use 10 restarts.  
 
4.3.1 Designing the Neural Networks  
Apart from the weights of the NN, there are many other parameters, like the number 
of input variables, the combination of input variables, the number of hidden layers 
and hidden nodes, the types of activation functions in the hidden and output layers, 
the value of the learning rate and the momentum rate and the amount of training 
which are also unknown. As we mentioned earlier there are no established rules to 
help us in choosing the appropriate values of these parameters and we have to resort 
to trial and error to obtain their appropriate values. Clearly, experimenting over the 
whole parameter space of the parameters is beyond the scope of the paper. In this 
study, therefore, we focus on experimenting with the different values of key 
parameters like initial weights, the number of hidden nodes, amount of training 
required, different sets of input variables and we draw attention to the other issues that 
need to be considered while making the choices for the remaining parameters of the 
NN.  
 
The common practice has been to construct NN using the same input variables as in 
VAR models to allow direct comparison between them. However, such a procedure is 
biased towards the linear model as the regressors from the linear equation tell us about 
linear correlation and this is not appropriate for nonlinear relationships modelled by 
the NN (Zhang et al., 1998). For these reasons, we feel justified to use the ‘best’ set of 
input variables for the NN. A modified version of the preferred model of the 
relationship between inflation and money of Binner et al., (2002) adapted originally 
from Dorsey (2000, pp.34) given by equation (7) below is used. However, for 
comparative purposes we also construct NN using the set of input variables of the 
VAR models and using the set of input variables of the VAR models from which the 
error correction term has been excluded.  
                        ),,,,( 1

2
4321

2
−−−−− ∆∆∆∆∆=∆ tttttt pMMMMfp  tε+                           (7)     
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Hidden layers play a very important role for the successful applications of the NN as 
they allow NN to perform nonlinear mapping between the input and the output. 
Without hidden nodes, NN are equivalent to linear statistical model (see, for example, 
Warner and Misra (1996)). It has been shown that a 3 layer NN, i.e., a NN with only 
one hidden layer can approximate any function to any degree of accuracy (Hornik et 
al., 1989). Two hidden layer NN could be more beneficial to certain problems 
(Barron, 1994), however, given our relatively small sample and the fact that the 
number of parameters increases rapidly with each layer (Tkacz, 2001), we focus on 3 
layer NN in the present study.  
 
The choice is more complicated for the number of hidden nodes. Usually few hidden 
nodes are preferred as there is less likelihood of overfitting, i.e. encountering 
problems of drawing too many characteristics from the data used for training, and a 
tendency to yield better generalisation. But NN with too few hidden nodes may not 
have enough power to model and learn the richness of the data (Church and Curram, 
1996). Similar problems are encountered if the NN are not trained to the right degree. 
Inadequately training a NN will lead to missing patterns in the data while excessive 
training will result in overfitting. We use a grid search to jointly determine the 
appropriate number of hidden nodes and the amount of training required (Gorr et al., 
1994). We consider 5 networks with hidden units between 1 and the number of input 
variables (Balkin and Ord, 2000) that is 5 in our case. Preliminary investigation over 
the number of training ranging from 10,000 to 50,000, suggested that better results are 
obtained in the range 15000 to 20000 for the Simple Sum NN models and in the range 
10000 to 15000 for the Divisia model. Therefore, extensive experimentation is 
constrained to these ranges with increments of 1000. Since we perform 10 restarts for 
each point in our grid, this means that 300 NN for each set of input variables and 
monetary aggregate are investigated, i.e. a total of 1800 NN are run in this 
investigation. 
 
