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Abstract

A family of credit risk models is proposed to capture three salient
features of Latin American (LA) Sovereign Bond Markets: individual
Long Range Dependence in volatility–Long Memory (LM)–, high
fractional comovement and time varying risk premia. Evidence in fa-
vor of LM is uncovered and the extent of Default Risk Contagion in
these markets during the nineties is measured. Among others, the re-
sults suggest that the response of bond spread changes to volatility
shocks is not statistically different, indicating that a common source
may be driving the market. Also, the extent of fractional comovement
is high and the magnitude of the risk premia for investing in these bond
markets is substantial. Our suggested family of bivariate Fractional In-
tegrated GARCH-in-Mean models is preferred to Brunetti (2000) and
Teyssière (1998) processes as indicated by Schwartz Information Cri-
teria and Likelihood Ratio tests.
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1 Introduction

Emerging Bond Markets (EBM) have become one of the largest and most
liquid international markets. The amount of debt outstanding is more
than $US 300 billion from which the issuance by four countries–Argentina,
Brazil, Mexico and Venezuela–accounts for 90% or more of the total market
debt in Latin America (LA). These four issues also drive around 50 or 60%
of most international Emerging Market Bond Indexes (EMBI).

Interpreted as measures of default or credit risks EMBI have been as-
sociated to capital flows, market sentiment and fundamentals (GDP, stock
markets, good prices, interest rates and various other variables.)1

This paper analyzes daily sovereign credit spreads in LA as proxied by
the individual EMBI of JP Morgan. The main feature of this work with
respect to previous studies is the suggestion that excess holding returns in
these markets are mainly driven by conditional time varying risk premia.
Research in EMBI has not explored yet the possibility of excess returns
being predicted by their own conditional volatilities which we assume fully
reflect information about fundamentals.

Some studies have found some degree of predictability in EMBI but
have failed to take it into account at the modeling stage.2 We find here
that spreads are in fact fractionally integrated, hence indicating a high de-
gree of predictability in these markets. Long Memory (LM) or long range
dependency has not been investigated in EBM.

Some authors have documented already the high degree of cross cor-
relation in this market as well as a remarkable comovement and poten-
tial common shocks in levels and volatility–see Mauro, Sussman & Yafeh
(2000), Jostova (2002) and Fiess (2003). In our view, these studies have been
nonetheless unsuccessful to capture the strong fractional long run cross de-
pendence in these markets.

The contribution of this paper is twofold. First, the stationary LM
properties of the volatility in these markets are investigated for the first time.
In contrast with some studies suggesting that EMBI exhibit unit roots, this
study provides strong evidence of stationarity and Long Memory. Second,
we propose a new family of bivariate long memory models for credit risk
that take into account risk premia, the high degree of correlation, individual
persistency and co-persistency.

In econometric terms we provide the empirical literature with a new bi-
variate Fractional Integrated Generalized Autoregressive Conditional Het-
eroskedasticity model with in-Mean terms (FIGARCH-in-Mean). Quasi-
Maximum Likelihood Estimation (QMLE) results as well as the Schwartz

1See Min (1998), Ferrucci (2003), Eichengreen & Mody (1998) and Fiess (2003).
2A notable exception is Jostova (2002) who finds that credit spreads are non stationary

variables and from this carries out a cointegration analysis with fundamentals. Deviations
from long-run equilibrium are then used to predict excess returns over US treasuries.
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Information Criterion for these markets suggest that these new models give
superior estimates compared to previous bivariate FIGARCH specifications.
There is indeed a significant gain of information by including the risk pre-
mium in the modeling of sovereign default spreads.

The following section provides a descriptive analysis of EMBI spreads
and its autocorrelation functions. The Long Memory and stationarity prop-
erties of volatility are also investigated. Interestingly, a battery of both
heuristic and semiparametric methods confirm the existence of LM station-
arity in volatility.

Univariate Long Memory models and the econometric models of Teyssière
(1997) and Brunetti & Christopher (2000) are described in detail in section
three. These models are extended to the new bivariate FIGARCH(1,d,1)-
in-Mean specification. QMLE results are reported in section four. Policy
implications and the significance of our findings to the understanding of
Sovereign Emerging Bond Markets are discussed in the conclusions.

