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Abstract

The aim of this paper is to examine and measure default risk con-
tagion in Latin American sovereign debt prices based on three salient
characteristics of Emerging Bond Markets (EBM): a high degree of
volatility persistency, the existence of risk premiums and a high frac-
tional comovement of spread changes. To this end, a new bivariate
FIGARCH(1, d, 1) − in −Mean model is proposed. We conjecture
that the nature of this contagion is global, based on informationally
inefficient and incomplete markets and resulting of the type of herd-
ing behaviour described by Calvo (1999), in which fundamentals turn
insufficient to explain contagion. High persistency is explained as the
result of market rigidities and the manner in which EBM market oper-
ates; fractional comovement, in turn, gives support to the view on the
existence of a common global factor driving EBM in the same direc-
tion, and risk premiums (risk aversion and pure risk) are time varying
and seem to significantly explain spread changes. In general, the find-
ings call for the creation of global financial structures with the ability
to supervise, to intervene in face of liquidity squeezes (as in Calvo
(2002)) and to provide market participants with efficient and quality
information to prevent contagion.
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1 Introduction

The contagion episodes in Latin America (LA) during the nineties have been
commonly attributed to direct trade links and weak fundamentals. However
a full explanation of such events cannot be drawn without analyzing the
conduct of international financial markets and in particular the deportment
of debt prices in Emerging Bond Markets (EBM).

Fundamentals seem insufficient to explain contagion. Beattie (2000) sug-
gests for instance that the contagion observed in LA from the Asian and
Russian turmoils is more characteristic of a financial crisis in which invest-
ment flows are at least as important as economic fundamentals in prompt-
ing a given crisis1. Eichengreen and Mody (1998) believe, in addition, that
spread changes in EBM over time are, to a good extent, explained by shifts
in market sentiment rather than by shifts in fundamentals.

Furthermore, it is believed that during the contagious events in the
nineties, developed markets may well have served as the conduit between
regions of developing markets. There is in fact some early evidence suggest-
ing that the actual base of crisis transmissions and contagion may have been
the off-shore Brady markets -see Baig and Goldfajn (2000) and Kaminsky
and Reinhart (2002).

The nature of this global financial contagion has been explained by
Calvo (1999) as the result of herding behavior2 generated in a liquidity-
crunch setting. EBM are populated by two types of investors: informed
and uniformed3. Uninformed investors have few incentives to obtain costly
information about the countries held in their portfolios and hence follow
the behavior of well informed investors. In order to meet unexpected mar-
gin calls during the Russian crisis for instance, institutional investors were
forced to sell their Emerging Markets (EM) bond holdings, including those
of LA, despite in many cases being still good viable options. The resulting
massive sell-off of bonds could have been falsely interpreted by uniformed
investors as a deterioration of LA credit -see also Beattie (2000).

Jostova (2002) considers that this kind of rush massive sell-offs are not
automatic or immediate in EBM. They lack ‘noise traders’ and that pre-
vents them from being completely informationaly efficient. Institutional
investors have strict ‘tracking error’ and ‘diversification’ constraints that
don’t allow portfolio managers to freely cash out EM bonds to face sudden
liquidity crunches. In addition, dedicated investors are reported to react
more slowly to market signals since they pursue returns relative to a bench-

1 In fact the volume of Russian trade with EM and specially with Latin America is not
significant.

2Calvo (2002) has also offered a global hazard explanation for contagion.
3Herding behaviour has also been linked to market volatility -see Eichengreen and

Mody (1998).
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mark (EMBI+). Departures from the benchmark would lead to substantial
investment and business risk. Jostova (2002) suggests that these facts may
allow for the existence of various degrees of persistency, a potential stylized
fact, we consider, of EBM. In fact, Calvo (2002) has pointed out that finan-
cial rigidities are a salient feature in these markets and are almost surely
behind severe crisis.

Eichengreen and Mody (1998) have suggested under these circumstances
that risk premiums may additionally fail to adjust to reflect deteriorating
economic conditions, news and to capture the response to changes in the
spreads of other countries.

A very stylized fact of EBM is the strong comovement between the
spreads noticed among others by Mauro et al. (2000) and Fiess (2003). Some
observers consider that this synchronization is perhaps an indication that
investors regard shocks as common or that a single global factor is driving
all EM spreads in the same direction -see Cunninham et al. (2001).

A widely preferred tool to examine the comovement of sovereign spreads
is the cross-correlation coefficient. This is assumed to provide information on
the speed, degree and direction of contagion. Even though this seems a very
feasible measure for short term cross market dependencies, such indicator
has at least two major criticisms: it does not take into account the apparent
long-run relationship of these bonds and disregards the existence of risk
premia.

Forbes and Rigobon (1999) argue, in fact, that such a measure often
finds contagion where there is only interdependence. Contagion is not, in
their view, the result of changing autocorrelations but it comes from chang-
ing volatilities. Baig and Goldfajn (2000) suggest in fact that excluding
volatilities from the analysis may be wrong, since by definition contagion is
the result of panic, margin calls, thin markets, etc., factors which are at the
same time held responsible for changes in volatility.

In the view of all these EBM features, the aim of this paper is to examine
and measure long term default risk contagion in Latin American sovereign
markets. Default contagion is statistically defined as the existence of long
run interdependence and, in particular, as the situation in which the per-
ception of default risk in one sovereign country changes the perception of
sovereign default risk of another.

We perform this task by proposing two new bivariate FIGARCH-in-Mean
models to the literature that are motivated by the salient features of EBM.
This new approach, in contrast with existing techniques to model contagion,
allows to capture the observed persistency, the fractional comovement and
risk premium of these markets simultaneously.

Although there have been results reporting the existence of comovement
in these markets, there has not been an explicit modelling of the long term
persistency and risk premia in Emerging Bond markets despite their poten-
tial influence on capital flows and fundamentals. The FIGARCH-in-Mean
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models here proposed overcome these weaknesses in the literature of con-
tagion and provide to the applied econometric literature a new bivariate
model.

Among the empirical findings we report a high degree of default risk
contagion (interdependence) between Latin American bond markets. This
finding is related to financial inflexibilities, microstructure effects and, in
general, to herding behavior. We also find high degrees of persistency, i.e.,
long memory, strong evidence of fractional comovement and significant risk
premiums.

The following section of the paper provides a descriptive analysis of the
Emerging Market Bond Indexes (EMBI) of JP Morgan and renders the
operative concepts of contagion used throughout.

The third section investigates the Long Memory properties in Latin
American sovereign markets. The data shows evidence of short-term persis-
tency and a battery of heuristic and semiparametric methods also suggest
the existence of Long Memory. The first estimates of the Long Memory
parameter as well as of the contagion parameter are provided.

Univariate Long Memory models and the econometric models of Teyssière
(1997) and Brunetti and Christopher (2000) are described in detail in sec-
tion four. Then, based on the salient features of Emerging Bond Markets,
two new bivariate FIGARCH(1,d,1)-in-Mean specifications are proposed.

Quasi-Maximum Likelihood Estimation (QMLE) results are reported in
section five. In addition to the discussion of the econometric performance of
the new specifications, we argue about the existence of persistency, of com-
mon shocks driving the behavior of global markets, default risk contagion
and risk premium.

Policy implications and the significance of our findings to the understand-
ing of Sovereign Emerging Bond Markets are discussed in the conclusions.

2 Sovereign Emerging Bond Markets

Sovereign Emerging Bond Markets (EBM) have grown impressively since
the first issuance of Brady bonds by Mexico in 1990, and have become one
of the largest and most liquid international markets. Overall, the amount
of outstanding debt, including Eurobonds up to the first quarter of 2002
summed to more than 300 US$ billion, 50 percent of which come from Latin
American issues4.

The usual suspects in every analysis of spillover and contagion, i.e., Ar-
gentina, Brazil, Mexico and more recently Venezuela, account for more than

4However, the composition of oustanding debt has changed very significantly in the past
years. By the end of 2001 Merrill-Lynch reports that Brady bonds alone accounted for 39%
of the original face, compared with more than 50% in the mid-nineties. They expect this
trend to continue as a result of the retirement of Brady debt through exchanges, buybacks,
calls, warrant exercises, defaults and subsequent restructuring and amortizations.
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90% of market debt in Latin America and drive around 50 or 60% of most
emerging market bond indices. The Brady debt alone issued by these coun-
tries to date sums more than 51 US$ billion.

Sovereign bond price dynamics is also of crucial importance given the
direct and indirect influences on fundamentals. Default risks and their prob-
abilities in emerging markets have been associated to capital flows, GDP,
stock markets, good prices, exchange rates, interest rates and other policy
variables (see Min (1998), Ferrucci (2003) and Fiess (2003) for instances).

In this section we analyze daily long term sovereign credit spreads as
proxied by the Emerging Bond Market Indexes (EMBI) of JP Morgan for
different Latin American countries and provide the working definition for
contagion to be used throughout this paper.

2.1 Data Analysis

Figure 1 shows the spreads in logs for Brazil, Mexico and Venezuela from
December 31st 1990 to July 10th 2002. The sample in Argentina begins on
April 30, 1993 with the first issue of Brady Bonds. EMBI spreads provide a
single measure of pure sovereign default risk of a given country and may be
readily interpreted as excess returns over US treasuries. A relatively high
spread may indicate a greater risk of default and also a lower return on
risk-free investments.

Some authors have documented the high degree of cross correlation
among EMBI spreads as well as a remarkable comovement, common trends
and hence potential common shocks -see Mauro et al. (2000), Jostova (2002)
and Fiess (2003). By considering the whole sample, individual time varying
risk premiums are strongly suggested by the data and the relative premium
between two given countries does not seem stable5. For this reason, the
kinetics of these bonds should be analyzed together instead of country by
country.

The first difference of the spreads in logs, i.e. st, is presented in Figure 2.
By definition, changes in the spread can be interpreted as changes in excess
returns over US treasuries. These changes reflect general emerging market
prospects and hence the credit risk attached to emerging market assets -see
Cunninham et al. (2001).

Periods of high volatility in these variables are mostly related to currency
crisis in Latin America and other latitudes. For instance, the Tequila Crisis
ignited immediately after the Peso devaluation in December 1994 affected,
naturally the Mexican spread almost immediately. Bond prices of external
debt in the rest of the countries responded to different degrees and duration

5This conjecture is in direct contrast with the analysis of Forbes and Rigobon (2000)
who by analyzing a shorter sample and the difference between any two given spreads
suggested a relatively constant risk premium as measured by the difference of two given
spreads.

5



Figure 1: EMBI spreads in logs 31 Dec. 1990 - 30 Jun. 2002.

after the nominal devaluation as shown in the plots by the vertical lines.
Even more interesting is to observe that there seems to be contagion follow-
ing the crises in Hong Kong or Russia, countries with no significant direct
trade links with Latin America6.

