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1 Introduction

This paper studies the interactions between fiscal and monetary policy when fiscal policy is not
especially concerned with the level of domestic debt. Governments may find themselves in a
situation of too few policy instruments and are therefore forced to devote fiscal policy to other–
potentially more politically sensitive–tasks. Such enforced fiscal ‘inactivity’ will then affect both
the behaviour of the private sector, which might become concerned with debt sustainability, and
the scope of monetary policy actions, which can become severely restricted. The most extreme
case of such interactions can be usefully studied in the framework of the fiscal theory of the
price level.

The fiscal theory of the price level has been proposed as the relevant solution for several
policy regimes. Leeper (1991) identified two non-conflicting regimes, in one of which (with
‘active’ fiscal policy and ‘passive’ monetary policy, to be defined below) the inflation rate is
affected by fiscal shocks. Evans and Honkapohja (2002) used the same model to show that these
regimes are learnable and so logically can exist. The distinctive feature of these regimes is that
monetary policy does not provide a nominal anchor. The short-term interest rate acts as the
monetary policy instrument so there is no conflict between fiscal and monetary policies with
respect to the price level–the price level is fiscally determined.

The strong effect of fiscal policy on inflation naturally raises the question of what should
constitute optimal monetary policy in such a world. Leeper (1991), who began the analytical
literature on the subject, has shown that a standard monetary policy rule can have disastrous
consequences, namely a substantial rise of the interest rate in response to an inflation shock might
destabilise the economy causing spiralling debt accumulation and future inflation (this would be
an outcome of two ‘active’ policies). For a similar setup with Blanchard-Yaari consumers Leith
and Wren-Lewis (2000) demonstrate that a monetary policy with strong feedback on inflation
is equally undesirable, as such a monetary policy actually performs worse in stabilising inflation
than less aggressive policy. In this paper we aim to investigate what an optimal monetary policy
should look like in a world where price and wage-setters’ decisions are sensitive to the prospects
of the government’s budget stance and this effect is expected to be substantial.

If we classify our setup using Leeper’s definitions, we would consider fiscal policy to be
‘active’, because although it pays no attention to the state of government debt it is devoted
to appropriate other tasks. Monetary policy can then be classified as ‘passive’, both because
the monetary authority is a follower and because it is they who have to pay attention to the
level of debt. However the correspondence in definitions and results is not exact, especially for
monetary policy which has a different information set in our framework. Indeed, in Leeper’s
economy monetary policy is represented by the class of feedback rules which only have inflation
in the information set. Output was kept constant, and the state of debt was ignored. We argue
that debt should be in the information set of the monetary authority so that optimal policy can
take it into account.

Leeper has shown that if fiscal policy is ‘active’ then monetary policy must be ‘passive’
in order to ensure a unique bounded solution. Namely, in his model (with constant output)
the monetary policy feedback rule should have a very small feedback coefficient on inflation.
Leeper’s model only has one channel of transmission of monetary policy shocks–the indirect
fiscal channel. A change in the interest rate affects domestic debt so it is inflation that has to
react to bring debt back onto the equilibrium path. With an intertemporal IS curve we have an
additional (and more conventional) lending channel. A strong positive reaction of the interest
rate to inflation shocks can substantially depress output with a consequent disinflationary effect.
This might conflict with the desire to have some inflation to reduce the excessive debt, itself
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Figure 1: Response to an inflation shock

generated by the high interest rate. Our approach leaves more space for a standard role for
monetary policy, so we wish to investigate what would be optimal to do in such a world and
how constrained monetary policy will be.

Anticipating some of the results and giving further motivation to the main question, we
consider two interest rate policy rules. Both rules feed back on the level of the real domestic debt,
inflation and output, i = θππ+θxx+θbb. We consider Rule One, where the feedback coefficients
on inflation and output satisfy the Taylor principle, and Rule Two, where the coefficients have
unconventional magnitudes and signs.1 Rule One is ‘active’ in Leeper’s sense so it is expected
to destabilise the economy if the fiscal policy is also ‘active’. Rule Two is ‘passive’ in Leeper’s
sense. We will demonstrate in this paper that the optimal policy may look like Rule Two so
the coefficients are explained in the consequent analysis. We can check that both rules generate
a unique stationary equilibrium. Figure 1 presents the response of the economy to an inflation
shock. Rule One gives notably worse inflation performance but stabilises output reasonably well.

It is not surprising that Leeper’s conclusions about the coexistence of passive and active
policies fail–we have a richer model so we should expect to find different areas of the model
for stability and determinacy. The possibility that debt can now be stabilised by the monetary
authority may make the area of stability wider, but the effect of having optimising consumers

1Rule One has (θπ, θx, θb) = (1.9, 0.25,−1.2), and Rule Two has (θ pi, θx, θb) = (−2.4,−0.25,−1.2).
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may bring indeterminacy into the model. In this paper we investigate such monetary-fiscal
interactions in details.

We also take the opportunity to look at a persistent economy, where we allow for substantial
sluggishness in both price-setting and consumption behaviour. Since the fiscal theory of the
price level can only work in forward-looking models, a degree of backward-looking behaviour
might substantially mitigate all the effects. We aim to investigate this dependence.

The set up of our analysis is as follows. We assume that the instrument of the monetary policy
is a short-term interest rate, so that the monetary instrument by itself provides the economy with
no nominal anchor. We study optimal policy represented by rules. In linear-quadratic models
proportional control is an outcome of optimisation subject to the time-consistency constraint.
Our Non-Ricardian world is described by a model which links inflation, output and debt, so the
policymaker’s information set includes the level of domestic debt too. We have chosen to study
optimal rules simply because a feedback rule is described by vector of its coefficients, and we have
a good idea of how a reasonable rule should look–a criterion like Taylor principle might be a
sensible way of comparing results. It is more difficult to describe fully optimal time-inconsistent
plans on a similar intuitive level, because such a plan contains a substantial element of integral
control part. Additionally, it has been shown in the literature (see, e.g. Steinsson (2002)) that
similar macroeconomic models suggests little quantitative difference between the outcomes of
time-consistent and fully optimal plans, a finding we confirm.