The logistic function )1/(1)( xexf −+=  is the most popular activation function among 
researchers for the hidden layer. However, we use the hyperbolic tangent (tanh) 
function, )/()()( xxxx eeeexf −− +−=  as it has been used very successfully in 
inflation forecasting experiments (see, for example, Binner et al., (2002)). It is also 
generally held that tanh gives rise to faster convergence of training algorithms than 
logistic functions (Bishop, 1995). For the output layer, we follow the recommendation 
of Rumelhart et al. (1995) who suggest the use of the linear function xxf =)(  for 
time series prediction with continuous output. The remaining parameters for the NN, 
the learning and momentum rates for the backpropagation algorithm are set as the 
default values of Matlab 6.0, i.e. 0.01 and 0.9 respectively (see, for example, Bishop 
(1995), for more details on these parameters).                                                                                                
 
In addition to the parameters of the NN, there are some other factors such as the data 
normalisation and performance measures that affect the performance of NN (Zhang et 
al., 1988). In practice NN training can be made more efficient by preprocessing the 
data as this enables the network to extract valuable information (Gately, 1996) and to 
significantly reduce the time necessary to complete training (Krunic et al., 2000). In 
this paper we use one of the most common forms of preprocessing which consists of 
rescaling the data in the range [-1, 1] so that they have similar values. This choice is 
motivated by the fact that the input variables used for NN modelling differ by several 
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orders of magnitude and the sizes of variables do not necessarily reflect their relative 
importance in finding out the required outputs (Bishop, 1995). Another issue of 
concern is related to performance measures. There are several measures of accuracy 
but each of them has advantages and limitations (Makridakis et al., 1983). For this 
reason none of them is universally accepted as the best measure of accuracy and 
hence in this study we shall be making use of a number of performance measures.  
 
5. Predictive Performance Assessment 
The NN should be tested on a validation set after they have been trained and the one 
leading to the minimum forecast error in the validation set should provide the best 
generalisation and is normally retained to evaluate its forecasting performance on a 
test sample. However, one of the main disadvantages of NN, as mentioned above, is 
that it requires an enormous amount of data, if the series are short or not 
representative of the process being modelled the NN might not perform well (Balkin 
and Ord, 2000). Thus in studies with small data sets it is common to use the test set 
for both validation and testing purposes (Zhang et al., 1998). That is the route 
followed in this paper given that the data set available to us is quite modest by the 
standards of NN analysis.  
 
Three traditional performance measures are first used to compare the fit and 
forecasting accuracy of alternative models: root mean square error (RMSE), mean 
absolute error (MAE), and mean absolute percentage error (MAPE). Before 
calculating these measures the NN forecasts are backtransformed to the same units as 
their actual values to make them comparable. 
 
Figures 3, 4 and 5 show the within-sample RMSE, MAE and MAPE performances 
respectively and figures 6, 7 and 8 show the corresponding out-of-sample 
performances of the Simple Sum NN constructed with the set of input variables as in 
equation 7. The patterns shown by the RMSE, MAE and MAPE, within-sample and 
out-of sample, for different number of hidden nodes and amount of training across 
different sets of input variables are in general similar. A comparison of the within-
sample RMSE to that of the out-of-sample RMSE reveals that as the number of 
hidden nodes and amount of training are increased the within-sample forecast error 
decreases but, as expected, the reversed pattern is observed with the out-of-sample 
forecasts. This clearly demonstrates that with too many hidden nodes and excessive 
training, poor generalisation will occur and hence the need to appropriately choose 
these parameters. The MAE shows a similar pattern to that of the RMSE, however, 
the movement across both surfaces is not always in congruence. The discrepancies in 
the performance measures become more apparent as the RMSE and MAE are 
compared to the MAPE. The differences are apparently due to the inherent limitations 
in each of the performance measures. Therefore, these observations show that 
choosing the best model on the basis of just one performance measure would be 
misleading and thus in the current study the best model is chosen to be the one which 
consistently shows small forecast errors across each of the three performance 
measures and which also provides the best trade-offs between within-sample and out-
of-sample forecast errors. On this basis, the number of iterations and hidden nodes 
chosen are reported in table 6 for each set of input variables (sets A, B and C also 
defined table in 6) for each monetary aggregate.  One noticeable pattern in these 
values is that number of iterations or number of hidden nodes or both increase as the 
number of input variables increases. This could be due to the fact that the higher the 
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number of input variables, the higher the level of complexity of the NN and hence 
more hidden nodes or/and training are required to learn the relationship between input 
and output variables. The static forecasting performance of the ARIMA and VAR 
models are reported in tables 7 and 8 respectively, while those of the NN based on the 
three different sets of input variables are reported in tables 9, 10 and 11. 