Spread changes in these plots also show some of the common stylized
facts of returns, namely, the presence of clusters and an apparent degree
of short range dependence. There are potential high comovement and time
varying volatility.

EMBI are foreign currency denominated instruments and hence the large
spread changes in crisis periods may also reflect currency depreciations. Mi-
crostructure effects such as the result of transaction costs, asymmetric in-
formation and liquidity may also be important factors behind this behavior.
Summary descriptive statistics of this data are presented in Table 1.

2.2 Defining Contagion

This paper adopts one the broadest definition of contagion in the litera-
ture that identifies it as any channel linking countries and causing markets
to commove -see Forbes and Rigobon (2000). Although the possibility of

6By analyzing the cases of Brazil and Argentina, Beattie (2000) argues that the extent
of contagion is a function of fiscal and monetary positions and financial integration in
world capital markets.
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Figure 2: EMBI spread changes to July 10th 2002.

trade links is admitted, the nature we assign to this type of contagion is
mostly financial and rests on incomplete information, liquidity constraints
and herding behavior.

There are of course alternative conventions and they have been well sum-
marized by Edwards (2000) and Forbes and Rigobon (2000) among others.
Shift contagion7 for instance arises when there is a significant increase in
cross market linkages after a shock to an individual country in the region;
while interdependence arises if the transmission of a shock is a continuation
of cross market linkages that exist during more tranquil periods that could,
in addition, be explained by fundamentals.

Edwards (2000) has summarized as well the theoretical sources of conta-
gion, namely multiple equilibria, incomplete information models and liquid-
ity squeezes. The third of these sources suggest that in front of a difficult
situation dedicated investors may decide to sell-off other securities in the
same asset class, resulting in drastic declines in prices of countries originally
unaffected by the crisis, even with strong fundamentals. This is because the
assessment of risks is global; in periods of heightened risk aversion, investors

7This definition appears consistent with the one of Edwards (2000) who defines resid-
ual contagion as those situations where the extent and magnitude to which a shock is
transmitted internationally exceeds what was expected ex ante.
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would choose to retrench from emerging markets as a whole independently
of particular fundamentals in local markets -see Hausler (2003).

Table 1: EMBI, descriptive statistics, daily spread changes (st)a in logs.
x σ Sb Kc JBd Min. Max. n LB(20)e

Argentina 0.0005 0.0188 0.8775 11.61 13,780 -0.1274 0.1709 2,398 67.61∗

Brazil 0.0001 0.0130 1.9415 24.60 77,712 -0.0934 0.1725 3,007 96.25∗

Mexico -0.0002 0.0164 0.3330 18.95 45,041 -0.2031 0.1764 3,007 82.05∗

Venezuela 0.0001 0.0147 1.7089 24.60 77,299 -0.1045 0.2020 3,007 101.69∗
∗Significant at the 1% level. a st=log(St)-log(St−1) where St is the EMBI spread; bSkewness;
cKurtosis; dJarque-Bera statistic; eLjung-Box Statistic, order in brackets.

Incomplete information and liquidity crunches are behind the type of
contagion described by Eichengreen and Mody (1998), Calvo (1999) and
Beattie (2000). Costly information generates the existence of informed and
uninformed investors. Dedicated institutional investors are usually followed
by uninformed investors who in addition may react more to news and market
sentiment. During a local financial turmoil, margin calls may arise in which
EM informed investors would have to resort most probably to big sell-offs
of bonds of the same class in order to meet liquidity requirements8. The
sell-off of bonds, say LA issues, would be carried out independently of how
good and viable are the fundamentals. Beattie (2000) notices for instance
that in the event of the Russian crisis, Brazilian government bonds (with a
large EM share) were the obvious victims since they were one of the most
viable options to meet liquidity needs. The massive sell-off may have falsely
been interpreted as a deterioration of Brazilian credit by unsophisticated
(uninformed) investors.

3 Detection of Long Memory in EM

Jostova (2002) has recently reported the presence of short term persistency
in Emerging Bond Markets arising from financial rigidities, market operation
procedures and the markets being not completely informationaly efficient.
We conjecture that the sluggishness in the operation of EM may also result
in long term persistency or Long Memory.

The study of the long memory in high frequency data can be traced
to the study of Mandelbrot (1971) who considered the possibility of long
range dependency in asset returns and more recently to Lo (1991), Ding
and Granger (1996) and Baillie et al. (1996) who have studied long memory
in levels and volatility for different assets. The presence of Long Memory

8Massive sell-offs of bonds are quite possible in Emerging Bond Markets. The minimun
contract size of Brady bonds for instance is of the order of US$ 2 million.
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in the volatility of sovereign EBM however has not as yet been examined in
the literature9.

The aim of this section is to fill this gap by examining the individual
and joint long memory properties of Emerging Bond Market indexes in LA.
We employ some heuristic procedures and then move to more formal para-
metric and semiparametric methods to test for long range dependency. The
first estimations of the memory parameter in levels and volatility are also
provided.

3.1 Auto & Cross Correlations (spillover)

Ding and Granger (1996) suggest that a time series shows long memory if
the rate of decay of the estimated conditional variances seems hyperbolical
rather than exponential. In their study they look for long memory in ex-
change rates and stock returns and find that this property is strongest when
the power (d) -associated to the absolute value of such returns- is d=1/4
and d=3/4 respectively.

In Figure 3 we graphically analyze this property for the data described in
section 2.1. We present the autocorrelation functions of the simple daily log
differences (st) and of the absolute transformation (|st|) bounded by a 95%
confidence interval10. We observe that in all cases st present an exponential
decay rate (see lighter lines), they only have significant autocorrelations for
the very first lags while the rate of convergence of the absolute transform is
much lower (dark lines). Most of the countries present significant absolute
value autocorrelations for more than one hundred lags and Brazil (panel b),
has the first negative autocorrelation not before lag 350.

Despite the apparently different decay rates just reported, it is inter-
esting to notice that all the EMBI pairs considered show a local minimum
(significant or not) around lag 100. This would suggest that all four coun-
tries sustain a ‘common degree’ of long memory. This conjecture will be
formally tested in the next sections.

As with ACF, cross correlograms suggest as well that simple return cross
correlations decay exponentially while absolute values exhibit a hypergeo-
metric decay rate.

The graphical examination suggests strong and significant long run volatil-
ity cross dependencies in the absolute value of spread changes see dark lines
panels (a) and (b).

For ease of exposition, we examine in Figure 4 the linear cross correlation
between the Brazilian and Mexican simple returns i.e. ρmx,br, -see light lines-
and also between absolute returns, i.e. ρ|brt,mxt−i|, -dark lines-11. Panels (a)

9The Long Memory properties of foreing exchange markets with Two Component
GARCH models have been studied in another paper.
10Confidence intervals are depicted by the dotted lines and are calculated as 2√

T
.

11Given that the aim is to examine the joint long memory properties, we do not analyze
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and (b) show the ACF up to lag 400, while panels (c) and (d) show a 60-day
zoom of the cross correlations.

Figure 3: EMBI, Autocorrelation of |st| and st from high to low, daily log
differences 31 Dec. 1990 10 Jul. 2002.

With respect to the short run it is also observed that contemporaneous
spread differences in Mexico are related to past spread lag differences in
Brazil -see panel (c). There are significant positive cross correlations every
10 lags suggesting that past spread changes in Brazil would positively affect
contemporaneous Mexican default risks -see panel (c). In the case where
Brazil leads Mexico -see panel (d)-, the positive cross correlation is stronger
and more regular. Daily past default risk increases (decreases) in Mexico
would lead to contemporaneous increases (decreases) in the Brazilian spread
changes. This pattern is valid at least for the first forty days before the cross
autocorrelation function starts oscillating and loosing significance.

In Table 2 we present a summary of the cross long range dependence
properties for the series under analysis. The first column shows the lead/lag
relationships between the six pairs of countries as represented by the cross
correlation coefficients ρ1t,2t−i and ρ2t,1t−i. There is an equal contemporane-
ous response between countries only for the first lags and apparent asymmet-

other combinations further to save space. Results and details may be obtained from the
author.
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Figure 4: EMBI, Cross Correlogram Mexico vs. Brazil for |st| and st.

ric impacts afterwards -see panels (a) and (b). Except for the pair Argentina
Mexico, all countries show significant cross correlations at least until lag fifty.

We broadly define spillover as the impact of past volatility shocks to
the current behavior of spread yields. A statistically significant cross cor-
relation at time i will indicate spillover effects to the leading country. In
the last column of Table 2 we show the point at which the last significant
positive correlation before the first crossing of the axis takes place and la-
bel it as spillover. This measure will give interesting features of long range
dependencies and also will reveal whether lead/lag relationships are really
symmetric.

Volatility shocks originated three months before in Mexico or Brazil -
see first two rows-, have significantly affected Argentina’s contemporaneous
default risk. Current default risks in Brazil or Mexico were accordingly
affected by volatility shocks originated in Argentina approximately three
months in the past.

There is a surprising symmetric lead-lag response in these countries:
volatility shocks spread at similar rates from one country to another12.

12Notice that this symmetric behavior cannot be confirmed for the pairs Mexico-
Venezuela and Brazil-Venezuela.
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Table 2: EMBI, cross correlation pairs at different lag values.
lag(i) 1 10 50 100 150 200 300 Neg.a Spillb

Panel (a): ρ1t,2t−i
ρart,brt−i 0.5864 0.1087 0.0232 0.0074 -0.0145 0.0526 -0.0077 65 55
ρart,mxt−i 0.5041 0.1341 0.0544 0.0000 -0.0441 -0.0013 0.0198 67 59
ρart,vet−i 0.4340 0.0688 0.0165 -0.0064 -0.0648 -0.0119 -0.0065 47 40
ρbrt,mxt−i 0.4917 0.1702 0.1411 0.0559 0.02139 0.0265 0.0015 124 116
ρbrt,vet−i 0.4862 0.1416 0.1218 0.0652 0.0516 0.0442 0.0118 158 151
ρmxt,vet−i 0.4204 0.1233 0.0669 0.0596 0.0242 0.0565 0.0638 139 130
Panel (b): ρ2t,1t−i
ρbrt,art−i 0.5864 0.0958 0.0412 0.0068 -0.0062 0.0015 0.0030 63 57
ρmxt,art−i 0.5041 0.1254 0.0469 0.0243 -0.0077 0.0125 0.0259 66 58
ρvet,art−i 0.4340 0.0579 0.0158 0.0193 -0.0009 0.0613 -0.0180 36 30
ρmxt,brt−i 0.4917 0.1734 0.0580 0.0679 0.0590 0.1319 0.0696 128 120
ρvet,brt−i 0.4862 0.1395 0.0840 0.0823 0.0613 0.1378 -0.0009 290 286
ρvet,mxt−i 0.4204 0.1157 0.0632 0.0424 0.0027 0.0549 -0.0105 80 70
a Lag at which the first negative value is observed. bLag at which the autocorrelation function

first crosses the horizontal axis. Note: Standard errors (x2) for pairs with Argentina 0.0417; all

others 0.0365.