We show that the optimal time-consistent monetary policy can satisfy the Taylor principle for
the very backward-looking private sector, otherwise it requires small, sometimes even negative,
feedback on both inflation and output so it is completely devoted to the stabilisation of the
domestic debt. We show that the ‘active’ fiscal policy is costly, and the cost is higher than the
one obtained under some (non-optimal) Taylor-type-rules that are aggressive enough to ensure
a unique solution.

The paper is organised as follows. The next section formulates the model and briefly discusses
the solution method. We then discuss our definition of active and passive monetary policies and
present results. Section 6 concludes.

2 The Model

We consider the following timing of events. At time t− 0 the nominal debt stock Bt is observed
by all the participants. At time t the government sets the interest rate, taking into account the
observed state of the economy, (πt−1, xt−1, bt) where bt = Bt/Pt−1 and then, at time t + 0, the
private sector solves its optimisation problem choosing (πt, xt).Therefore, we consider a game
between a policymaker and the private sector, in which the policymaker (monetary authorities)
acts a Stackelberg leader, and sets interest rate as a reaction to the state of the economy
in which inflation, output and domestic debt are the only observable variables. The fiscal
authorities behave in a non-strategic way so they are not considered as a player. In this setup
the policymaker’s optimal time-consistent behaviour is characterised by feedback rules.

We refer reader to the work of Rotemberg and Woodford (1997) and Steinsson (2002) when
deriving the key equations of the model. We repeat in the Appendix the most important
discussions of the key properties of the model. The next section includes main assumptions and
key results only.
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2.1 Behaviour of the private sector

Our economy is inhabited by a large number of individuals. Each representative individual is a
yeoman-farmer, who specialises in the production of one differentiated good, denoted by z, and
spends h(z) of effort on its production. He also consumes a consumption basket C, and ξ are
shocks. Preferences are assumed to be:

max
{Cs,hs}∞s=t

Et
∞X
s=t

βs−t[u(Cs, ξs)− v(hs(z), ξs)] (1)

An individual chooses optimal consumption and work effort to maximise the criterion (1) subject
to the demand system and the intertemporal budget constraint.

We assume that the household must satisfy intertemporal budget constraint, which can be
solved forward to yield:

∞X
s=t

Et(Rt,sPsCs) = Bt +
∞X
s=t

Et(Rt,s[ws(z)hs(z)− Ts])

where Et(Rt,s) =
s−1Y
k=t

1
1+ik

, and it is short-term interest rate.

Therefore, the first order conditions with respect to consumption after linearisation, leads
to the familiar Euler equation (intertemporal IS curve): where xs = bYs − bY n

s , Y denotes output
(we have aggregated consumption over the closed economy) and ‘hat’ denotes distance from
equilibrium values.

xt = xt+1 − σ(bit − πt+1) + ε11t

We generalise the model by introducing proportion (1 − ξ) of rule-of-thumb consumers,
who choose their consumption (output) as xt = xt−1 + ε12t so the aggregate output evolves as
explained by the intertemporal IS curve:

xt = ξxt+1 + (1− ξ)xt−1 − ξσ(bit − πt+1) + ε1t (2)

In order to describe price setting decisions we, following Steinsson (2002), split individuals
into three groups according to their pricing behaviour. A proportion of agents is able to reset
their price every period: with probability 1− γ they re-contract new price. For the rest of the
household sector the price will rise at the steady state rate of domestic inflation with probability
γ. Those who recontract a new price (with probability 1 − γ), are split into backward-looking
individuals and forward-looking individuals, in proportion ω. Backward-looking individuals use
rule-of-thumb in their price setting decisions, see Appendix A and Steinsson (2002) for detailed
derivation. Finally, the optimal price-setting equation, which can be derived from the second
first-order-condition, can be written as:

πt = χfβπt+1 + χbπt−1 + κ1xt + κ2xt−1 + ε2t (3)

and all coefficients are given in Appendix A.
The Phillips curve (3) has familiar lag structure where both current and past output have an

effect on inflation. Its final specification was discussed in Steinsson (2002) and we briefly repeat
it in Appendix A. In the case when all consumers are forward-looking, ω = 0, this Phillips curve
collapses to the standard forward-looking Phillips curve, see Rotemberg and Woodford (1997).

4



If all consumers use the rule-of-thumb in price-setting decisions, ω = 1, it can be brought into
the form of ‘accelerationist’ Phillips curve.

The system (2) and (3) is formally equivalent to the optimising behaviour of a represen-
tative agent who maximises (1) subject to an aggregate ‘law of motion’ of the economy (the
demand system, the intertemporal budget constraint and pricing decisions) when policymaker’s
behaviour is taken to be an exogenous process, independent of the individual’s actions.

A significant feature of this system is that both of the state variables, π and x, for both
countries are non-predetermined, or jump, variables.

2.2 Behaviour of the Fiscal Authorities

The government does not have to satisfy intertemporal budgets constraint ( ∆t is real primary
deficit),

Bt

Pt
= −

∞X
s=t

βs−t
uC(Cs, ξs)

uC(Ct, ξt)
∆s, (4)

in the following sense. If the budget constraint (4) is disturbed, the it is not taxes/spendings must
be amended, but the market-clearing mechanism moves the price level Pt to restore equality. In
other words, this constraint does not hold for all price paths. In this sense it is non-Ricardian.
The evolution of the nominal debt stock can be written as:

Bt+1 = (1 + it)(Bt + Pt∆t) (5)

If the fiscal authorities behave in Ricardian way, i.e. by instantaneously changing surplus in
reaction to shocks, then (4) has no effect on the price level and (5) is not included in the
description of the economic behavior.