[Figures 3, 4, 5, 6, 7 and 8 about here] 
[Tables 6, 7, 8, 9, 10 and 11 about here] 

 
A comparison of the results from the ARIMA and VAR forecasts suggest the 
multivariate models provide more accurate forecasts of Euro inflation. Looking at 
RMSE for example, the out-of-sample forecasting accuracy increases by about 9% 
with VAR models when compared to ARIMA models and hence the VAR models are 
retained as representatives for linear models for comparison with nonlinear NN. On 
comparing the results from VAR modelling and NN constructed with the same input 
variables (set B) as in the VAR models, it is not possible to discriminate between 
them as both of perform equally well in 12 comparisons of the within-sample and out-
of-sample forecasts of the two monetary indices.  NN constructed with the input 
variables from set A show a better performance but are still outperformed by the 
linear models in a few cases. However, a comparison of the results from the VAR 
modelling to those from NN constructed input variables are from set C, reveals that 
superior inflation forecasts are achieved using NN, both within-sample and out-of-
sample, in every case examined. Looking again at the RMSE, for example, out-of-
sample forecasting accuracy increases by approximately 10% with NN over VAR 
models. These results demonstrate the sensitivity of the NN to the choice of input 
variables and reveal that input variables used for building the linear models are not 
necessarily the most appropriate ones for the nonlinear models.  
 
We also evaluate the relative forecasting potential of the VAR and NN models by 
using a simple encompassing test (Fair and Shiller, 1990). Such a test has some 
advantages over the other performance measures (RMSE, MAE, MAPE) to compare 
the forecasts. Firstly, it can differentiate between competing forecasting models even 
if there are no big differences in the performance measures. Secondly, it helps to 
discriminate between models in cases where the performance measures are in favour 
of a particular model while despite having larger performance measures other 
competing models might contain vital information unique to them. Thirdly, such a test 
gives some statistical meaning to the forecasts of the NN relative to those of the linear 
models. The test is carried out by regressing the actual values of the changes in 
inflation on a constant, linear model forecasts )( Lf  and NN forecasts )( Nf . If the t 
tests show that the coefficients of the forecasts of both models are significantly 
different from zero, then both models contain independent information that have 
power in forecasting the changes in inflation. If one of the coefficients of the 
forecasting models is significantly different from zero and the other one is not then 
the latter is just a subset of the former. In addition, the model with the significant 
coefficient contains further relevant information. Finally, if none of the coefficients 
are significantly different from zero then neither model is useful in forecasting the 
changes in inflation. The best NN forecasts obtained by using the input variables in C, 
are evaluated against the VAR forecasts. The results from the encompassing tests 
carried out for within-sample and out-of-sample forecasts are given below. The JB, 
LM and ARCH tests do not show any signs of misspecification. The results reveal 
that in every case only the coefficient of the NN forecast is significant at the 
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conventional 5% significance level which implies that that NN forecasts are 
statistically superior to the linear models forecasts and hence VAR forecasts are 
simply a subset of the NN. These results further confirm that better macroeconomic 
forecasts can be achieved with the use of nonlinear NN.      
Simple Sum 
 
Within-sample  

                                     
( ) ( ) ( )232.0287.0000253.0

128.1165.00000007.02
t

NL
t ffp ε++−=∆

                 (8)  

       
)3.0(40.2.49.02 == BJR   S.E. of regression = 0.002090 

LM (1) = 2.47 (0.12)  LM (4) = 5.35 (0.25)    LM (8) = 12.30(0.14)        

ARCH (1) = 0.26 (0.62)  ARCH (4) = 0.63 (0.96)              ARCH (8) = 3.80 (0.875)  

 

Out-of-sample  
 

                                     
( ) ( ) ( )689.0005.10006.0

349.10933.0000615.02
t

NL
t ffp ε++−−=∆

                      (9) 