3.2 Semiparametric Estimates of Long Memory

So far we have graphically explored long memory in sovereign spread markets
by fixing the power transform d to unity. In this section we present more
formal methods for the detection of long range dependence and provide the
first estimations of the memory parameter for EMBI. We analyze first the
individual bond indexes and second a nonlinear combination of spreads to
explore contagion (joint degrees of fractional integration).

3.2.1 Individual bond indexes13

In Table 3 we show for each country the first difference of default risks st, the
absolute transform |st| and squared differences s2t . These last two transforms
have been widely used in the literature as proxies for the variance -see Ding
and Granger (1996), Teyssière (1997) and Giraitis et al. (2003).

The first three rows show some of the latest tests for the detection of
Long Memory14. The Modified Rescaled Range of Lo (1991) is presented in

13The following sections presume some knowledge of parametric and semiparametric
methods in Long Memory analysis by the reader. The reader is reffered to the authors
cited here and references therein.
14Lobato, the Rescaled Variance statistic and Rescaled Variance tests of long memory

were programmed in S-PLUS. Lo’s test as well as the Periodogram, Whitle and Local
Whittle estimations were computed in the same software using Taqu’s programs available
on line. ARFIMA(0,1,0) estimations were performed in Ox 3.10 using the G@RCH module.
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the first row (VLO). In contrast with the traditional R/S test, Lo (1991) test
takes into account potential short range dependencies and is more robust to
many forms of weak dependence.

The statistic was calculated for a bandwidth q = 915. In the case of simple
log differences st, the null of no-long range dependence cannot be rejected for
Brazil and Venezuela while it is rejected for Argentina and Mexico only at
the 5 and 10% respectively. If we move to analyze our proxies of volatility
|st| and s2t , we confirm the existence of long memory in the volatility of
default risks in emerging markets at the 1% level16.

Lobato and Robinson (1998) have proposed a semiparametric test for
I(0) of a time series against fractional alternatives. As with the Whittle
estimator below, semiparametric in this context refers to the lack of a para-
metric form of the spectrum in the neighborhood of the zero frequency.
Under the null I(0) this statistic has normal limit distribution.

We report Lobato and Robinson (1998), i.e., tn, test statistic in the
second row of the Table for a bandwidth of m = n4/5 where n is the sample
size17. In all st, |st| and s2t we are able to reject the null of I(0) in favor
of long memory18. The stronger rejection is again observed in the volatility
proxies, it is convenient to notice that according to this test there is long
memory (stationarity) in the simple first difference of sovereign spreads.

Our final test for long memory is based on the rescaled variance test
(V/S) for stationarity recently proposed by Giraitis et al. (2002). The mo-
tivation of this test resides in the interesting debate about the existence of
long memory in market data. The common findings of long range depen-
dence in the absolute transformations and squared returns, including those
of Ding and Granger (1996), and the claims of stationary ARCH models thus
derived, appear spurious according to recent research. In fact, Giraitis et al.
(2002) suggest that the finding of long memory in volatility may not indicate
strong dependence but is more the result of some forms of nonstationarity
like trends or changing parameters.

This statistic has been refined in Giraitis et al. (2002) to test for sta-
tionarity against deterministic trends and unit roots. Strikingly, using this
new Tq( bd) test they found that the absolute powers of the SP&500 -taken
15Note that this is the case for both n = 3007 and n = 2398, derived from q =

4(n/100)0.25.
16Lo (1991) states that as q becomes large relative to the sample size n, the finite-sample

distribution of the estimator can be radically different from its asymptotic limit, while if a
small q is choosen it would not potentially take into account substantial autocovariances.
We checked the sensitivity of this finding by exploring also q = 5, 20 and 40; in all cases
the qualitative conclusions remain unaltered.
17We tried different values of m including m = {n3/5, n2/5} and the results remain

qualitatevely unchanged.
18When the hypothesis is rejected on the lower side of the distribution, evidence for

antipersistency would be suggested. This phenoma may arise if a given series has been
overdifferenced for instance.
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as a prime example of a long memory time series- do not follow in real-
ity a stationary model. This evidence adds up to the claims of “spurious
long memory” reported by Lobato and Savin (1998) or Mikosch and Starica
(2000) among others.

We present the Tq( bd) test for stationarity with d unknown in the forth
row of Table 3, where bd denotes the Whittle long memory estimator. Given
that Tq( bd) takes smaller values than the quantil c5%( bd) and c10%( bd) for all the
cases considered19, the results confirm the empirical finding of stationarity
for spread changes (st) -see first column of each sovereign bond.

Interestingly, in contrast with the findings of Giraitis et al. (2002) for
the SP&500, we do not find evidence to reject the hypothesis of stationarity
with unknown d for the absolute and squared spread change values.

Overrall, the tests here considered find significant evidence for the ex-
istence of long range individual volatility dependencies in Latin American
EBM.

We turn now to an a priori set of parametric and semiparametric esti-
mations of the memory parameter.

The first long memory estimate (dp) using the periodogram method20

is presented in the second panel of Table 3. The fractional differencing
parameter d0 derived from an ARFIMA(0, d0, 0) model is presented in the
following row. The last two rows present the Whittle and Local Whittle
estimators respectively.

It is hardly surprising to observe that the estimations for each bond
index are very similar both in levels and in volatility. For instance, the
memory parameter associated with st lies around d ≈ 1/5, while it seems to
be around d ≈ 1/2 for the measures of volatility, i.e., |st| and s2t respectively.
Volatility proxies show a longer memory than the simple log differences21.

The striking similarity of the memory parameter between the coun-
tries, in line with the graphical analysis before, suggest that two given yield
spreads may share common orders of long range dependence22.

3.2.2 Interdependent Long Memory

It is as well possible that EBM not only share the same degree of long range
dependence but also that there exists a long run nonlinear interdependent
association that exhibits co-persistency. To explore such possibility, in the
first three rows of Table 4 we present the tests for long memory using the

19Giraitis et al. (2002) provides the formulas to calculate the critical values at the 5 and
10% levels respectively:

CV5%=−1.98d5 + .73d4 − .05d3 + .63d2 − .66d+ .19
CV10%=−.27d5 + .48d4 − .55d3 + .66d2 − .53d+ .14

20For details of this and the following estimations the reader is refered to the Appendix.
21The reader may note that such finding seems independent of the sample size.
22The statistical theory and properties to perform such tests on semiparametric statistics

has not been still developed.
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Table 3: EMBI, tests for Long Memory and semiparametric estimates of d.
Argentina Brazil Mexico Venezuela

st |st| s2t st |st| s2t st |st| s2t st |st| s2t
Tests For Long Memory
V aLO 1.88∗ 2.32∗ 2.17∗ 1.15 3.07∗ 2.65∗ 1.82∗∗∗ 3.53∗ 2.47∗ 1.51 3.18∗ 2.79∗

tbn 3.39∗ 41.52∗ 28.23∗2.32∗∗46.38∗ 30.55∗ 3.54∗ 46.65∗30.56∗1.66∗∗47.18∗ 32.04∗

Tq(0)
c 0.14 0.14∗∗∗ 0.13 0.04 0.26∗∗0.18∗∗∗ 0.08 0.24∗∗ 0.13 0.07 0.31∗ 0.23∗∗

Tq
d

c0.05
e

c0.010
e

0.07
0.13
0.10

0.02
0.07
0.04

0.02
0.06
0.04

0.02
0.13
0.09

0.03
0.06
0.04

0.02
0.06
0.03

0.04
0.13
0.10

0.04
0.07
0.04

0.02
0.06
0.04

0.03
0.14
0.10

0.06
0.08
0.05

0.04
0.08
0.05

Long memory estimatesbdfp 0.21 0.39 0.39 0.18 0.48 0.43 0.26 0.41 0.37 0.16 0.38 0.38bd0garf 0.10 0.26 0.26 0.11 0.28 0.30 0.10 0.24 0.26 0.10 0.23 0.23bdhW 0.10 0.26 0.26 0.11 0.28 0.30 0.10 0.25 0.26 0.10 0.23 0.23bdiLW 0.10 0.24 0.26 0.11 0.26 0.28 0.10 0.24 0.25 0.09 0.22 0.22
∗,∗∗ ,∗∗∗ Denote significance at the 1, 5 and 10% levels respectively. a VLO is de Modified Rescaled

Range of Lo with confidence interval [0.8090,1.8620]; btn =-
√
mbC1bC0 is Lobato’s test with C1 and C0

defined in Lobato and Robinson (1998). c The rescaled variance test T( bd) reduces to VLO when d=0.

Ho:stationarity against long memory with critical values 0.2685, 0.1869, 0.1518 at the 1,5 and 10 % le-

vels respectively. dThe bandwidth parameter used for the estimations is q=n0.5; eCritical va lues;fdp
periodogram estimation of d; gARFIMA(0,1,0) estimation of the fractional differencing parameter;
hdW Whitle estimate; i dLW Local Whittle estimate with bandwidth m=n/4.

absolute product transforms23 |s1ts2t|. Preliminary estimates of the joint
long memory parameter are given using Whittle and Local Whittle methods
assuming that the true model is an ARFIMA(0, d0, 0) process.

As expected, the three methods provide strong statistical evidence for
joint long range persistency. In particular, the “acid” Tq( bd) test cannot
reject the null of stationarity with unknown mean in favor of deterministic
trends or unit roots.

If we rely in the estimation provided by the local Whittle estimator, the
highest common long memory is reported by the combination Brazil-Mexico,
while the lowest memory is reported by the pair Argentina-Brazil.

In addition to the extensive empirical findings suggesting that the vari-
ation in sovereign bond markets are substantially explained by a long run
equilibrium relationship with themselves and with fundamentals -see Jostova
(2002) and Ferrucci (2003)-, in this section we have identified an additional
source from which shocks to EBM may be propagated. The long range
own and cross dependencies are no doubt a highly stylized characteristic of

23A similar analysis was carried out for the absolut transform |s1ts2t|0.5 and the squared
product s21ts

2
2t with the same basic qualitative conclusions.
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sovereign bond markets.

Table 4: EMBI, tests for Long Memory and semiparametric estimates of the
joint memory parameter for |s1ts2t|.

|sartsbrt|a |sartsmxt| |sartsvet| |sbrtsmxt| |sbrtsvet| |smxtsvet|
V bLO 3.2017∗ 3.1252∗ 3.4714∗ 2.5614∗ 2.8749∗ 2.5001∗

tn 37.0855∗ 35.7835∗ 36.3970∗ 29.5235∗ 30.1306∗ 29.7365∗

T (0) 0.3074∗ 0.2719∗ 0.3843∗ 0.2093∗∗ 0.2626∗∗ 0.2062∗∗

T ( bd)
c0.05( bd)
c0.10( bd)

0.0949
0.1087
0.0763

0.0633
0.0930
0.0642

0.1049
0.1017
0.0709

0.0222
0.0547
0.0339

0.0299
0.0573
0.0359

0.0276
0.0642
0.0415

dW 0.1528 0.1818 0.1688 0.3022 0.2870 0.2682
dLW 0.1427 0.1770 0.1576 0.2796 0.2715 0.2509
asartsbrt stands for the combination Argentina-Brazil, sartsvet stand for the pair Argentina-
Venezuela. bFor a definition of these tests see notes in Table 3.