Linearisation of equation (5) yields (at the point of equilibrium i∞ = β−1 − 1):

bt+1 =bit + 1

β
(bt − πt + b∆t) (6)

where b∆t = (e∆t − e∆∞)/e∆∞, e∆ = ∆∞/B∞ and bt = ln(Bt/Pt−1)
We assume predetermined path for the real primary deficit as an autoregressive process:

b∆t = ν b∆t + ζ3, 0 < ν < 1

so we can derive the optimal monetary reaction function when the fiscal policy is ‘active’ (we
fix notation later in Section 3). As a benchmark, we consider Ricardian behavior of the fiscal
authorities, where the budget constraint (4) is an identity. In what follows we adopt this strategy
and bit becomes the only policy variable.
2.3 Central Bank’s actions

The Central Bank’s control variable is the short-term interest rate. We assume it seeks to
maximise the aggregate utility function:

max
{is}∞s=t

1

2
Et

∞X
s=t

βs−t
·
u(Ci

s, ξs)−
Z 1

0
v(hs(z), ξs)dz

¸
.
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It has been shown in Steinsson (2002) that the government’s objective function can be reduced
to the following quadratic form:

min
{is}∞s=t

1

2
Et

∞X
s=t

βs−t[π2s + λ1x
2
s + λ2(∆πs)

2 + λ3x
2
s−1 + λ4xs−1∆πs] (7)

where all coefficients are given in Appendix B.
The main difference of this loss function with the one, traditionally assumed in the literature,

π2s + 0.5x
2
s, is that we have non-zero weights on terms with change in inflation. As Steinsson

(2002) discusses, with high proportion of backward-looking population (with ω → 1) large weight
is put on stabilisation of change in inflation. Anticipating the results of calibration, we also have
low weight on output stabilisation, see Table 1, but this can be a consequence of having no
involuntary unemployment in this model. We discuss later in the text how one can bring the
coefficient on output up to more reasonable value.

2.4 Optimal feedback rules

Finally, we have three equations (2), (3) and (6) explaining the evolution of the system. The
budget equation (6) is only present in non-Ricardian world. The evolution of this system can
be written in a matrix form as:·

Yt+1
Xt+1

¸
=

·
A11 A12
A21 A22

¸ ·
Yt
Xt

¸
+

·
B1
B2

¸
Ut +

·
E1
E2

¸
εt+1 (8)

where Yt = (πt−1, xt−1, bt)0 is predetermined state, Xt = (πt, xt)
0 is non-predetermined state, and

Ut = (bit) is control variable (all the matrices and their partitioning are given in the Appendix).
The instrument of the central bank is the short-term interest rate and it feeds back on the set

of latest information, (πt−1, xt−1, bt). Essentially, the central bank is chosing a rule, Ut = −FYt,
which feeds back on the set of predetermined variables, such that the objective function (7) is
minimised. The problem can be solved numerically, see Söderlind (1999) for the easy-to-use
solution procedure2.

Finally, the system under control can be written as:·
Yt+1
Xt+1

¸
=

·
A11 −B1F A12
A21 −B2F A22

¸ ·
Yt
Xt

¸
+

·
E1
E2

¸
εt+1 (9)

and we refer to matrix
·
A11 −B1F A12
A21 −B2F A22

¸
as to the transition matrix.

3 Active and Passive Policies

A strength of response of a monetary policy reaction rule can be conveniently described in
terms of whether it satisfies Taylor principle. To fix the notation we start with discussion of the
Ricardian setup, i.e. when the fiscal policy reacts instantaneously to any deviations of the debt
from the target path. We denote the vector of feedback coefficients as F = (θπ, θx, θb).

2The solution is typically obtained by using Oudiz and Sachs (1985) iterative procedure derived from the
dynamic programming principle. The solution is easy to obtain, but it does not reflect the strategic behaviour of
players. Alternatively it can be obtained as an outcome of an iterative process, explicitely modelling the infinite
dynamic game, see Blake (2002). This also implies that every feedback rule which is obtained as a ‘discretion’
outcome should be checked as delivering determinacy to an economy.
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In the Ricardian world, an optimal policy reaction function is written as a feedback rule:biRt = θRπ πt−1+θRx xt−1. A condition on its coefficients which ensures determinacy of the economy
under control (Taylor principle) states that3:

θπ + θx
1− χfβ − χb

κ1 + κ2
> 1 (10)

We discuss the derivation of this formula for the persistent economy in Appendix E. We now
extend this notion on the non-Ricardian world, and say that a monetary policy satisfies Tay-
lor principle if the weighted feedback coefficient on inflation and output satisfy inequality (10),
regardless of any feedback coefficients on other variables. The Taylor Principle in the Non-
Ricardian world is not a condition for the unique solution but a statement of the fact that
monetary policy responds positively to inflation and output; so if a weighted feedback coeffi-
cient on inflation and output is large then we have monetary policy that seems to be doing a
conventional task. If the policy does not satisfy Taylor principle we simply call it non-satisfying
Taylor principle. However, a policy which does not satisfy Taylor principle in the Ricardian
world necessarily implies indeterminacy of the economy.

We focus on two polar cases of fiscal policy’s strength of response. The fiscal policy is either
does not control the real domestic debt at all (e.g., real deficit is an autoregressive process), or
corrects for shocks to the budget constraint promptly. In the latter case the budget constraint is
always in equilibrium, and the bounded behaviour of the debt is ensured, so prices do not react
to the level of domestic debt.

The important consequence of the adopted approach to study optimal feedback rules, is that
it makes little sense to discuss the strength of response of the policy for the predominantly
forward-looking private sector. For the entirely forward-looking and unconstrained private sec-
tor, inflation and output are non-predetermined variables, so the policymaker does not react
on them. It is persistence in the economy that requires the monetary policy to react to ac-
cumulated shocks, i.e. the persisting variables which become predetermined variables (lagged
inflation, output and debt in our model). Obviously, when ω approaches zero and consumption
is unconstrained (ξ = 1), we have θπ, θx converge to zero too, so the optimal policy is classified
as non-satisfying Taylor principle for both Ricardian and Non-Ricardian frameworks.