2 Descriptive analysis and Long Run Dependence

2.1 Descriptive analysis of Default Spreads in EBM

Figure 1 shows the EMBI spreads3 in logs for Brazil, Mexico and Venezuela
from December 31st 1990 to July 10th 2002. The Argentinean sample begins
on April 30, 1993. EMBI spreads, or St, provide a single measure of pure
sovereign default risk and may be readily interpreted as excess returns over
US treasuries.4 A relatively high spread may indicate a greater risk of
default5 and also a lower return on risk-free investments. EMBI spreads are
also commonly regarded as the premium for holding defaultable sovereign
instruments.

A salient feature of these markets is the high degree of comovement.
Some authors have already documented a high degree of interdependence
between EMBI spreads, common trends and common shocks–see Mauro
et al. (2000) and Fiess (2003) for instance. In addition, the data suggests
that risk premia are time varying and also that the relative spread difference
between two given countries is not stable.6 For all these reasons, the kinetics

3The data has been kindly provided by EcoWin.
4The EMBI for each country is calculated as the weighted average spread of all Brady

bonds with similar properties. For further discussion on the actual calculation of credit
spreads see Jostova (2002).

5Spreads also reflect various other risks: exchange rate risk, interest rate risk, liquidity
risk and difult risk. Benczur (2001) notices that the first of these should be almost nil,
while liquidity risk is usually the result of market conditions, volatility components or
asymmetries.

6This conjecture is in direct contrast with the analysis of Forbes & Rigobon (2000) who
by analyzing a shorter sample and the difference between any two given spreads suggested
a relatively constant risk premium.
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of EMBI should be analyzed in a multivariate setting rather than on an
individual basis.

Figure 1: EMBI spreads, 31 Dec. 1990 - 30 Jun. 2002.

The first differences of the spreads in logs, i.e., named here as st, are
presented in Figure 2. By definition, spread changes can be interpreted as
changes in excess returns over US treasuries. These reflect general Emerging
Market (EM) prospects and hence the credit risk7 attached to EM assets–
see Cunninham, Dixon & Hayes (2001).

It is interesting to observe that individual spread changes seem to exhibit
a common response to shocks. For instance, periods of distress such as the
Tequila Crisis in December 1994 not only affected the Mexican default risk
and volatility, but also affected other Latin American bond indexes. What is
more, these markets also seem to respond very rapidly to turmoils generated
in other latitudes, e.g., Hong Kong or Russia. The common response to
shocks in levels and volatility implies there may be a common factor driving
these markets in the same direction.8

Figure 2 also shows that individual credit risks share some of the stylized
facts of financial returns such as the presence of clusters and some degree of
time dependence. There is no reason to rule out a priori the potential for
high comovement and time varying volatility. Summary descriptive statistics

7Credit risk in this context may be interpreted as a measure of a sovereign government
ability to meet its principal and/or interests.

8Cunninham et al. (2001) have also noted this in their study.
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Figure 2: EMBI, spread log differences 31 Dec. 1990 - Jul. 10th 2002.

are presented in Table 1. The series show a similar risk-return relationship,
the returns exhibit high kurtosis and there is indeed evidence of time series
dependence as indicated by the 20th order Ljung-Box statistic.

Table 1: EMBI, descriptive statistics, daily spread changes (st) in logs.
sat x σ Sb Kc JBd Min. Max. n LB(20)e

Argentina 0.0005 0.0188 0.8775 11.61 13,780 -0.1274 0.1709 2,398 67.61∗

Brazil 0.0001 0.0130 1.9415 24.60 77,712 -0.0934 0.1725 3,007 96.25∗

Mexico -0.0002 0.0164 0.3330 18.95 45,041 -0.2031 0.1764 3,007 82.05∗

Venezuela 0.0001 0.0147 1.7089 24.60 77,299 -0.1045 0.2020 3,007 101.69∗
∗Significant at the 1% level. a st=log(St)-log(St−1) where St is the EMBI spread; bSkewness;
cKurtosis; dJarque-Bera statistic; eLjung-Box Statistic, order in brackets.