4 Parametric long memory in volatility

The aim of this section is to develop an econometric model that is able
to capture the salient characteristics of EBM: high persistency, fractional
comovement and risk premiums.

To this end we first introduce the basic concepts of long memory in
univariate time series analysis and then move to multivariate Generalized
Autorregressive Conditional Heteroskedastik (ARCH) processes to propose,
based on Teyssière (1997) and Brunetti and Christopher (2000) approaches,
two new bivariate FIGARCH-in-Mean models.

4.1 Univariate FIGARCH

In this section, similar to the Autocorrelation analysis of the previous sec-
tion, we will not restrict ourselves to the extreme Time Series case in which
a shock remains significant for infinite time horizons, i.e., unit root case, or
even to the case of a stationary process, where shocks die out exponentially.
Instead we will explore the possibility of fractional orders of integration, that
is, the situation in which shocks remain important for long time periods and
the autocorrelation function decays hypergeometrically.

A Generalized Autorregressive Conditional Heteroskedastik (GARCH)
behavior of the residuals εt may be expressed as

εt|Ωt−1 = ηt
p
ht (1)
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where ηt is an independent identically distributed (i.i.d.) random process
with mean equal to zero and variance equal to unity. Notice thatE(εt|Ωt−1) =
0 and V ar(εt|Ωt−1) = ht.

The most parsimonious construction for the conditional variance is given
by the GARCH(1,1) model proposed by Bollerslev (1986):

ht = w + αε2t−1 + βht−1 (2)

In this case, α is the volatility clustering parameter while β measures the
impact of past conditional variances. Positivity, stability and stationarity
conditions require that α, β > 0 and α+β < 1. This sum is usually referred
in the literature as the mean reverting parameter and is a measure of shock
persistency.

Rearranging equation (2) we get the ARMA(1,1) representation for the
squared residuals (ε2):

ε2t (1− φ) = w + (1− βL)vt (3)

where φ = (α+ β) and vt = ε2 − ht.
In practice it is commonly found that φ is indistinguishable from unity.

To take into account this regularity Engle and Bollerslev (1986) put forward
the Integrated GARCH model (IGARCH):

ε2t (1− φ)(1− L) = w + (1− βL)vt (4)

where L is the lag operator. In this formulation, a shock to the conditional
variance remains significant for future horizons, it would not die out with
time. The stationarity properties of this model are further examined by
Nelson (1990) who points out that even though the IGARCH model is not
covariance stationary, i.e., the volatility does not decay at a geometric rate,
it is still strictly stationary and ergodic.

As Bollerslev and Mikkelsen (1996) remark, even though empirical esti-
mates cannot often reject the null of integrated processes, intuition suggests
that the volatility is in fact mean reverting. In fact, Baillie et al. (1996) no-
tice that the knife-edge distinction between I(0) and I(d) processes can be
far too restrictive. Moreover, the widespread finding of IGARCH may well
be spurious and only due to misspecification. To overcome such possibility,
Baillie et al. (1996) proposed the Fractionally Integrated Generalized Au-
torregressive Conditionally Heteroskedastik or FIGARCH class of processes
for εt which is obtained from (4) by simply replacing the first differencing
operator (1− L) with the fractional differencing operator (1− L)d, i.e.,

ε2t (1− φ)(1− L)d = w + (1− βL)vt (5)

This model reduces to a simple GARCH(1,1) process when d = 0 and
to an IGARCH(1,1) process when d = 1. In the first case, shocks to the
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conditional variance decay at an exponential rate while in the second they
remain important for forecasts of all horizons. In a FIGARCH process,
shocks to the variance decay at a hyperbolic rate.

The fractional differencing operator has a binomial expansion more con-
veniently expressed in terms of the hypergeometric function:

(1− L)d = F (−d, 1, 1;L)

=
∞X
k=0

Γ(k − d)Γ(k + 1)−1Γ(−d)−1Lk (6)

=
∞X
k=0

πkL
k

An alternative FIGARCH(1, d, 1) expression in terms of the conditional
variance, or infinite ARCH representation, is obtained by rearranging equa-
tion (5):

ht =
w

1− β(1)
+

"
1− (1− φL)(1− L)d)

1− βL

#
ε2t

ht =
w

1− β(1)
+ λ(L)ε2t (7)

where λ(L)=λ1L+ λ1L+ .... To ensure positiveness of the conditional vari-
ance all the coefficients in the infinite ARCH representation must be non-
negative. In particular, for the case of the FIGARCH(1, d, 1) process in
equation (7) the conditions for the process to be well defined and positive
are given by Baillie et al. (1996) and Bollerslev and Mikkelsen (1996). These
can be observed if we re express the lag polynomial λ(L) in (7) as

λ1 = φ− β + d

λk = βλk−1 +
h
(k − 1− d)k−1 − φ

i
δk−1 for k ≥ 2 (8)

δk ≡ δk−1(k − 1− d)k−1, k = 2, 3, ...

where δk are the coefficients in the Maclaurin’s series expansion. From
here Bollerslev and Mikkelsen (1996) show the following conditions which
are sufficient to ensure that all corresponding ARCH parameters are all
nonnegative:

β − d ≤ φ ≤ (2− d)/3
d [φ− (1− d)/2] ≤ β(φ− β + d) (9)
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Baillie et al. (1996) explain that for 0 < d ≤ 1 the hypergeometric
function evaluated at L = 1 equals 0 so that λ(1) = 1, and for this reason
the second moment of the unconditional distribution of εt is infinite, and the
FIGARCH process is clearly not weakly stationary. However, by extending
the properties of IGARCH processes Nelson (1990) and Bougerol and Picard
(1992) show the FIGARCH process is still strictly stationary an ergodic.

4.2 Bivariate Fractional GARCH

By using the Bollerslev (1990) Constant Correlation model (CCC) the indi-
vidual analysis of long memory can be fairly easy extended to a multivari-
ate setting. Such parametrization assumes that the correlation matrix of
the vector of residuals is constant while the conditional variance-covariance
matrix (Ht) still varies:

Ht = diag(
q
h11,t, ...,

q
hNN,t)Rdiag(

q
h11,t, ...,

q
hNN,t) (10)

R is the time invariant, positive definite, correlation matrix:

R =

 1 ... ρ1N
... ... ...
ρN1 ... 1

 =


1 ...
h1N,t√

h11,t
√
hNN,t

... ... ...
hN1,t√

hNN,t
√
h11,t

... 1

 (11)

In the bivariate case the CCC model reduces to

Ht =

" p
h11,t 0
0

p
h22,t

# "
1 ρ12
ρ21 1

# " p
h11,t 0
0

p
h22,t

#
= (12)

=

"
h11,t ρ

p
h11,t

p
h22,t

ρ
p
h11,t

p
h22,t h22,t

#

where |ρ12| < 1 is the correlation coefficient. The individual conditional
variances h1,t, h2,t may be assumed to be simple univariate GARCH(1,1)
processes as follows

²t|t−1 ∼ N(0,Ht), {Ht}ij = hij,t (13)

hii,t = ωi + αiiε
2
i,t−1 + βihii,t−1; for i = 1, 2 (14)

h12,t = ρ12

q
h11,t

q
h22,t,
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To simultaneously model long range auto and cross dependencies Brunetti
and Christopher (2000) assumed that the individual conditional variances
follow a FIGARCH(1, d, 1) so that

hii,t =
ωi

1− βii(1)
+ λii(L)ε

2
i,t; for i = 1, 2 (15)

h12,t = ρ12

q
h11,t

q
h22,t,

where λii(L) =
h
1− (1−φiiL)(1−L)di)

1−βiiL
i
and i = 1, 2.

In order forHt to be positive definite it is required that h11,t and h22,t are
positive and the conditional correlation matrix is positive definite. Bollerslev
(1990) noticed that under the assumption of time invariant correlations, the
Maximum Likelihood Estimate (MLE) of the correlation matrix is equal
to the sample correlation matrix of the standardized residuals. Hence this
is a parsimonious specification where positive definiteness of the variance
covariance matrix is ensured if |ρ|<1, βii − di ≤ (1/3)(2 − di) and di[φii −
1/2(1 − di)] ≤ βii(φii − βi + di). The conditional variance of the system is
stationariy for all 0 ≤ di ≤ 1 -see Brunetti and Christopher (2000).

Analogous to the individual representation in (5), Brunetti and Christo-
pher (2000) present the CCC-FARIMA representation in terms of the squared
residuals as

Φ(L)

Ã
(1− L)d1 0

0 (1− L)d2
!Ã

ε21t
ε22t

!
= w +B(L)vt (16)

where Φ0 = B0 = I . From this form, direct testing for common orders of
long memory, i.e., d1 = d2, is possible.

In the context of contagion, a Constant Correlation assumption may be
as well be too restrictive given the episodes of crises and seemingly structural
changes in Emerging Markets during all the nineties. more importantly
perhaps is that none of the parameters in (16) could be readily used to
measure contagion24.

In order to explore the possibility of time varying correlation Teyssière
(1997) relaxed the constancy assumption by allowing the conditional covari-
ance to be time varying and hence:

s1t
s2t

=
=

c1 + ε1t
c2 ++ε2t

(17)

hij = wij +

Ã
1− (1− φijL)(1− L)dij

1− βijL

!
εit−kεjt−k i, j = 1, ..., n

24Of course this could be generally circumvented by empolying a conventional impulse
response analysis.
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This extension will be useful to capture and test the presence of long
range cross dependencies. In particular the parameter d12 in two given coun-
tries becomes our measure of contagion and degree of fractional comovement.
As pointed out by Teyssière (1997) there is no analytical set of conditions
for insuring positive definiteness of the conditional variance covariance so
this has to be implemented numerically in the estimation procedure.

4.3 Bivariate Fractional GARCH-in-Mean process

To complete the analysis of emerging markets yield spreads it is necessary
to examine whether a time varying risk premia drives the behavior of EMBI
in Latin America. Our proxy for risk premium is given by the conditional
second moments of these bond prices and our proposal for the parsimonious
random walk case is presented below:

s1t
s2t

=
=

c1
c2

+
+

γ
11
h1t +γ

12
h2t + ε1t

γ
21
h1t +γ

22
h2t + ε2t

(18)

h1t
h2t

=
=

w1
1−β11L
w2

1−β22L
+

³
1− (1−φ11L)(1−L)d1

1−β11L
´
ε21,t³

1− (1−φ22L)(1−L)d2
1−β22L

´
ε22,t

h12,t = ρ12
p
h11,t

p
h22,t

The key difference with other existing bivariate GARCH-M models is the
inclusion of long memory in the conditional variances25. As an additional
feature, in the empirical section we will not only employ the cross conditional
variances (h1t or h2t) as regressors but also the conditional covariances, i.e.,
h12t, in order to approximate the likely connection between yield spreads
and other factors as in Baillie and Bollerslev (1990)26.