4 Calibration

To calibrate inflation persistence we use parameter γ = 0.85 (15% of population are able to
renegotiate contracts each period), and a range of ω ∈ (0, 1). Fuhrer and Moore (1995) notice
that χf = χb = 0.5 matches the pattern of the US data much better than pure forward- or
backward-looking models. Fuhrer (1997) on US data and Blake and Westaway (1996) on UK
data claim that χf should be close to 0.2. Gali and Gertler (1999) get χf = 0.8 but with the
different measure of demand pressure. Table 1 presents the choice of parameters and what they
imply for χf and χb. It is apparent that we can reach χbmax = 0.54 for the microfounded model
with γ = 0.85.

There is a substantial number of estimates for parameter σ. Estimates for the US range from
0.16 (McCallum and Nelson (1999)) to 6.0 (Rotemberg and Woodford (1997)). We consider

3 In fact, this is the condition of that the second biggest eigenvalue is outside the unit circle. In our model
we have two jump variables, inflation and output, so this is the condition of when economy obtains two unstable
roots and becomes determinate. It is possibly that we can pick up coefficients of the model such that we will have
more than two unstable eigenvalues. The model will be unstable, but it will not be indeterminate according to
our definition of determinacy.
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σ = 0.5.We follow Steinsson (2002) when calibrating most of the parameters: ψ = 2, = 5,
β = 0.99.

This model assumes that the economy is on the labour supply curve and there is no invol-
untary unemployment. This model gives unrealistically small coefficients on demand κ1 + κ2 in
the Phillips curve, see Table 1. To comply with more realistic coefficients, we slightly change
the model (see Appendix C) and calibrate ν (parameter on output pressure in wage-setting
equation) such that κ1+ κ2 would be between 0.2 and 0.5. This, in turn, gives us more realistic
coefficient on output deviations in the loss function, λ1 + λ2, see 1. We refer to the model with
these changes as the model with imperfect labour markets.

We also consider both theoretical loss function and more traditional objective function, which
puts fixed weight on output volatility and ignores inflation inertia, see Table 1.

5 Results

5.1 Optimal monetary policy

We illustrate our findings with Figures 2-3 which plot feedback parameters θπ, θx and θb for
the optimal feedback rule bi = θππ + θxx+ θbb. The horizontal axis measures the fraction of the
backward-looking private sector, ω. ω = 0 corresponds to all forward-looking individuals in the
economy. Each panel plots two curves, one for the Ricardian (R) world and another for the
non-Ricardian (NR) world. The line is always solid if the policy is active. In Ricardian world,
a passive policy leaves economy indeterminate so it is of no policy relevance and is not plotted.
In Non-Ricardian world a passive policy is a dotted line, but the economy is still determinate
under the passive policy.

We also complement the analysis with two Figures 4-5, which plot response of the economy
to an inflation shock4. These figures also include additional lines of response of the economy
under the optimal commitment plan5 (C); we included them to illustrate optimality of feedback
rules (F) but we discuss it later in the text.

As discussed above, we study the optimal monetary policy with respect to the two alternative
welfare criteria. There are two main differences between them. The theoretical central bank’s
objective function emphasises the society’s preferences for sluggish inflation adjustment when
the private sector is very backward-looking. The traditional objective function accounts for
stronger needs of stable output than suggested by the monopolistic competition model, and
ignores inflation inertia terms.

We start with the model with traditional loss function in a Ricardian world which is much
studied in the literature. It has the property that for the very backward-looking consumers the
Phillips curve is close to its accelerationist form so inflation is very persistent. To stabilise
inflation in such a world, the monetary policy should be very aggressive in its reaction to
output and inflation shocks. For the sufficiently forward looking consumers, the private sector’s
expectations can ajdust quickly to bring inflation down, the active monetary policy is not needed.
Additionally, as we discussed earlier in Section 3, we simly cannot investigate the behaviour of
the very forward-looking private sector in the current framework — in a model without persistence
all feedback coefficients converge to zero. To summarise, the traditional model of a Ricardian

4These figures also include responses of the economy under passive rules in Ricardian regime. Passive rules
in Ricardian regime are consistent with the equilibrium, but they leave economy indeterminate. The response is
plotted simply for comparison, no policy implications should be made out of it.

5See Söderlind (1999) for easy-to-use solution procedure.
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world requires active monetary policy would accompany the fiscal policy which instantaneously
reacts to shocks. This is what we plot in Figure 2, left panel.

The Non-Ricardian world is very different. For the very backward-looking consumers, a
strong reaction of the interest rate to higher inflation would leave inflation high and stable,
and this generates welfare losses. At the same time, when the private sector is sufficiently
forward-looking, an optimal monetary policy can satisfy Taylor principle. In this case an active
monetary policy causes sharp contraction of output, but it is brought back immediately because
inflation expectations stay high so the real interest falls quickly, see Figure 2, left panel. The
gain from faster output stabilisation outweighs losses from slower inflation adjustment, compare
two panels of Figure 4. The effect of demand in the Phillips should not be too large, otherwise
the expected inflation is not high enough to bring output back quickly through the lending
channel. Therefore, we can only find it active in the specification of the model leading to small
coefficients κ1 and κ2, as our calibration suggests (Table 1).