 
)72.0(67.0.41.02 == BJR   S.E. of regression = 0.001375 

LM (1) = 0.25 (0.62)  LM (4) = 3.60 (0.46)8      

ARCH (1) = 1.46 (0.23)  ARCH (4) = 5.82 (0.21)    

 

Divisia 
 
 
Within-sample 

                                  
( ) ( ) ( )323.0361.0000272.0

960.00647.000000268.02
t

NL
t ffp ε+++=∆

                    (10) 

 
)82.0(40.0.42.02 == BJR   S.E. of regression = 0.002241 

LM (1) = 3.80 (0.15)  LM (4) = 3.83 (0.43)    LM (8) = 10.39(0.24)        

ARCH (1) = 0.14 (0.71)  ARCH (4) = 3.69 (0.45)              ARCH (8) = 7.87 (0.45)  
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Out-of-sample  

                                        
( ) ( ) ( )830.0925.0000551.0

633.1969.0000411.02
t

NL
t ffp ε++−−=∆

                   (11)  

 
)92.0(16.0.42.02 == BJR   S.E. of regression = 0.001365 

LM (1) = 0.74 (0.39)  LM (4) = 6.26 (0.18)      

ARCH (1) = 0.47 (0.49)  ARCH (4) = 5.93 (0.20)    

Finally, on comparing the inflation forecasting performance of the two monetary 
indices firstly within a linear framework, it is found that Euro Divisia M3 has better 
within-sample convergence than its Simple Sum counterpart. However, the main 
property sought here is better generalisation, i.e. better out-of-sample performance 
that apparently Divisia fails to provide. When the impact of the two monetary indices 
on the prediction accuracy is evaluated in a nonlinear framework, overall the Simple 
Sum index has better within-sample convergence, however, the Divisia index clearly 
outperforms it in terms of out-of-sample convergence. These results do seem to 
suggest that one of the reasons for the poor historical performance of the Divisia 
index against the Simple Sum index could be attributed to incorrectly choosing linear 
models to evaluate the two monetary indices. These results corroborate the findings of 
Binner and Gazely (1999), Binner et al., (2002, 2003) and Gazely and Binner (1998, 
2000) who have consistently found that the Divisia index outperforms its Simple Sum 
counterpart when evaluated using NN.  
                                                                                                                                                                         
6. Summary and Conclusions 
There is growing evidence that macroeconomic series contain nonlinearities but linear 
models such as the ARIMA and VAR models are widely used for forecasting such 
series, despite the inability of linear models to cope with nonlinearities. In this paper 
we provide new empirical evidence on the relative macroeconomic forecasting 
performance of linear ARIMA and VAR models and the nonlinear NN. We also 
investigate whether the poor performance of the theoretically superior measure of 
monetary services, Divisia, relative to its Simple Sum counterpart could be attributed 
partly to the incorrect choice of linear models used to evaluate them. 
 
A considerable amount of research has been carried out in the recent years on NN. 
However, despite their ability to capture nonlinear relationships, findings generally do 
not allow any discrimination between conventional linear statistical techniques and 
NN. One of the main reasons for this is that there are no well defined guidelines to 
build NN for solving a particular task and their construction has involved a lot of 
subjectivity on the part of researchers, thereby considerably restricting the power of 
NN and ultimately leading to the results of many studies being dubious. In order to 
obtain the best possible NN forecasting model in this study, we have tried to keep the 
level of subjectivity to a minimum, particularly we perform rigorous experiments to 
determine the appropriate number of iterations, number of hidden nodes and the 
appropriate set of input variables. At the same time we have considered other issues 
like data processing, local minima problems and limitations of performance measures. 
Our best models for the NN outperform the traditionally used linear ARIMA and 
VAR models in macroeconomic forecasting and are statistically superior to them. The 
gain in forecasting accuracy in the NN is very likely to have emerged from the 
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capability of the NN to capture nonlinear relationships between macroeconomic 
variables. The first conclusion to be drawn from this result is that despite being 
constrained by the lack of large data samples in macroeconomics, NN can find be 
successfully applied in the field, provided extreme care is taken in designing the 
network. However, at this stage we would not recommend the policy makers, such as 
the ECB who require inflation forecasts, to abandon the use of conventional statistical 
techniques in favour of NN. The latter still has some very serious limitations, e.g., 
particularly time consuming trial and error procedures and the lack of available 
statistical techniques for analyzing the relationship between input and output 
variables. However, till such problems are overcome, we would strongly suggest that 
the ECB and macroeconomic forecasters use NN as a complementary tool for 
forecasting. 
 