Notice also that similar to Teyssière (1997) this model can easily be
extended by relaxing the assumption of time invariant correlation in which
case we would have an extra equation describing the behavior of the time
varying conditional covariances and an estimate of d12 as follows:

s1t = c1 + γ
11
h1t + γ

12
h2t + ε1t

25Kim (2000) for instance has used a multivariate CCC-GARCH(1,1)-M process similar
to this specification to analyze monetary regimes and output volatility.
26Smith and Wickens (2002) have suggested that a proper measure of the risk premium

in stochastic discount factor models should include the covariance of yield spreads with
consumption and prices. Given the high frequency nature of the data, information on
consumption and prices cannot be obtained for these countries. However if we assume that
the paths of consumption and prices are relativelely smooth as in Baillie and Bollerslev
(1990) it would be reasonable to expect that the influence of these variables is very small.
These issues will be discussed further in the next section.
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s2t = c2 + γ
21
h1t + γ

22
h2t + ε2t

h1t =
w1

1− β11L
+

Ã
1− (1− φ11L)(1− L)d1

1− β11L

!
ε21,t (19)

h2t =
w2

1− β22L
+

Ã
1− (1− φ22L)(1− L)d2

1− β22L

!
ε22,t

h12t =
w12

1− β12L
+

Ã
1− (1− φ12L)(1− L)d12

1− β12L

!
ε1,tε2,t

Hence, model (19) can also include cross conditional covariances in-Mean
replacing individual variances. In this cases as well as in Teyssière (1997)
model however, the positivity conditions have not been derived analytically
and so they have to be numerically imposed during estimation.

Empirical findings for high frequency financial returns suggest in general
that resulting innovations are usually non-normal and exhibit some degree
of serial autocorrelation. To overcome such possibility in the estimation of
these models we use the Quasi-Maximum Likelihood Estimation (QMLE)
approach of Bollerslev and Wooldridge (1992)27.

5 Estimation Results

Section three documented evidence for long range individual and cross de-
pendencies in Sovereign Bond Markets in Latin America. Semiparametric
estimation of the memory parameter however has been criticized -see Baillie
(1996) for instance- due to the poor performance in terms of bias and mean
squared error. To overcome this we now present the bivariate Fractional
Integrated GARCH estimations of the memory parameter with the methods
described in the previous section.

The proposed models will be able to capture the individual and cross
long range dependencies found in EM and will allow direct tests of common
orders of fractional integration, a very likely characteristic of these markets.
In this context and by relaxing the Constant Correlation assumption we will
be able to estimate the long range default risk contagion parameter, i.e., d12.

By definition, EMBI indexes can be thought as excess returns over US
treasuries. Spreads are usually regarded as the premium for holding default-
able sovereign instruments which in turn depend on the intrinsic credit risk
of the economic conditions in a given emerging market28. Albeit the limi-

27For details on robusteness, consistency, ergodicity and asymptotic normality proper-
ties of the estimated parameters see Baillie et al. (1996).
28Apart from default risks, spreads should also reflect various other risks: exchange

rate risk, interest rate risk and liquidity risk. Benczur (2001) notices that the first of
these should be almost nil while liquidity risk is the result of market conditions, volatility
components or assymetries. We implicitly include some of these factors in the individual
conditional variances and left the interesting question of asymmetries for another study.
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tations imposed by the high frequency nature of the data to capture more
robust sources of risks, the model is finally extended to take into account an
in-Mean time varying risk premium which is assumed to be a proportional
function of the conditional variances and covariances of default risk changes.

5.1 Common long memory

Model selection tests29 prefer random walk models for the mean equation
and FIGARCH(1, d, 1) process for the variance equation. To capture the
seemingly long run comovement between sovereign markets, Table 5 re-
ports the QML estimations of (15)30, the bivariate Constant Correlation
long memory model.

Credit risks as proxied by spreads are the reflection of the potential de-
fault of any country on its obligations. The individual conditional variances
(h11 and h22) in our model are in turn interpreted as individual credit risk
perceptions of investors on a given country and their behavior is traced by
all φ,β and d.

Even though it is common to use time varying cross correlations to assess
the extent of comovement in EMBI, by fixing the measure of contagion over
the whole sample period we assume, according to what has been reported
in the literature31, that long run linkages are time invariant and all source
of volatility contagion would be due to the behavior of the individual condi-
tional variances. The correlation coefficient is intended to capture the long
run common responses to shocks and the potential for contagion or broadly
speaking for comovement.

Not surprisingly perhaps, the highest degree of long term comovement in

29We tried different FARIMA(p, d, q)−FIGARCH(1, d, 1) specifications and used the
Log-likelihood value, Schwartz Information Criterion (SIC) and Akaike Information Crite-
rion (AIC) to discriminate between models. As Teyssière (1997) points out, the statistical
properties of the AIC and BIC have not been stablished for the class of long memory
ARCH process, however we consider that they provide good reasonable guidance. They
are calculated herein as:

AIC = −2ln(L(bθ)) + 2 ∗ nθ
SIC = −2ln(L(bθ)) + nθ ∗ ln(n)

where L(bθ) is the maximized likelihood value, nθ is the number of estimated parameters
and n is the sample size.
30The initial estimation procedure was kindly provided by Celso Brunetti, University of

Pennsylvania. The estimation strategy consisted in using starting values from univariate
FIGARCH(1, d, 1) models. Optimization problems were encountered in most of the es-
timations due to the presence of outliers, we decided to constrain atipical observations to
be no greater than three standard deviations. The original samples of Argentina-Brazil
and Argentina-Mexico converged satisfactorily without removing outliers. In all the esti-
mations we used BFGS optimization algorithm although estimations via BHHH were very
similar and usually less computer intensive.
31See Fiess (2003) and Mauro et al. (2000) for instance.
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Table 5: EMBI, CCC-FIGARCH(1,d,1) QML estimations.
sart, s

a
brt sart, smxt sart, svet sbrt, smxt sbrt, svet smxt, svet

Conditional Mean
µ1
.

-0.0427
(0.0227)

-0.0479
(0.0240)

-0.0418
(0.0247)

-0.0174
(0.0128)

-0.0267
(0.0132)

-0.0402
(0.0176)

µ2
.

-0.0657
(0.0158)

-0.0577
(0.0224)

-0.0644
(0.0224)

-0.0270
(0.0169)

-0.0317
(0.0201)

-0.0332
(0.0202)

Conditional Variances
ω1
.

0.1428
(0.0133)b

0.1433
(0.0143)

0.1318
(0.0245)

0.0327
(0.0058)

0.0374
(0.0059)

0.0424
(0.0069)

β1
.

0.4446
(0.0229)

0.4878
(0.0288)

0.2817
(0.1019)

0.5004
(0.0222)

0.5029
(0.0212)

0.5451
(0.0204)

φ1
.

0.3162
(0.0178)

02686
(0.0201)

0.0897
(0.0914)

0.2820
(0.0149)

0.2886
(0.0147)

0.3041
(0.0160)

d1
.

0.3675
(0.0355)

0.4628
(0.0402)

0.3371
(0.0351)

0.4361
(0.0298)

0.4229
(0.0295)

0.3918
(0.0319)

ω2
.

0.0941
(0.0173)

0.1363
(0.0173)

0.1067
(0.0231)

0.0506
(0.0076)

0.1569
(0.0204)

0.1433
(0.0198)

β2
.

0.2234
(0.1196)

0.6218
(0.0592)

0.4449
(0.0318)

0.5469
(0.0226)

0.3995
(0.0243)

0.3915
(0.0264)

φ2
.

0.0615
(0.1031)

0.1437
(0.0381)

0.3509
(0.0200)

0.2964
(0.0172)

0.3826
(0.0127)

0.3789
(0.0133)

d2
.

0.4296
(0.0353)

0.6693
(0.0716)

0.2981
(0.0400)

0.4073
(0.0343)

0.2348
(0.0255)

0.2422
(0.0267)

ρ12
.

0.7155
(0.0052)

0.6078
(0.0074)

0.5998
(0.0109)

0.5189
(0.0099)

0.5624
(0.0109)

0.4944
(0.0108)

aFor the definition of these pairs see footnotes at Table 4. bRobust standard errors in parathesis.

the samples is observed in Argentina-Brazil with 71.6 percent. The associ-
ation of Argentina with Mexico and Venezuela follows with 60.8 and 59.9%
respectively. The extent of comovement in the rest of the pairs is no less
than 49 percent. Such high degree of integration suggests that investors may
regard shocks as common or that there may be a common global financial
factor driving default risks in the same direction.

We like to believe that this could also be the result of similar degrees
of long memory. As we can observe in Table 5 and in line with the graph-
ical inspection and semiparametric estimations shown in section three, the
memory parameters -see d1 and d2 in each of column- do not seem to depart
too much from each other.

We now formally test whether two given default risks share the same de-
gree of long range dependence by re-estimating the bivariate FIGARCH(1, d, 1)
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specifications imposing d1 = d232. The last row of Panel (a) in Table 7 shows
the optimized mean log-likelihood of these constrained models. Except for
the cases Brazil-Venezuela and Mexico-Venezuela33, a simple likelihood ratio
cannot reject the hypothesis of common orders of fractional integration.

Despite both markets reporting independent volatility process, credit risk
perceptions seem to be driven by a common information arrival process. This
finding gives support to the view of Forbes and Rigobon (2000) for Latin
American markets in the sense that volatility is not driven by any individual
country or subset of countries, but it is instead shared by all countries in the
region. These conclusions add to the propositions of Kaminsky and Reinhart
(2002) suggesting that developed markets act as conduits between regions
of developing countries. Price formation is market linked, default spreads
are to a significant extent formed in the off-shore market independently of
fundamentals.

5.2 Default risk contagion

In agreement with the graphical observation on previous sections, the results
found above indicate that the duration of volatility shocks to LA Emerging
Markets is very similar. We now resort to our broad definition of contagion
to find out whether a shock originated in one given country shows long term
spillover effects on a second market. We perform this by extending the above
framework to consider the possibility of long range cross interdependencies.

The long term time invariant comovement assumption may seem far too
restrictive given the number of crisis and financial turmoils observed in Latin
America during the nineties. In fact, time varying cross correlations (conta-
gion) have been found in stock and bond markets and have been reported in
many studies of financial stability -see Hausler (2003) and Cunninham et al.
(2001)-.