In the theoretical model with inflation inertia terms in the loss function, the requirement of
slow inflation adjustment has a strong implications for the activity of an optimal monetary policy.
The calibration shows that the term with inflation inertia in the central bank’s loss function is
always substantial in size and it completely dominates all other terms in the government’s loss
function if consumers are very backward-looking. Therefore, in the Ricardian world the optimal
monetary policy can be passive. Otherwise an active policy can bring inflation down too quickly
and this would cause welfare losses. We observe, indeed, that the feedback coefficients diminish
when ω is close to one. Again, inflation expectations of the sufficiently forward-looking private
sector can adjust quickly to bring inflation down, so the active policy may not be required
either. However, there is an area in between with sufficiently backward-looking private sector
where expectations are not that strong, but the loss function already requires fast convergence
of level inflation back to the equilibrium. Here an active monetary policy might increase welfare.

The stabilisation in the Non-Ricardian world for the very backward-looking private sector,
however, may be consistent with active responses. Since it is optimal for the society that
inflation would fall slow, following an inflation shock, interest rate may rise in response to the
shock. A rise in interest rate will increase domestic debt, and inflation will remain high simply
because it will be also reacting to the level of domestic debt. A rise in interest rate also depress
output, so if the demand pressure has some effect on the inflation process, then there will be
a counterveiling effect. Which effect dominates we can only say using a numerical excersize.
The numerical experiment presented in Figure 2, right panel shows that for our calibration the
optimal feedback coefficients increase for large ω indeed, although he optimal policy remains
passive. If consumers are not that backward-looking, the optimal policy does not satisfy Taylor
principle — inflation should fall reasonably fast, and it cannot be achieved with aggressive policy
rules. The optimal feedback on inflation and output parameters can even go into the negative
area.

It is apparent from this analysis that our conclusions are much dependent on the size of
demand effect in the Phillips curve. We are using a microfounded model which produces small
coefficients κ1 and κ2, so there is a disconnect between conventional lending channel of monetary
policy and the fiscal channel which works through the debt channel. This model is close to the
one of Leeper (1991) and the results presented in Figure 2 can be interpreted as the results on
optimal monetary policy in in the Leeper’s world.

We can investigate the optimal monetary policy with strong conventional lending channel if
we impose realistic coefficients κ1 and κ2. For example, we may amend the model and try to
account for the imperfect competition at the labour markets. This will give us more realistic
coefficients on demand pressure and coefficient on output in the central bank’s objective function,
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and we still keep inflation inertia terms. We present some explanations of this amendment in
Appendix C and the result of calibration is included in Table 1.

The presence of relatively strong lending channel has a substantial effect. The left panel of
Figure 3 plots the results for the model with traditional loss function. In the Ricardian world the
area of active optimal policy widens. To have the same disinflation path as in the base model,
we need to deal with smaller output deviations from the target. So the monetary policy should
be more active in general and react more agressively to the ouput in particular. This is also
consistent with having higher unemployment aversion in the loss function. In the non-Ricardian
world, as we discuss above, an active monetary policy is more likely to cause welfare losses and
Figure 3, left panel suggests that this is now the case.

The model with theoretical loss function suggests that in the Ricardian world the monetary
policy should be passive for the whole range of ω, so it is not plotted. In the Non-Ricardian world,
however, the optimal monetary policy is now active for the very backward-looking population
— the debt effect stil outweigh the demand effect on inflation, but the requirement of bigger
unemployment aversion requires more activity.

Overall, the model with traditional loss function and with reasonable calibration parameters
does not suggest any more that in the Non-Ricardian world the monetary policy should be active.
The effect is only present for the very backward-looking population where we have requirement of
smooth inflation adjustment. Additionally, in all our excersizes the negative feedback coefficient
on the level of domestic debt was found quite stable and sufficiently large. Therefore we can
conclude that the fiscal (debt) channel is the main channel of transmission of shocks into the
inflation process, the optimal monetary policy is passive regardless of the presence of the lending
channel, thus it is completely devoted to the stabilisation of domestic debt.

5.2 Welfare evaluation

The cost of ‘active’ fiscal policy can be assessed by comparing the cost-to-go under Ricardian and
non-Ricardian regimes6. These costs are plotted in Figures 6-7, top rows. We plot log difference
from the costs incurred under the Ricardian, fully optimal time-inconsistent regime (R C).
For the theoretical model with traditionall loss function, Figure 6, top left panel, the cost of
having active fiscal policy is below 0.1 for the backward-looking population. Here the monetary
policy ensures determinacy in the Ricardian world and does not satisfy Taylor Principle under
the FTPL. However, the gap widens dramatically with lower ω, i.e. for more forward-looking
consumers, when all costs are small, so this is not surprising.

The bottom row of each figure evaluates feedback rules in the non-Ricardian world, which
were optimal with respect to either theoretical or traditional loss function, with respect to an
alternative loss function. It is apparent that if the alternative welfare criterion was used, then
the welfare loss can be substantial, sometimes exceeding 100%. The results are more robust to
the choice of the welfare creterion in the case with more realistic coefficients, see Figure 7, where
there is a very large difference is only or extremely backward-looking consumers. Therefore, it
might be crucial whether a policymaker uses an approprate welfare function.

Additionally, it is apparent, (see also Steinsson (2002)) that the difference in welfare due
to different loss functions is much bigger than the difference in welfare of two policies, time-
consistent feedback rules and time-inconsistent optimal commitment plans.

6See, e.g. Currie and Levine (1993), pp. 107-111 on how to compute it. We assumed an autoregressive process
for the disturbances.
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5.3 Activity of the Fiscal Policy

Suppose that the fiscal authorities operate with a feedback rule, b∆t = −µbt, 0 ≤ µ ≤ 1 (note that
bt is observable). From the budget constraint bt+1 = bit+ 1

β (bt−πt+ b∆t) = bit+ 1
β ((1−µ)bt−πt)

it follows that as soon as 1−µ
β ≥ 1 inflation might need to react to the level of domestic debt.