Another recommendation to the ECB involves the use of monetary aggregates for 
their monetary policy strategy.  It is widely accepted that the Simple Sum procedure is 
inappropriate and the weighted Divisia index is a superior measure of monetary 
services flow. However, the Divisia index does not always outperform its Simple Sum 
counterpart in empirical studies, explaining the reluctance of the ECB to use the 
weighted monetary aggregate instead of M3. The results of this study suggest that the 
poor performance of the Divisia index can be attributed to a certain extent to the 
incorrect choice of linear statistical methods used to evaluate its performance relative 
to the Simple Sum index, as the Divisia clearly outperforms the Simple Sum index 
when evaluated in a nonlinear framework but not in a linear framework. However, 
these results should only be considered as indicative as we have not performed an 
exhaustive experimentation to find the best Simple Sum and Divisia NN forecast 
models, as the overriding aim was to evaluate linear ARIMA and VAR models and 
nonlinear NN models. Nonetheless, on the basis of the results at hand, and based on 
similar results obtained by Binner and Gazely (1999), Binner et al., (2002, 2003) and 
Gazely and Binner (1998, 2000), it appears that Divisia consistently outperforms the 
Simple Sum index when evaluated in a nonlinear framework. Thus our 
recommendation to the ECB would be to at least pay more serious attention to the 
behaviour of the Divisia monetary aggregate. 
 
Finally, we end by providing a recommendation on how this work can be taken a step 
further. Although NN considered in this paper outperform traditional econometric 
models in forecasting Euro inflation, we believe that the forecasting accuracy of NN 
can still be improved. We performed a grid search to determine the optimum number 
of hidden nodes and training required and performed some experimentation to find the 
optimum set of input variables. However, ideally, a NN for a particular task has to be 
optimised over the entire parameter space of the learning rate, momentum rate, 
number of hidden layers and nodes, combination of input variables and activation 
functions. In that respect, NN combined with genetic algorithm optimization 
techniques (Nag and Mitra, 2002), can potentially be used for building more accurate 
models for forecasting Euro inflation and is recommended for future research. 
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Figure Captions 
1. Simple Sum M3 index versus Divisia M3 index 
2. NN model 
3. Within-sample RMSE performance of NN for the Euro-Simple Sum M3 
4. Within-sample MAE performance of NN for the Euro-Simple Sum M3 
5. Within-sample MAPE performance of NN for the Euro-Simple Sum M3 
6. Out-of-sample RMSE performance of NN for the Euro-Simple Sum M3 
7. Out-of-sample MAE performance of NN for the Euro-Simple Sum M3 
8. Out-of-sample MAE performance of NN for the Euro-Simple Sum M3 

 
Table Captions  

1. ADF unit root tests (1980:1-1998:2) 
2. ARIMA models considered. Y represents Yes and N represents N 
3. Multivariate Autocorrelation and Normality Tests (1980:1-1998:2) 
4. Simultaneous choice of rank and deterministic components (1980:1-1998:2) 
5. Cointegration vectors (1980:1-1998:2) 
6. Number of iterations and hidden nodes used for the different networks 
7. Within-sample and out-of-sample fit measures using the best ARIMA model 
8. Within-sample and out-of-sample fit measures using VAR models 
9. Within-sample and out-of-sample fit measures using NN constructed using the 

variables in set A 
10. Within-sample and out-of-sample fit measures using NN constructed using the 

variables in set B 
11. Within-sample and out-of-sample fit measures using NN constructed using the 

variables in set C 
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Figure 1: Simple Sum M3 index versus Divisia M3 index 
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Figure 2: NN model 
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Figure 3: Within-sample RMSE 
performance of NN for the Euro-
Simple Sum M3 
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Figure 4: Within-sample MAE 
performance of NN for the Euro-
Simple Sum M3 
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Figure 5: Within-sample MAPE 
performance of NN for the Euro-
Simple Sum M3 
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Figure 6: Out-of-sample RMSE 
performance of NN for the Euro-
Simple Sum M3 
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Figure 7: Out-of-sample MAE 
performance of NN for the Euro-
Simple Sum M3 
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Figure 8: Out-of-sample MAE 
performance of NN for the Euro-
Simple Sum M
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Tables 