Thus, to take this fact into account, in Table 6 we relax such assumption
and present the estimation results of the unrestricted bivariate FIGARCH(1, d, 1)
model introduced in equation (17) of section four.

As shown in the first two panels -(a) and (b)- of Table 7, in agree-
ment with the findings of Teyssière (1997) and Teyssière (1998), in the six
cases considered the value of the log-likelihood function increases strongly
and selection criteria (AIC and SIC) overwhelmingly favor the unrestricted
FIGARCH(1, d, 1) model.

The conditional covariance (h12) measures the shared credit risk percep-
tion associated to any two given markets. That is, the risk perceived by the
investor for holding two bond instruments in the same class of quality and

32This can be directly done using Brunetti and Christopher (2000)’s framework. To
save space we only show the maximized mean likelihood value, the estimation results of
the restricted specifications are available upon request.
33This exceptions were graphically suggested in section three.
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reputation. The joint long memory parameter, i.e., d12, in this equation is
of special interest. It indicates the extent of long term default risk contagion
and, as shown, turns out highly significant in all cases34.

We formally define default risk contagion as the situation in which the
risk perception of default in one sovereign government or market affects the
risk perception of default in another market with similar credit quality35.
Notice that this definition allows for the possibility of contagion even in
bonds issued by countries with different fundamentals but perhaps with the
same investment ranking (credit risk), class or reputation.

The orders of individual fractional integration as well as their statistical
significance do not seem to be affected by the relaxation of the time invariant
correlation assumption. The hypothesis of common long range dependencies
in Brady markets is examined once more. The optimized likelihood functions
resulting from the imposition of d1 = d2 are presented in the forth of Panel
(b) in Table 7 and are labeled L(θ)d1=d2 . With the exception of the last two
columns, once again we find that a common global financial factor seems to
drive sovereign spreads in the same direction.

In section three, it was suggested that the decay rate of individual volatil-
ities was different to that of the joint volatility measures. To test this hy-
pothesis we re-estimate the model in equation (17) by imposing the restric-
tion of common orders of fractional integration not only in the conditional
variances but also in the conditional covariances, i.e., d1 = d2 = d12. The
row labeled L(θ)d1=d2=d12 at the bottom Panel (b) in Table 7 shows the min-
imized mean log-likelihood of these estimations. The results show a strong
rejection of the null indicating that even though countries may individu-
ally share the same type of long range dependencies, contagious shocks are
propagated differently.

We believe that the extent of contagion measured here by d12 depends
on the degree of global integration and financial openness of the country
in question more than on a priori direct trade links or fundamentals. The
highest parameter estimate observed in Mexico and Brazil for instance could
hardly be the result of trade since these countries are far from being ma-
jor trading partners. Market participants may perceive instead both bond
spreads as derived from bonds with the same reputation in which case a
volatility shock to one may affect the perception of default risk of the other.

In contrast with the literature suggesting that contagion may be ex-
plained by fundamentals, default risk contagion in sovereign markets seems
to be importantly explained by global financial factors and market condi-
tions. Crisis turmoils or shocks to volatility may spillover to other countries
depending on microstructure effects, financial rigidities, weak and inade-

34Notice that d12 implicitly assumes that contagion is symmetric, fact which is in line
with the graphical findings in section three.
35Definitions for credit contagion can be found in Avellaneda and Wu (2001) or Giesecke

and Weber (2003).
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quately supervised financial markets and herding behavior.

5.3 The risk premium

As we have mentioned before, another stylized fact of emerging bond markets
is the existence of risk premia. Spreads reflect the compensation required by
investors for holding defaultable bonds. The size and direction of the yield
curve may give information not only on investors attitude to risks but also
about expectations on potential defaults. A positive slope would indicate
that default in the near term, as perceived by investors, is unlikely and
viceversa. -see Cunninham et al. (2001)36.

Forbes and Rigobon (2000) noticed that despite the individual high
volatility associated with each spread, the differences in risk premium be-
tween any two given countries seem remarkably stable. Employing a rather
standard and simplified asset pricing theory, we now examine first whether
there is a time varying risk premium, as proxied by the conditional vari-
ances, and second whether it drives default risk changes in EM. To this aim,
we extend the basic Constant Correlation and unrestricted FIGARCH(1,d,1)
approaches proposed by Brunetti and Christopher (2000) and Teyssière
(1997) respectively, to include in-Mean terms as described in equations (18)
and (19)37. The results are presented in Tables 8 and 9.

As with the basic cases, i.e., the no in-Mean specifications reported in the
last two sections, the optimized likelihood value increases strongly when the
Constant Correlation assumption is relaxed. The unrestricted model, now
with in-Mean terms, is strongly preferred over the time invariant correlation
model -see likelihood value L(bθ) and SBC in Panels (c) and (d) of Table 7.

We now compare the results of both the CCC and the unrestricted in-
Mean estimations. By looking at the decision criteria in Table 7 it is quite
evident that the Likelihood value has improved, Schwartz criteria that pe-
nalizes for the inclusion of additional parameters strongly prefers the new
specification with in-Mean process. The memory as well as the rest of the
parameter estimates remain highly significant and the magnitudes do not
seem to be affected importantly. As a matter of fact most of the estimates
as well as their precision remain practically unchanged.

The results for the individual effect and significance of the in-Mean con-
ditional variances in Table 9 is generally mixed among the different pairs

36We do not study in detail different maturities and hence a formal investigation of the
yield curve is not performed.
37 In addition to this specifications, we also considered the inclusion of two additional in

mean functions: g =
√
Ht and g = log(Ht ). Preliminary results suggest that the conclus-

sions that follow apply also to such specifications and the squared root transformations
seem to perform better than simple in-mean effects.
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considered. The statistical superiority38 of this specification lead us to con-
clude that time varying risk premia in emerging bond markets jointly drives
the behavior of excess returns in Emerging Bond Markets.

The estimations presented here show that increased perceptions of risk
must be compensated by a higher risk premium. In good extent, the percep-
tion of risk by investors relates to the relative sentiment of improvement (or
deterioration) in the bond market. The higher (reduced) willingness to bear
certain risk would reflect the degree of investors risk aversion. Hence a given
risk premium parameter reflects both risk and risk aversion and the greater
the in-Mean coefficients the greater the risk perception and risk aversion for
that particular market.

For instance, by looking at column three of Table 9 we note that Argen-
tinean excess returns changes over US treasuries are significantly affected by
the investors perception of risk in Venezuela (γ12) as well as by investor’s
risk perceptions in Argentina (γ11); Venezuelan spread returns in contrast
are affected only by their own conditional volatility.

Interestingly, in the case of Brazil and Mexico -see forth column of Table
8-, spread changes are affected by the investors perception of risk in the
second country (γ12 and γ12) as well as by its own. Investors may require
compensation for investing in Brazil equivalent to the parameter associated
with the perception of risk in Mexico and viceversa. This finding would
reinforce the claim that reputation and credit quality of these two countries
have been regarded by investors as equivalent during the nineties.

The negative coefficients that appear in some cases would indicate not
only that investors in EBM are risk loving but that credit risks, a reflection
of debt repayment capacity, would be negative. These estimates are not
statitisticaly significant in general39.

The risk premia here obtained could also be interpreted as a broad (raw)
estimation of the probability of default associated with a given spread. The
lower the compensation required for holding a defaultable bond, the lower
the implicit perception of credit risk for a given country and probability of
default.

5.4 In-Mean shared default risk perceptions

The low significance of the in-Mean parameter estimates may reflect how-
ever, as pointed out by Eichengreen and Mody (1998), that risk premiums
are incapable of adjusting to reflect changing economic conditions, news and
to changes in other countries.

38The statistical performance of these new FIGARCH-in-Mean specifications with dif-
ferent functional forms are being investigated in continuing work. The models are also
extended to consider the effect of assymetries in a bivariate FIEGARCH context.
39The only exception will be presented below in the combination Brazil-Venezuela where

covariance in-mean terms are included.
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Smith and Wickens (2002) suggest that conditional covariances with rel-
evant macroeconomic factors would explain better the dynamics of risk pre-
mia. However, the high frequency nature of our measurements bounds our
simplified asset pricing model to very few choices.

Consequently, we now proxy the risk premium by the conditional covari-
ance. The estimations of equation (19) with the conditional covariance and
variance in-Mean terms are shown in Table 10 -see coefficients γ11, γ12, γ21
and γ22.

An interesting implication of these estimates is that increased default
risks affect the shared risk perception in the first place and secondly, via
in-Mean impacts, the actual expected changes in excess returns of a second
country.

The shared perception of risk between Argentina and Brazil for instance
significantly predicts Brazilian excess returns over US treasuries, while the
individual risk perception of this country (γ22) does not

40.
Interestingly, some of the negative in-Mean coefficients reported in the

previous subsection are now statistically significant such as the in-Mean
effect (γ11) in the penultimate column, indicating that emerging market in-
vestors overall had a higher willingness to bear the risk of investing in Brazil.
The risk premium in this case would reflect the effect of risk perception as
well as a risk loving behavior.

6 Conclusions and discussion

The aim of this paper has been to examine and measure default risk con-
tagion in Latin American sovereign markets based on three salient features
of Emerging Markets: a high degree of volatility persistency, the existence
of risk premiums and a high comovement between spread changes. In con-
trast with the current literature measuring contagion41 the here-proposed
bivariate FIGARCH(1, d, 1) models are able to capture these hallmarks
simultaneously while allowing direct testing on the contagion parameter.

Default risk contagion is defined as the situation in which the risk per-
ception of default in one sovereign government affects the risk perception
of default in another market with similar credit risk. We presume that
the nature of this contagion is global, based on informationaly inefficient
and incomplete markets, and resulting from the herding type of behavior
described by Calvo (1999), where fundamentals turn to be insufficient to
explain contagion.

40We have to be cautious about the conclusion drawn from this last estimation since
the optimized likelihod value is at best the same as the those from Table 9. The only case
in which there is a clear preference for covariance in-mean terms is in Argentina-Brazil.
41See Forbes and Rigobon (1999) who have proposed an adjusted correlation coefficient

and Edwards and Susmel (2001) that employ a Switching GARCH model to measure
volatility dependence for instance.
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We conjecture that the extent and severity of long term contagion is an
increasing function, not only of the soundness of local economic policies and
investment exposures, but also of the degree of global financial integration
and openness of a given country. It is not surprising to note in the view of
this argument, abstracting from the risk premia, that the highest degree of
interdependence (d12) is shown by Brazil and Mexico, countries that have
pursued economic policies consistent with a greater global integration. In
contrast, the lowest degree of interdependence is shown by Argentina and
Venezuela.

The finding of long term persistency in Emerging Markets is explained,
in agreement with Jostova (2002), as the result of financial market rigidi-
ties and informational deficiencies. Portfolio re-allocation after a sudden
liquidity crunch is not automatic or immediate due to the way institutional
investors operate in Emerging Bond Markets and the lack of ‘noise traders’
among other factors. Dedicated investors react more slowly to market sig-
nals since they pursue returns relative to a benchmark. We report empirical
evidence indicating that the degrees of persistency are high and not statis-
tically different from country to country.