Indeed, the debt accumulation process is not a stationary process on its own so a conceivable
outcome of optimal policy is where both interest rate and inflation react with a unique stationary
equilibrium. If 1−µβ < 1 then the debt accumulation is a stationary process, and inflation does
not have to react to ensure the bounded solution. Again, it might be optimal for the private
sector to react to the level of debt in order to maximise welfare, but if the Ricardian world
has indeterminacies under the optimal monetary policy, they will remain in the system. If 1−µβ
is small enough, i.e. the response of the fiscal policy is strong, the debt will be close to its
equilibrium path and the private sector’s inflation might not be affected. Our simulations show
that with 1 ≥ µ > µR we get a Ricardian result: price and wage-setting decisions of the private
sector are not affected by the fiscal stance and for the monetary policy it is not optimal to react
to the level of domestic debt. We plot µR in Figure 8. Feedback coefficient µR is on average
of 0.2-0.3, and it goes down with more backward-looking private sector. A backward-looking
private sector is using past information predominantly, so it is enough to ensure that the debt
is on non-explosive path (this can be done with small µ, 1−µβ < 1) so the private sector stops
reacting on it.

It is apparent that the threshold feedback coefficient on debt in the fiscal policy rule, µR, is
much smaller in absolute value than the coefficient on debt needed in the optimal interest rate
rule (a typical feedback coefficient on debt in a interest rate rule is between 1 and 2). Obviously,
there is an interaction between inflation and interest rate in the debt accumulation equation so
we cannot expect a symmetrical solution for the deficit and interest rate rules, but, nevertheless
one can conclude that even if the monetary policy has to take debt into account, its stabilisation
abilities are much worse the one of fiscal policy.

6 Conclusions

In this paper we characterised the optimal monetary policy under the fiscal theory of the price
level. We have shown that an ‘active’ fiscal policy is costly. If the fiscal authorities pay no
attention to the level of domestic debt, fiscal disturbances can strongly affect the wage-price
setting behaviour of the household sector. In this environment the monetary policy is severely
restricted in its ability to stabilise inflation and output fluctuations. As a result, the optimal
monetary policy is concerned with stabilisation of domestic debt and only slightly feeds back on
inflation and output — the channel of transmission is predominantly fiscal. We have also shown
that a moderate feedback on debt for a fiscal authorities will make the model observationally
equivalent to the one with Ricardian fiscal policy.
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Table 1: Values for the structural parameters

ω 0.01 0.7 0.85 0.99 0.01 0.7 0.85 0.99 0.01 0.7 0.85 0.99
γ = 0.6, σ = 0.5, ν = 0 γ = 0.85, σ = 0.5, ν = 0 γ = 0.85, σ = 2.0, ν = 0

χf 0.98 0.46 0.42 0.38 0.99 0.55 0.50 0.46 0.99 0.55 0.50 0.46
χb 0.02 0.54 0.59 0.62 0.01 0.45 0.50 0.54 0.01 0.45 0.50 0.54
κ1 0.19 -0.04 -0.06 -0.07 0.02 0.00 -0.01 -0.01 0.01 0.00 0.00 0.00
κ2 0.01 0.23 0.25 0.27 0.00 0.02 0.02 0.02 0.00 0.02 0.02 0.02

κ1 + κ2 0.19 0.19 0.19 0.19 0.02 0.02 0.02 0.01 0.01 0.02 0.02 0.02
λ1 0.04 0.04 0.04 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
λ2 0.02 3.89 9.44 165.0 0.01 2.75 6.67 116.4 0.01 2.75 6.67 116.4
λ3 0.00 0.15 0.35 6.17 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00
λ4 0.01 1.50 3.65 63.80 0.00 0.11 0.27 4.65 0.00 0.03 0.07 1.30

λ1 + λ3 0.04 0.18 0.39 6.21 0.00 0.01 0.01 0.05 0.00 0.00 0.00 0.00

γ = 0.6, σ = 0.5, ν = 30 γ = 0.85, σ = 0.5, ν = 30 γ = 0.85, σ = 0.5, ν = 30

χf 0.98 0.46 0.42 0.38 0.99 0.55 0.50 0.46 0.99 0.55 0.50 0.46
χf 0.02 0.54 0.59 0.62 0.01 0.45 0.50 0.54 0.01 0.45 0.50 0.54
κ1 2.42 -0.46 -0.72 -0.92 0.25 -0.06 -0.09 -0.12 0.24 -0.05 -0.09 -0.11
κ2 0.05 1.48 1.62 1.72 0.00 0.13 0.14 0.15 0.00 0.13 0.14 0.15

κ1 + κ2 2.47 1.03 0.89 0.79 0.25 0.07 0.05 0.04 0.24 0.08 0.06 0.04
λ1 0.04 0.04 0.04 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
λ2 0.02 3.89 9.44 165.0 0.01 2.75 6.67 116.4 0.01 2.75 6.67 116.4
λ3 0.11 24.5 59.6 1042 0.00 0.19 0.45 7.86 0.00 0.17 0.40 7.01
λ4 0.08 19.55 47.47 829.4 0.01 1.43 3.46 60.5 0.01 1.35 3.27 57.1

λ1 + λ3 0.15 24.6 59.7 1042 0.00 0.19 0.45 7.86 0.00 0.17 0.40 7.01

λ 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Note: The model is:

πt = χfβπt+1 + χbπt−1 + κ1xt + κ2xt−1 + eε1t
xt = ξxt+1 + (1− ξ)xt−1 − ξσ(bit − πt+1) + eε2t
bt = bit + 1

β
(bt−1 − πt) + eε3t

LI
t = π2t + λ1x

2
t + λ2(∆πt)

2 + λ3x
2
t−1 + λ4xt−1∆πt

LII
t = π2t + λx2t
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A Aggregate Supply Equation

To introduce inflation persistence into the model we follow Steinsson (2002) and divide individ-
uals into three groups according to their pricing behaviour. A proportion of agents is able to
reset their price every period: with probability 1 − γ they re-contract new price Pn

H . For the
rest of the household sector the price will rise at the steady state rate of domestic inflation ΠH
with probability γ:

PH,t = ΠHPH,t−1 (11)

Those who recontract a new price (with probability 1− γ), are split into backward-looking
individuals and forward-looking individuals, in proportion ω, such that the aggregate index of
prices set by them is

P×H,t = (P
f
H,t)

1−ω(P b
H,t)

ω.