2.2 Long Memory (LM) in EBM

To examine the autocorrelation pattern further, Figure 3 graphically ana-
lyzes the dependence structure of individual EBM spreads. The autocorre-
lation functions (ACF) of spread changes (st) and of its absolute transfor-
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mation (|st|) are bounded by a 95% confidence interval.9 It is observed, with
no exception, that the ACF associated with st presents an exponential decay
rate–see lighter lines–, i.e., significant autocorrelations are reported only
for the first lags, while the rate of convergence of the ACF for |st| is much
slower (see dark lines). Most of the countries present significant absolute
value autocorrelations for more than one hundred lags, while Brazil–panel
(b)–has the first negative autocorrelation not earlier than lag 350. This is
fully consistent with Ding & Granger (1996) who have suggested that a time
series shows LM if the rate of decay of the estimated conditional variances
seems hyperbolic rather than exponential.

LM is also present in combinations of portfolios. To illustrate, Figure
4 shows the linear cross correlation of a portfolio consisting of two assets:
Brazil and Mexico. The ACF of simple spread changes is denoted by ρmx,br
in grey lines, while absolute transforms, i.e., ρ|brt,mxt−i|, are in dark lines.
Panels (a) and (b) show the ACF up to lag 400, while panels (c) and (d)
show a 60-day zoom of the cross correlations.

As with individual ACF, cross correlograms in Figure 4 suggest that
simple cross correlations decay exponentially, while the ACFs of absolute
transforms exhibit a hypergeometric decay rate. The graphical examination
suggests strong and significant long run volatility cross dependencies in the
absolute values of spread changes–see dark lines panels (a) and (b).

In Table 2 we present a summary of the cross long range dependence
properties for the series under analysis. The first column shows the lead/lag
relationships of the six portfolios as represented by the cross correlation
coefficients ρit,jt−i and ρjt,it−i. There is an equal contemporaneous response
between countries only for the first lags and apparent asymmetric impacts
afterwards–see first column of panels (a) and (b) in this Table. Except for
the pair Argentina Mexico, all countries show significant cross correlations
at least until lag fifty.

In the last column of Table 2 we show the point at which the last sig-
nificant positive correlation takes place and label it as “spillover”. This
measure indicates the dependence of contemporaneous spreads with lagged
values. As we observe in Panels (a) and (b) the volatility dependence struc-
ture is in general highly symmetric: volatility shocks disseminate at similar
rates from one country to another.

Overall, this section has shown evidence of LM in the credit risk series
of EBM. The high persistency may be explained, in agreement with Jostova
(2002), as the result of financial market rigidities and informational deficien-
cies. Portfolio re-allocation after a sudden liquidity crunch for instance may
not be immediate due to the way institutional investors operate in EBM10

9Confidence intervals are depicted by the dotted lines and are calculated as 2√
n
, where

n is the sample size.
10The minimun transaction size in Brady markets is of $2 milion leaving room only to

large investors such as mutual, endowment and pension funds–Jostova (2002).
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Figure 3: EMBI, Autocorrelation of |st| and st from high to low, daily log
differences 31 Dec. 1990-10 Jul. 2002.

and the lack of ‘noise traders’ among other factors. Also, dedicated investors
may react more slowly to market signals since they pursue returns relative
to a benchmark.

The rigorous reader may note that the LM diagnosis based on the graph-
ical inspection of auto and cross correlation functions may be spurious. It
can reasonably be argued that LM may be in fact not other thing but the
result of structural changes in the data and monotonic trends–see Lobato
& Robinson (1998) and Giraitis, Leipus & Philippe (2002). To rule out this
possibility, we have formally tested for the presence of LM on (st), on spread
volatility proxies (|st| and |st|d) and on nonlinear transforms (|sit · sjt|) using
semiparametric methods. The results, not presented here to save space, are
qualitatively similar and reassuringly confirm the presence of LM in EBM.11

3 Parametric Long Memory in volatility

We have shown in the previous section that the volatility of credit risks in
EBM exhibits LM. To model this property we need a process that is not

11The tests include Lobato & Robinson (1998) t test, the Modified Rescaled test of Lo
(1991) and the rescaled variance V/S test of Giraitis et al. (2002). Estimation results and
calculation details are readily available upon request.
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Figure 4: EMBI, Cross Correlogram Mexico vs. Brazil for |st| and st.
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Table 2: EMBI, cross correlations at different lag values.
lag(i) 1 10 50 100 150 200 300 Neg.a Spillb