A potential implication of this result is that local policies oriented at
constraining the effect of crises -capital controls, etc.- may only be of tem-
porary use given the existence of more long term linkages in Emerging Bond
Markets. Short-run isolation strategies would be costly and only delay a
country’s adjustment to equilibrium. This conclusion is in line with the
arguments of Forbes and Rigobon (2000).

The results also suggest a high degree of fractional comovement in these
markets. This outcome reinforces the claims of Mauro et al. (2000), Fiess
(2003) and Cunninham et al. (2001) who report strong comovement between
spreads themselves and with fundamentals. We interpret this result, along
with the one on common persistence, as additional evidence supporting the
claim that a single factor seems to be driving EM spreads in the same direc-
tion. Episodes of contagion have had a common base of transmission being
either Brady markets (Baig and Goldfajn (2000)) or any other developed
financial market acting as the conduit between regions of developing mar-
kets (Kaminsky and Reinhart (2002)). The rate of decay of the fractional
comovement parameter (d12) is nonetheless lower than the individual pa-
rameters of volatility persistency, i.e., di with i = [1, 2] respectively. The
long term sovereign default contagion reported here means that a sudden
liquidity crunch, derived perhaps from margin calls, would affect the spread
in third countries not only contemporaneously but also in the foreseeable
future.

In addition, there has been evidence for instance suggesting that precari-
ous derivative positions from Asian and Russian investments forced investors
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to sell viable Latin American bonds to service margin calls42. Hence in line
with this view, our results also support the promotion and a better use
of OTC derivative markets43 which, we expect, will hedge and ultlimately
extenuate the effects of liquidity squeezes to third countries. Accordingly,
given the high degree of global integration and the existence of long term
market linkages (that may in addition be possibly magnified during crisis
turmoils), our results advocate for a more integrated and comprehensive
supervision of Emerging Bond Markets44.

We also report the existence of a time varying risk premium. This may
be the result of changing risks attached to a given emerging bond or changing
degrees of investors risk aversion, or both. Moreover, risk premiums seem to
significantly explain default risk changes in Emerging Markets. For instance,
Argentinian sovereign returns over US treasuries have been affected during
the nineties by investors’ perceptions of risk in Brazil, Mexico and Venezuela.
Brazilian sovereign returns, in turn, have been affected by the risk aversion
that investors attached to Mexico and Venezuela, while in contrast, Mexican
and Venezuelan sovereign returns seem to have been somehow isolated from
the perceptions of risk developed in other Latin American markets.

The high volatility and turmoils experienced in Latin American markets
during the nineties suggest obviously that default risks and risk premium
may have changed to different levels in response to the Russian, Brazilian
or more recently the Argentinean crisis. This is being dealt in continuing
research adopting a shift contagion definition. The aim of this paper has
been to document the existence of long range time dependencies, fractional
comovement and a time varying risk premium in Emerging Bond Markets
using the broadest definition of contagion available in the literature.

On the other side, given the lack of systemic instruments and strong
legal frameworks for dealing with global crises, a comprehensive structural
reform of the international financial system has been recently promoted by
Calvo (2002) and the International Monetary Fund (IMF). The first of these
views considers that contagion is the result of imperfect information and one
way of stopping it would be to make a credible announcement that some
global institution will stand ready to buy bonds from the other emerging
markets in order to prevent a collapse in prices and, in the end, stabilize an
Emerging Market Index like the EMBI+. Calvo (2002) proposes the creation
of an Emerging Market Fund (EMF) endowed with G3 debt instruments to

42See Beattie (2000).
43 It may be of interest for dedicated investors to observe that due to the presence of

long memory traditional hedging may become unreliable. Derivative pricing techniques
rely on martingale methods which are inconsistent with long range dependencies. Hence
new pricing methods or adjustments are needed to take into account this finding.
44The Emerging Bond Market, as it has been working since 1990, is not fromally regu-

lated. There is however a self policing structure with a non-binding code of conduct issued
by the Emerging Markets Trading Association. There is no participation of regulators of
the issuing countries whatsoever.
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prevent contagion, to back potential meltdowns and to pump liquidity into
the market to prevent liquidity crises that may affect fundamentals45.

The IMF Sovereign Debt Restructuring Mechanism (SDRM)46 aims on
the other side at providing an orderly restructuring of sovereign debt. It
works, according to the factsheet, on the prevention and on the crisis man-
agement efforts undertaken in response to the global market turmoil in the
late 1990’s. The focus are the actual creditors and debtor countries.

Overall, in the light of our findings, we believe in one side that regulation
is indeed required to help in the restructuring of Sovereign Emerging Market
debt, but firm steps are also needed to consolidate supervision and preventive
measures such as hedging or the creation of a fund to back liquidity squeezes.
A critical issue would be, if we believe in the herding behavior hypothesis,
the institutionalized provision of quality information for market participants
about Emerging Market countries, not because it is costly to gather by
individual dedicated investors, but to prevent uninformed investors join the
massive sell-offs of bonds by falsely interpreting them as indication of poor
credit in Emerging Markets.
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Table 6: EMBI, unrestricted FIGARCH(1,d,1) QML estimations.
sart, s

a
brt sart, smxt sart, svet sbrt, smxt sbrt, svet smxt, svet

Conditional Mean
µ1
.

-0.0475
(0.0250)

-0.0552
(0.0250)

-0.0348
(0.0251)

-0.0223
(0.0134)

-0.0183
(0.0133)

-0.0415
(0.0176)

µ2
.

-0.0572
(0.0189)

-0.0481
(0.0250)

-0.0569
(0.0231)

-0.0309
(0.0170)

-0.0316
(0.0191)

-0.0372
(0.0202)

Conditional Variances
ω1
.

0.1133
(0.0112)

0.1769
(0.0272)

0.1549
(0.0269)

0.0228
(0.0134)

0.0223
(0.0050)

0.0404
(0.0068)

β1
.

0.4784
(0.0138)

0.3588
(0.0807)

0.2684
(0.0894)

0.5063
(0.0603)

0.5204
(0.0189)

0.5483
(0.0176)

φ1
.

0.3230
(0.0122)

0.1809
(0.0703)

0.0928
(0.0835)

0.2946
(0.0581)

0.3071
(0.0125)

0.3121
(0.0136)

d1
.

0.3539
(0.0245)

0.3900
(0.0310)

0.3019
(0.0268)

0.3788
(0.0262)

0.3858
(0.0251)

0.3759
(0.0272)

ω2
.

0.0748
(0.0131)

0.1947
(0.0286)

0.0972
(0.0188)

0.0431
(0.0073)

0.1007
(0.0149)

0.1234
(0.0182)

β2
.

0.1886
(0.0539)

0.3424
(0.0733)

0.4818
(0.0253)

0.5456
(0.0202)

0.4624
(0.0215)

0.4395
(0.0224)

φ2
.

0.0011
(0.0446)

0.1454
(0.0601)

0.3483
(0.0169)

0.3018
(0.0152)

0.3635
(0.0129)

0.3768
(0.0123)

d2
.

0.3441
(0.0232)

0.4020
(0.0330)

0.3034
(0.0338)

0.3965
(0.0304)

0.2729
(0.0258)

0.2463
(0.0245)

Conditional Covariance
ω12
.

0.0573
(0.0093)

0.1282
(0.0181)

0.0837
(0.0191)

0.0149
(0.0052)

0.0201
(0.0061)

0.0369
(0.0096)

β12
.

0.3599
(0.0299)

0.3842
(0.0677)

0.4348
(0.0650)

0.2976
(0.0199)

0.5134
(0.0168)

0.5215
(0.0169)

φ12
.

0.1971
(0.0310)

0.2311
(0.0666)

0.2819
(0.0626)

0.3055
(0.0408)

0.3576
(0.0110)

0.3780
(0.0116)

d12
.

0.3599
(0.0299)

0.3391
(0.0260)

0.2582
(0.0249)

0.4989
(0.0448)

0.2848
(0.0220)

0.2439
(0.0233)

aSee notes in Table 5.
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Table 7: EMBI, Decision Criteria FIGARCH(1,d,1) estimations.
sart, s

a
brt sart, smxt sart, svet sbrt, smxt sbrt, svet smxt, svet

Panel (a): CCC − FIGARCH(1, d, 1)
L(θ)b -4,911.3 -5,989.1 -5,361.4 -5,624.1 -5,391.9 -6,389.3
AICc 9,844.6 12,000.3 10,744.7 11,270.3 10,805.9 12,800.7
SBCd 9,908.2 12,063.8 10,808.4 11,336.3 10,871.9 12,866.7
L(θ)ed1=d2 -4,911.9 -5,991.3 -5,361.6 -5,624.3 -5,397.9 -6393.9
Panel (b): Unrestricted FIGARCH(1,d,1)
L(θ) -4,737.7 -5,794.5 -5,268.4 -5,524.4 -5,300.8 -6,342.7
AIC 9,503.5 11,617.0 10,564.8 11,076.8 10,629.6 12,713.4
SBC 9,584.4 11,697.9 10,645.8 11,160.9 10,713.7 12,797.5
L(θ)d1=d2 -4,737.9 -5,794.5 -5,268.4 -5,524.5 -5,304.5 -6,347.8
L(θ)d1=d2=d12 -4,610.3 -5,840.3 -5,275.3 -5,540.1 -5,309.4 -6,357.1
Panel (c): CCC-FIGARCH(1,d,1) Variance in-Mean
L(θ) -4,906.0 -5,982.5 -5,564.7 -5,619.9 -5,386.4 -6,648.6
AIC 9,842.0 11,995.0 11,159.4 11,269.9 10,802.7 13,327.2
SBC 9,928.7 12,081.7 11,246.1 11,359.9 10,892.9 13,417.3
Panel (d): Unrestricted-FIGARCH(1,d,1) Variance in-Mean
L(θ) -4,731.0 -5,786.4 -5,260.2 -5,519.1 -5,297.6 -6,339.5
AIC 9,498.1 11,608.8 10,556.5 11,074.2 10,631.2 12,715.0
SBC 9,602.1 11,712.9 10,660.5 11,182.4 10,739.4 12,823.2
Panel (e): Unrestricted-FIGARCH(1,d,1) Covariance in-Mean
L((θ) -4,729.3 -5,787.4 -5,261.9 -5,522.4 -5,297.5 -6,339.9
AIC 9,495.2 11,610.8 10,559.9 11,080.9 10,630.5 12,715.7
SBC 9,598.7 11,714.9 10,663.9 11,188.9 10,739.2 12,823.9
aSee Table 4 for these definitions. bMaximized Log likelihood. cAkaike Information Criteria.
dSchwartz Bayesian Criteria. eL(.) is the maximized likelyhood function of the restricted model.