Backward-looking individuals set their prices P b
H,t according to the rule of thumb:

P b
H,t = P×H,t−1ΠH,t−1(

Yt−1
Y n
t−1
)δ (12)

where:

ΠH,t =
PH,t

PH,t−1

and Y n
t is the efficient level of output (defined later).

The forward-looking individuals are able to solve the first order conditions and obtain an
optimal solution P f

H,t. These conditions are discussed in the next section. For the household
sector as a whole, the price equation can be written as:

PH,t = [γ(ΠHPH,t−1)1− + (1− γ)(1− ω)(P f
H,t)

1− + (1− γ)ω(P b
H,t)

1− ]
1
1− . (13)

Steinsson (2002) derives the Phillips curve for our economy of the following form:

πt = χfβπt+1 + χbπt−1 + κ1xt + κ2xt−1 (14)

where:

χf =
γ

γ + ω(1− γ + γβ)
, χb =

ω

γ + ω(1− γ + γβ)
,

κ1 = (
(1− γβ)(1− γ)(1− ω)

σ(γ + ω(1− γ + γβ))

(ψ + σ)

(ψ + )
− (1− γ)γβωδ

γ + ω(1− γ + γβ)
),

κ2 =
(1− γ)ωδ

γ + ω(1− γ + γβ)
.

This equation is valid for 0 ≤ ω < 1.When ω → 0 the Phillips curve collapses to the familiar
purely forward-looking specification of Woodford (200x):

πt = βπt+1 + κ1xt (15)

with

κ1 =
(1− γβ)(1− γ)

σγ

(ψ + σ)

(ψ + )
.
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For ω = 1 the derivation is incorrect. Taking limit as ω → 1 we come to the specification:

πt =
γβ

1 + γβ
πt+1 +

1

1 + γβ
πt−1 − (1− γ)γβδ

1 + γβ
xt +

(1− γ)δ

1 + γβ
xt−1

However, it is an illusion that this specification has a non-trivial forward-looking component.
The unique bounded solution of this equation is

πt = πt−1 + (1− γ)δxt−1 (16)

and it is of the form of the acceleration Phillips curve.
Parameter δ is determined from the following considerations (see Steinsson (2002)). The

Phillips curve collapses to the forward-looking specification (15) for ω = 0 and to the ‘accelera-
tionist’ specification (16) when ω = 1. We require coefficients on output to have the same
value, we denote it κ, and that determines δ = (1−γβ)(ψ+σ)/(σγ(ψ+ )). Eliminating δ from
the parameters we get:

χf =
γ

γ + ω(1− γ + γβ)
, χb =

ω

γ + ω(1− γ + γβ)
,

κ1 =
(1− γ)(1− γβ)(ψ + σ)

(γ + ω(1− γ + γβ))σ(ψ + )
[1− ω(1 + β)],

κ2 =
(1− γ)(1− γβ)(ψ + σ)ω

(γ + ω(1− γ + γβ))σγ(ψ + )

κ1 + κ2 =
(1− γ)(1− γβ)(ψ + σ)

(γ + ω(1− γ + γβ))σ(ψ + )
[1− ω(1 + β − 1

γ
)] > 0

B Government’s Loss Function

Steinsson (2002) shows that the Central bank’s minimisation problem can be reduced down to:

min
{is}∞s=t

Et
∞X
s=t

βs−t[π2s + λ1x
2
s + λ2(∆πs)

2 + λ3x
2
s−1 + λ4xs−1∆πs]

where

φ1 =
1

ψ
+
1

σ
, φ2 = (

1

ψ
+
1
),
φ1
φ2
=
(σ + ψ)

( + ψ)σ

λ1 =
(1− γβ)(1− γ)

γ 2

φ1
φ2

, λ2 =
ω

γ(1− ω)
, λ3 =

(1− γ)2δ2ω

γ(1− ω)
, λ4 =

2ωδ(1− γ)

γ(1− ω)

This equation is valid for 0 ≤ ω < 1.When ω → 0 the one-period loss function Ls = π2s +λ1x
2
s+

λ2(∆πs)
2 + λ3x

2
s−1 + λ4xs−1∆πs collapses to the familiar Ls = π2s + λ1x

2
s which is reported by

Woodford (200x), Chapter 6. As ω → 1 λ2, λ3 and λ4 become unbounded. However, the relative

size of these three terms λ2+λ3+λ4 = ω
(1−ω)

(1+(1−γ)δ)2
γ remains constant so what really happens

is that the size of the first two terms shrinks as the fraction of backward-looking price setters
rises. The control of inflation becomes less and less important relative to the control of change
in inflation.
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C Imperfect competition on Labour Markets

We can modify the model by assuming that the wage-setting curve is above the labour supply

curve, namely wt(z) = Pt
vy(yt(z),ξt)
uC(Ct,ξt)

(1+ϕ)
³

Yt
Y n
t

´ν
. Here we assume that efficiency wages impose

constant mark-up ϕ on the labour supply curve and term
³

Yt
Y n
t

´ν
explains bargain power when

employment rate differs from its equilibrium rate. This leads to the following modifications:

χf =
γ

γ + ω(1− γ + γβ)
, χb =

ω

γ + ω(1− γ + γβ)
,

κν1 =
(1− γβ)(1− γ)(1− ω)

σ(γ + ω(1− γ + γβ))

(ψ + σ(1 + νψ))

(ψ + )
− (1− γ)γβωδ

γ + ω(1− γ + γβ)
,

κν2 =
(1− γ)ωδ

γ + ω(1− γ + γβ)
.