Panel (a): ρ1t,2t−i
ρart,brt−i 0.5864 0.1087 0.0232 0.0074 -0.0145 0.0526 -0.0077 65 55
ρart,mxt−i 0.5041 0.1341 0.0544 0.0000 -0.0441 -0.0013 0.0198 67 59
ρart,vet−i 0.4340 0.0688 0.0165 -0.0064 -0.0648 -0.0119 -0.0065 47 40
ρbrt,mxt−i 0.4917 0.1702 0.1411 0.0559 0.0214 0.0265 0.0015 124 116
ρbrt,vet−i 0.4862 0.1416 0.1218 0.0652 0.0516 0.0442 0.0118 158 151
ρmxt,vet−i 0.4204 0.1233 0.0669 0.0596 0.0242 0.0565 0.0638 139 130
Panel (b): ρ2t,1t−i
ρbrt,art−i 0.5864 0.0958 0.0412 0.0068 -0.0062 0.0015 0.0030 63 57
ρmxt,art−i 0.5041 0.1254 0.0469 0.0243 -0.0077 0.0125 0.0259 66 58
ρvet,art−i 0.4340 0.0579 0.0158 0.0193 -0.0009 0.0613 -0.0180 36 30
ρmxt,brt−i 0.4917 0.1734 0.0580 0.0679 0.0590 0.1319 0.0696 128 120
ρvet,brt−i 0.4862 0.1395 0.0840 0.0823 0.0613 0.1378 -0.0009 290 286
ρvet,mxt−i 0.4204 0.1157 0.0632 0.0424 0.0027 0.0549 -0.0105 80 70
a Lag at which the first negative value is observed. bLag at which the autocorrelation function

first crosses the horizontal axis. Note: Standard errors (x2) for pairs with Argentina 0.0417; all

others 0.0365.

only able to capture individual long run dependence, but also allows us to
take into account fractional comovement, the response to common shocks
and also provides estimates of risk premia. The aim of this section is to
introduce and develop such family of credit risk models.

3.1 Univariate FIGARCH

Arguably, the most popular parametric process that replicates the strong de-
pendence in volatility, i.e., hypergeometric decay of the autocorrelation func-
tion, is the Fractional Integrated Generalized Autoregressive Conditional
Heteroskedastic (FIGARCH) model of Bollerslev & Mikkelsen (1996).12

To begin with, let us assume for simplicity that excess returns in EBM
for each individual case follow a random walk process plus drift (c):

st = c+ εt (1)

To capture the time varying conditional volatility of the residuals εt it
may be proposed that:

εt|Ωt−1 = ηt
p
ht (2)

12Among other alternatives that generate slow decay of the autoccorelation function of
returns are the Two Component model of Ding and Granger (1993) and Ding and Granger
(1996).
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where ηt is an independent identically distributed (i.i.d.) random process
with mean equal to zero and variance equal to unity. Notice thatE(εt|Ωt−1) =
0 and V ar(εt|Ωt−1) = ht.

Baillie, Bollerslev & Mikkelsen (1996) have proposed the following Frac-
tionally Integrated Generalized Autoregressive Conditionally Heteroskedas-
tic (FIGARCH) process for ht:

ε2t (1− φ)(1− L)d = w + (1− βL)vt (3)

where L is the lag operator, φ = (α + β) the mean reverting parameter,
vt = ε2t − ht, (1−L) is the first differencing operator and d is the fractional
integration parameter.

This model reduces to the parsimonious GARCH(1,1) process of Boller-
slev (1986) when d = 0 and to the IGARCH(1,1) process of Engle & Boller-
slev (1986) when d = 1. In the first case, shocks to the conditional variance
decay at an exponential rate; while in the second, shocks remain important
for forecasts of all horizons. In a FIGARCH process, shocks to the vari-
ance decay at a hyperbolic rate replicating well the behavior observed in the
second section of this paper.