Variable     ADF Test Statistics       Specification 
 

3m     -1.503    [T, 1] 
tm3∆     -4.834**   [C, 0] 

td3     -2.288    [T, 1] 

td∆     -5.151**   [C, 0] 

ty     -2.280    [T, 4] 

ty∆     -6.932**   [C, 0] 

tp     -2.451    [T, 2] 

tp∆     -2.785    [T, 1] 

tp2∆     -14.316   [C, 0] 

tdualsm3    -3.825*   [T, 1] 

tdualsm3∆    -5.680**   [C, 1] 

tdualdm3    -3.781*   [T, 1] 

tdualdm3∆    -5.760**   [C, 1] 
 
 
Table 1: ADF unit root tests (1980:1-1998:2) 
Notes:  
T: constant and trend, C: represents constant 
[, n], n: the number of lags used  
**: significant at 1%, *: significant at 5% 
Critical values are from MacKinnon (1991) 

 
Models Retained 

ARIMA(0,2,1) 
ARIMA(0,2,2) 
ARIMA(0,2,3) 
ARIMA(1,2,0) 
ARIMA(1,2,1) 
ARIMA(1,2,2) 
ARIMA(1,2,3) 
ARIMA(2,2,0) 
ARIMA(2,2,1) 
ARIMA(2,2,2) 
ARIMA(2,2,3) 
ARIMA(3,2,0) 
ARIMA(3,2,1) 
ARIMA(3,2,2) 
ARIMA(3,2,3) 
ARIMA(6,2,6) 

Y 
N 
N 
Y 
N 
Y 
N 
N 
N 
N 
N 
N 
N 
N 
N 
Y 

 
Table 2: ARIMA models considered. Y represents Yes and N represents N. 
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      Simple Sum   Divisia 
 

Autocorrelation test: 

LM (1) 

 

LM (4)  

 

 

15.04 

(0.52) 

22.09 

(0.14) 

 

 

21.92 

(0.15) 

17.80 

(0.34) 

Jarque Bera Normality test 7.47 

(0.49) 

11.22 

(0.19) 

 
 
Table 3: Multivariate Autocorrelation and Normality Tests (1980:1-1998:2) 
 
Note: Values in parenthesis are p-values. The LM-tests are asymptotically distributed 
χ2(16), whilst the normality test is asymptotically distributed χ2(8). 

 

Simple Sum Divisia  

p-r         r Model 1 Model 2 Model 3 Model 1  Model 2 Model 3 

 

4          0 

80.30 

49.92 

58.65 

43.84 

65.81 

58.96 

81.13 

49.92 

56.86 

43.84 

  66.78 

  58.96 

 

3          1 

49.19 

31.88 

33.46 

26.70 

39.26 

39.08 

48.05 

31.88 

33.56 

26.70 

  43.38 

  39.08 

 

2          2 

24.00 

17.79 

9.96 

13.31 

14.08 

22.95 

28.49 

17.79 

16.42 

13.31 

  24.34 

  22.95 

 

1          3 

7.41 

7.50 

2.34 

2.71 

3.57 

10.56 

11.88 

7.50 

0.36 

2.71 

  7.82 

  10.56 
       

Table 4:  Simultaneous choice of rank and deterministic components (1980:1-1998:2) 
Note: Numbers in italics are 90 percent quantiles of the trace test tabulated in 
Johansen (1995) 
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        Money               GDP   Inflation  Opp. cost Trend  
 