The requirement to have the same coefficients on output for the forward-looking and accelera-
tionist Phillips curve suggests δ = (1− γβ)(ψ + σ(1 + νψ))/(σγ(ψ + )), so

κν1 =
(1− γβ)(1− γ)(ψ + σ(1 + νψ))(1− (1 + β)ω)

(γ + ω(1− γ + γβ))σ(ψ + )

κν1 + κν2 =
(1− γβ)(1− γ)(ψ + σ(1 + νψ))(1− ω(1 + β − 1

γ ))

(γ + ω(1− γ + γβ))σ(ψ + )
> κ1 + κ2

The derivation of the Central Bank’s Loss Function is the same as in Steinsson (2002), so
the only effect on coefficients works through different δ that increases λ3 and λ4. Therefore, this
specification requires more output stability but, simultaneously, the need for inflation inertia is
enhanced.

D Canonical form of the model and matrix partitioning

The system in matrix form can be written as:bΩZt+1 = bAZt + bBUt + bEeεt
where Zt = (Y 0t ,X 0

t)
0 and Yt is predetermined state and Xt is non-predetermined state. This

equation should give a unique solution, given boundary conditions and control Ut. Therefore, bΩ
needs to be invertible.

We multiply both sides by bΩ−1 to come to the canonical form of representation:

Zt+1 = AZt +BUt +Eeεt
The government’s loss function (7) can be written in terms of target variables,Gt = (πt, xt,∆πt, xt−1)0

as

min
{bis}∞s=t

1

2
Et

∞X
s=t

βs−tLs = min
{bis}∞s=t

1

2
Et

∞X
s=t

βs−tG0sQGs

and, again, matrix Q is given in Appendix D. The target variable Gt can be linked to the state
variable Zt as Gt = CZt, so that the criterion can be re-written as:

min
{bis}∞s=t

1

2
Et

∞X
s=t

βs−tG0sQGs = min
{bis}∞s=t

1

2
Et

∞X
s=t

βs−tZ 0sC
0QCZs = min

{bis}∞s=t
1

2
Et

∞X
s=t

βs−tZ 0sQZs

where Q = C0QC.
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D.1 Non-Ricardian world, model with persistence

In this case, the predetermined state is Yt = (πt−1, xt−1, bt)0, and the non-predetermined state
is Xt = (πt, xt)

0, so matrices are :

A11 =

 0 0 0
0 0 0
0 0 1

β

 , A12 =
 1 0

0 1
− 1β 0

 ,
A21 =

"
− χb

βχf
− κ2

βχf
0

σχb

χfβ
σκ2
χfβ
− (1−ξ)

ξ 0

#
, A22 =

"
1

βχf
− κ1

βχf

− σ
χfβ

σκ1
χfβ

+ 1
ξ

#
,

B1 =

 00
1

 , B2 = · 0σ
¸
,

E1 =

 0 0 0
0 0 0
0 0 1

 , E2 = " − 1
χfβ

0 0
σ

χfβ
−1ξ 0

#

Q =


1 0 0 0
0 λ1 0 0
0 0 λ2

1
2λ4

0 0 1
2λ4 λ3

 , C =


0 0 0 1 0
0 0 0 0 1
−1 0 0 1 0
0 1 0 0 0


D.2 Non-Ricardian world, model without persistence

If the economy is closed then there is no persistence in any of the equations, including the budget
constraint, and there is only one predetermined variable, Yt = (bt−1)0, the non-predetermined
state is Xt = (πt, xt)

0, so the matrices take the form:

A11 =

·
1

β

¸
, A12 =

h
− 1β 0

i
,

A21 =

·
0
0

¸
, A22 =

"
1
β −κ1

β

−σ
β 1 + σκ1

β

#
,

B1 = [1] , B2 =

·
0
σ

¸
,

E1 =
£
0 0 1

¤
, E2 =

"
− 1β 0 0
σ
β −1 0

#

Q =

·
1 0
0 λ1

¸
, C =

·
0 1 0
0 0 1

¸

E Indeterminacy of the price level in the Ricardian setup (Tay-
lor principle)

Consider the Ricardian fiscal policy in a deterministic setup
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1 0 0 0
0 1 0 0
0 0 χfβ 0
0 0 ξσ ξ




πt
xt

πt|t+1
xt|t+1

 =


0 0 1 0
0 0 0 1
−χb −κ2 1 −κ1
0 −(1− ξ) 0 1




πt−1
xt−1
πt
xt

+

0
0
0
ξσ

 hbiti

Bring it to the canonical form:


πt
xt

πt|t+1
xt|t+1

 =


0 0 1 0
0 0 0 1

− χb

βχf
− κ2

βχf
1

βχf
− κ1

βχf

σχb

χfβ
σκ2
χfβ
− (1−ξ)

ξ − σ
χfβ

σκ1
χfβ

+ 1
ξ




πt−1
xt−1
πt
xt

+

0
0
0
σ

 hbiti

Suppose the feedback rule is

bit = θππt−1 + θxxt−1

then the system under control is rewritten as
πt
xt

πt|t+1
xt|t+1

 =


0 0 1 0
0 0 0 1

− χb

βχf
− κ2

βχf
1

βχf
− κ1

βχf

σχb

χfβ
+ σθπ

σκ2
χfβ
− (1−ξ)

ξ + σθx − σ
χfβ

σκ1
χfβ

+ 1
ξ




πt−1
xt−1
πt
xt


In order the system would have a unique saddle path solution we need two explosive and two
non-explosive roots. The necessary condition for the second biggest root to be outside the unit
circle is:

θπ > 1− θx
1− χfβ − χb

κ1 + κ2

We can check that with substitution of the parameters into the system’s matrix, it will have
exactly one unit root, one root greater than one, and two roots inside the unit circle (we used
Maple to get the result and check it for different sets of parameters).
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