The sub-index indicates the type of restriction.
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Table 8: EMBI CCC-FIGARCH(1,d,1) Variance-in-Mean QML
estimationsa.

sart, sbrt sart, smxt sart, svet sbrt, smxt sbrt, svet smxt, svet
Conditional Mean
µ1
.

-0.0963
(0.0277)

-0.1320
(0.0305)

-0.1336
(0.0283)

-0.0429
(0.0173)

-0.0849
(0.0179)

-0.0655
(0.0211)

µ2
.

-0.1057
(0.0184)

-0.0917
(0.0299)

-0.1162
(0.0273)

-0.0473
(0.0233)

-0.1131
(0.0328)

-0.0698
(0.0252)

γ11
.

0.0283
(0.0143)

0.0289
(0.0165)

0.0294
(0.0139)

-0.0234
(0.0288)

-0.0137
(0.0252)

0.0082
(0.00147)

γ12
.

0.0176
(0.0115)

0.0205
(0.0127)

0.0321
(0.0071)

0.0293
(0.0142)

0.0547
(0.0140)

0.0139
(0.0071)

γ21
.

0.0010
(0.0049)

0.0025
(0.0068)

-0.0004
(0.0051)

0.0349
(0.0278)

0.0009
(0.0258)

0.0037
(0.0097)

γ22
.

0.0519
(0.0189)

0.0203
(0.0164)

0.0487
(0.0167)

-0.0106
(0.0227)

0.0644
(0.0315)

0.0289
(0.0186)

Conditional Variances
ω1
.

0.1426
(0.0134)

-0.0917
(0.0299)

0.1236
(0.0124)

0.0327
(0.0058)

0.0363
(0.0058)

0.0591
(0.0081)

β1
.

0.4420
(0.0233)

0.4741
(0.0755)

0.4415
(0.0245)

0.5002
(0.0220)

0.4972
(0.0213)

0.5041
(0.0528)

φ1
.

0.3183
(0.0183)

0.2586
(0.0589)

0.3132
(0.0187)

0.2858
(0.0147)

0.2981
(0.0143)

0.2749
(0.0464)

d1
.

0.3634
(0.0366)

0.4599
(0.0458)

0.3736
(0.0373)

0.4284
(0.0294)

0.4037
(0.0286)

0.4429
(0.0346)

ω2
.

0.0929
(0.0179)

0.1379
(0.0177)

0.1653
(0.0218)

0.0513
(0.0076)

0.1567
(0.0207)

0.1813
(0.0177)

β2
.

0.2093
(0.1279)

0.6167
(0.0597)

0.3278
(0.0287)

0.5442
(0.0229)

0.3976
(0.0239)

0.2958
(0.0242)

φ2
.

0.0593
(0.1115)

0.1399
(0.0377)

0.3338
(0.0168)

0.2968
(0.0176)

0.3854
(0.0125)

0.3561
(0.0131)

d2
.

0.4169
(0.0349)

0.6631
(0.0715)

0.3324
(0.0337)

0.4064
(0.0351)

0.2293
(0.0249)

0.2879
(0.0262)

ρ12
.

0.7154
(0.0053)

0.6088
(0.0080)

0.5943
(0.0089)

0.5198
(0.0099)

0.5627
(0.0108)

0.4982
(0.0101)

aSee notes in Table 5.
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Table 9: EMBI unrestricted FIGARCH(1,d,1) Variance-in-Mean QML
estimationsa.

sart, sbrt sart, smxt sart, svet sbrt, smxt sbrt, svet smxt, svet
Conditional Mean
µ1
.

-0.1063
(0.0307)

-0.1556
(0.0317)

-0.1712
(0.0400)

-0.0598
(0.0213)

-0.0652
(0.0196)

-0.0759
(0.0267)

µ2
.

-0.1169
(0.0234)

-0.1115
(0.0329)

-0.1832
(0.0387)

-0.0605
(0.0268)

-0.0920
(0.0303)

-0.1165
(0.0339)

γ11
.

0.0249
(0.0153)

0.0294
(0.0154)

0.0479
(0.0218)

-0.0139
(0.0298)

-0.0084
(0.0254)

0.0163
(0.0211)

γ12
.

0.0262
(0.0197)

0.0273
(0.0121)

0.0472
(0.0286)

0.0338
(0.0149)

0.0429
(0.0170)

0.0136
(0.0231)

γ21
.

0.0013
(0.0062)

-0.0001
(0.0083)

0.0149
(0.0127)

0.0439
(0.0308)

0.0102
(0.0274)

0.0139
(0.0168)

γ22
.

0.0656
(0.0184)

0.0479
(0.0366)

0.0779
(0.0271)

-0.0087
(0.0230)

0.0405
(0.0304)

0.0502
(0.0292)

Conditional variances
ω1
.

0.1116
(0.0111)

0.1709
(0.0262)

0.1490
(0.0269)

0.0243
(0.0089)

0.0227
(0.0050)

0.0408
(0.0068)

β1
.

0.4788
(0.0140)

0.3639
(0.0839)

0.2550
(0.0947)

0.4872
(0.0809)

0.5186
(0.0189)

0.5479
(0.0178)

φ1
.

0.3237
(0.0125)

0.1883
(0.0728)

0.0847
(0.0878)

0.2812
(0.0740)

0.3114
(0.0125)

0.3127
(0.0140)

d1
.

0.3526
(0.0250)

0.3884
(0.0323)

0.2939
(0.0269)

0.3685
(0.0354)

0.3772
(0.0249)

0.3746
(0.0281)

ω2
.

0.0703
(0.0127)

0.1832
(0.0276)

0.0908
(0.0192)

0.0436
(0.0114)

0.0991
(0.0150)

0.1191
(0.0183)

β2
.

0.1984
(0.0538)

0.3638
(0.0693)

0.4811
(0.0243)

0.5433
(0.0242)

0.4632
(0.0211)

0.4436
(0.0222)

φ2
.

0.0146
(0.0453)

0.1649
(0.0571)

0.3535
(0.0163)

0.3016
(0.0173)

0.3644
(0.0128)

0.3774
(0.0122)

d2
.

0.3393
(0.0237)

0.3992
(0.0339)

0.2930
(0.0326)

0.3965
(0.0346)

0.2713
(0.0256)

0.2451
(0.0244)

Conditional Covariance
ω12
.

0.0555
(0.0086)

0.1152
(0.0165)

0.0785
(0.0191)

0.0162
(0.0081)

0.0205
(0.0061)

0.0370
(0.0096)

β12
.

0.3618
(0.0301)

0.4258
(0.0614)

0.4308
(0.0692)

0.4850
(0.0596)

0.5123
(0.0168)

0.5215
(0.0168)

φ12
.

0.1998
(0.0319)

0.2687
(0.0628)

0.2855
(0.0668)

0.2921
(0.0536)

0.3597
(0.0110)

0.3789
(0.0117)

d12
.

0.3072
(0.0194)

0.3419
(0.0268)

0.2502
(0.0245)

0.2952
(0.0260)

0.2807
(0.0219)

0.2422
(0.0234)

aSee notes in Table 5.
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Table 10: EMBI, unrestricted bivariate FIGARCH(1,d,1) covariance-in-
Mean QML estimationsa.

sart, sbrt sart, smxt sart, svet sbrt, smxt sbrt, svet smxt, svet
Conditional Mean
µ1
.

-0.1188
(0.0306)

-0.1424
(0.0312)

-0.1381
(0.0378)

-0.0390
(0.0197)

-0.0368
(0.0173)

-0.0638
(0.0244)

µ2
.

-0.1222
(0.0231)

-0.0939
(0.0322)

-0.1549
(0.0368)

-0.0382
(0.0253)

-0.0863
(0.0305)

-0.1095
(0.0329)

γ11
.

0.0450
(0.0219)

0.0457
(0.0187)

0.0409
(0.0255)

-0.0303
(0.0398)

-0.0777
(0.0429)

0.0010
(0.0288)

γ12
.

0.0080
(0.0355)

0.0137
(0.0258)

0.0543
(0.0501)

0.0775
(0.0512)

0.1499
(0.0592)

0.0425
(0.0611)

γ21
.

0.0700
(0.0317)

0.0517
(0.0344)

0.0396
(0.0485)

0.0663
(0.0566)

-0.0038
(0.0556)

-0.0046
(0.0546)

γ22
.

0.0031
(0.0346)

-0.0058
(0.0261)

0.0544
(0.0395)

-0.0210
(0.0280)

0.0508
(0.0382)

0.0662
(0.0374)

Conditional Variances
ω1
.

0.1127
(0.0112)

0.1716
(0.0260)

0.1553
(0.0275)

0.0243
(0.0089)

0.0242
(0.0057)

0.0407
(0.0068)

β1
.

0.4765
(0.0143)

0.3657
(0.0821)

0.2538
(0.0948)

0.4904
(0.2812)

0.5044
(0.0474)

0.5482
(0.0178)

φ1
.

0.3236
(0.0127)

0.1899
(0.0715)

0.0841
(0.0880)

0.2812
(0.0739)

0.2969
(0.0431)

0.3121
(0.0139)

d1
.

0.3528
(0.0253)

0.3858
(0.0319)

0.2946
(0.0271)

0.3734
(0.0359)

0.3776
(0.0266)

0.3758
(0.0278)

ω2
.

0.0712
(0.0128)

0.1830
(0.0276)

0.0947
(0.0193)

0.0436
(0.0113)

0.1004
(0.0150)

0.1213
(0.0185)

β2
.

0.1928
(0.0538)

0.3727
(0.0697)

0.4790
(0.0247)

0.5451
(0.0243)

0.4627
(0.0211)

0.4414
(0.0222)

φ2
.

0.0074
(0.0449)

0.1731
(0.0580)

0.3529
(0.0164)

0.3011
(0.0174)

0.3648
(0.0127)

0.3784
(0.0122)

d2
.

0.3412
(0.0237)

0.4036
(0.0343)

0.2942
(0.0329)

0.3987
(0.0348)

0.2704
(0.0254)

0.2431
(0.0243)

Conditional covariance
ω12
.

0.0562
(0.0087)

0.1168
(0.0165)

0.0825
(0.0194)

0.0162
(0.0082)

0.0213
(0.0062)

0.0372
(0.0096)

β12
.

0.3581
(0.0302)

0.4276
(0.0609)

0.4312
(0.0692)

0.4867
(0.0599)

0.5121
(0.0166)

0.5219
(0.0168)

φ12
.

0.1974
(0.0319)

0.2703
(0.0625)

0.2867
(0.0668)

0.2928
(0.0536)

0.3587
(0.0110)

0.3789
(0.0116)

d12
.

0.3082
(0.0195)

0.3428
(0.0269)

0.2508
(0.0246)

0.2971
(0.0263)

0.2825
(0.0219)

0.2420
(0.0233)

aSee notes in Table 5.
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