Simple Sum     -1                1.181  -40.345   0.633      - 
                 -1                1.451  -1.809   -0.055      - 
 
 
Divisia          -1             2.596  45.946             -0.232                 - 
            -1      1.220   -2.054   -0.032        -  
                     -1     1.304             -3.186               0.111      -  
 
 
Table 5: Cointegration vectors (1980:1-1998:2) 

 
 
 
 
 
 Simple Sum Divisia 

 
Input Variables No. of 

iterations 
No. of hidden 
nodes 

No. of 
iterations 

No. of hidden 
nodes 

Set A: 
,3/3 32 −− ∆∆ tt dm  

1
2

−∆ tp  

15000 2 10000 2 

Set B: 
,3/3 32 −− ∆∆ tt dm  

1
2

−∆ tp , 1Re −ts  

16000 4 10000 4 

Set C: 
21 , −− ∆∆ tt MM , 

43 , −− ∆∆ tt MM , 

1
2

−∆ tp  

18000 5 12000 2 

 
 Table 6:  Number of iterations and hidden nodes used for the different networks 
 
 
 
 Within-Sample  Out-of-Sample  
RMSE 
MAE 
MAPE 

0.002502 
0.002070 
139.7463 
 

0.001601 
0.001145 
103.6850 

 
Table 7: Within-sample and out-of-sample fit measures using the best ARIMA model 
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Table 8: Within-sample and out-of-sample fit measures using VAR models 
 
 

 
Table 9: Within-sample and out-of-sample fit measures using NN constructed using 
the variables in set A 
 
 

 
Table 10: Within-sample and out-of-sample fit measures using NN constructed using 
the variables in set B 
 

 
Table 11: Within-sample and out-of-sample fit measures using NN constructed using 
the variables in set C 
 

Simple Sum Divisia 
 Within-

sample 
Out-of-sample  Within- 

sample 
Out-of-sample 

RMSE 
MAE 
MAPE 

0.002383 
0.001906 
168.24% 

0.001456 
0.001113 
157.34% 
 
 

RMSE 
MAE 
MAPE 

0.002334 
0.001814 
166.48% 

0.001495  
0.001164 
166.62% 

Simple Sum Divisia 
 Within- 

sample 
Out-of-sample  Within- 

sample 
Out-of-sample 

RMSE 
MAE 
MAPE 

0.002381 
0.001935 
166.04% 

0.001455 
0.001112 
 153.69% 
 
 

RMSE 
MAE 
MAPE 

0.002383 
0.001854 
164.56% 

0.001466  
0.001147 
144.46% 
 
 

Simple Sum Divisia 
 Within- 

sample 
Out-of-sample  Within- 

sample 
Out-of-sample 

RMSE 
MAE 
MAPE 

0.002412 
0.001924 
157.06% 

0.001179 
0.000983 
 153.84% 
 
 

RMSE 
MAE 
MAPE 

0.002416 
0.001865 
154.53% 

0.001807  
0.001324 
161.21% 
 
 

Simple Sum Divisia 
 Within- 

sample 
Out-of-sample  Within- 

sample 
Out-of-sample 

RMSE 
MAE 
MAPE 

0.002050 
0.001585 
152.41% 

0.001345 
0.001071 
 150.62% 
 
 

RMSE 
MAE 
MAPE 

0.002192 
0.001689 
142.19% 

0.001316  
0.000999 
111.61% 
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Footnotes: 
                                                 
1 The reason for using  nonseasonal ARIMA models is that the data provided to us 
had already been seasonally adjusted. 
2 Values in parentheses under the estimated coefficients are standard errors 
3 The numbers in parentheses behind the values of the test statistics are the 
corresponding p-values  
4 The dummy variables are constructed to take into account the high peaks in the first 
differences in the measures of money in 1990Q3 and in the opportunity cost variables 
in 1994Q2.  
5 The values of the trace statistics are found using CATS and RATS software. 
6 The univariate ARCH test statistics are available from the authors upon request 
7 The computations reported in this section were carried out on Eviews 4.0 
8 Due to our short out-of-sample data set, misspecification tests could not be carried 
out for order 8 