The fractional differencing operator has a binomial expansion that can
be conveniently expressed in terms of the hypergeometric function:

(1− L)d = F (−d, 1, 1;L)

=
∞X
k=0

Γ(k − d)Γ(k + 1)−1Γ(−d)−1Lk (4)

=
∞X
k=0

πkL
k

The infinite ARCH representation of this FIGARCH(1, d, 1) process, is
obtained by rearranging equation (3):

ht =
w

1− β(1)
+

"
1− (1− φL)(1− L)d

1− βL

#
ε2t

ht =
w

1− β(1)
+ λ(L)ε2t (5)

where λ(L)=λ1L+ λ2L+ .... To ensure positiveness of the conditional vari-
ance all the coefficients in the infinite ARCH representation must be non-
negative. In particular, for the case of the FIGARCH(1, d, 1) process in
equation (5) the conditions for the process to be well-defined and positive
have been given by Baillie et al. (1996) and Bollerslev & Mikkelsen (1996).
These can be observed if we re-express the lag polynomial λ(L) in (5) as:
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λ1 = φ− β + d

λk = βλk−1 +
h
(k − 1− d)k−1 − φ

i
δk−1 for k ≥ 2 (6)

δk ≡ δk−1(k − 1− d)k−1, k = 2, 3, ...

where δk are the coefficients in the Maclaurin’s series expansion. From here,
Bollerslev & Mikkelsen (1996) show sufficient conditions under which all
corresponding ARCH parameters are nonnegative:

β − d ≤ φ ≤ (2− d)/3
d [φ− (1− d)/2] ≤ β(φ− β + d) (7)

Baillie et al. (1996) explain that for 0 < d ≤ 1 the hypergeometric
function evaluated at L = 1 equals 0 so that λ(1) = 1, and for this reason
the second moment of the unconditional distribution of εt is infinite, and the
FIGARCH process is clearly not weakly stationary. However, by extending
the properties of IGARCH processes, Nelson (1991) and Bougerol & Picard
(1992) show the FIGARCH process is still strictly stationary and ergodic.

3.2 Bivariate Fractional GARCH

The cross-correlation coefficient has become the widely preferred statistic to
examine the comovement of sovereign spreads since this measure provides
information on the speed, degree and direction of contagion.13 Even though
this seems a very convenient measure for short term cross market dependen-
cies, this indicator is subject to at least three major criticisms: it does not
take into account the fractional comovement of these markets, it does not
consider the time varying volatility14 and it disregards the existence of risk
premia.

By relying on the flexibility of Bollerslev (1990) Constant Correlation
model (CCC), it is possible to use the correlation coefficient as a measure
of interdependence while simultaneously taking into account the individual
behavior of volatilities. Such parametrization assumes that the correlation
matrix of the vector of residuals is constant–a very strong assumption in
EBM–but at the same time allows the individual volatilities contained in
13See Cunninham et al. (2001) and the Quarterly Global Financial Stability Report of

the IMF for more on this. Previous litterature using correlation coefficients as measures
of contagion include Forbes & Rigobon (1999) and Forbes & Rigobon (2000).
14Baig & Goldfajn (2000) suggest indeed that excluding volatilities from the analysis

may be misleading. Contagion for instance is the result of panic, margin calls, thin
markets, etc., factors which are at the same time responsible for changes in volatility.
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the conditional variance-covariance matrix (Ht) to be time varying. In addi-
tion, by employing Brunetti & Christopher (2000) bivariate specification,15

the individual conditional variances h1,t, h2,t are assumed to take FIGARCH
processes as follows:

²t|t−1 ∼ N(0,Ht), {Ht}ij = hij,t (8)

hii,t =
ωi

1− βii(1)
+ λii(L)ε

2
i,t; for i = 1, 2 (9)

h12,t = ρ12

q
h11,t

q
h22,t,

where λii(L) =
h
1− (1−φiiL)(1−L)di)

1−βiiL
i
for i = 1, 2 and ²t = [ε1, ε2].

In order forHt to be positive definite it is required that h11,t and h22,t are
positive and the conditional correlation matrix is positive definite. Bollerslev
(1990) noticed that under the assumption of time invariant correlations, the
Maximum Likelihood Estimate (MLE) of the correlation matrix is equal to
the sample correlation matrix of the standardized residuals. Hence, this
is a parsimonious specification where positive definiteness of the variance
covariance matrix is ensured provided that |ρ|<1, βii − di ≤ (1/3)(2 − di)
and di[φii− 1/2 · (1− di)] ≤ βii(φii− βi+ di). Also the conditional variance
of the system is stationarity for all 0 ≤ di ≤ 1–see Brunetti & Christopher
(2000).

Analogous to the individual representation in (3), Brunetti & Christo-
pher (2000) present the CCC-FARIMA representation in terms of the squared
residuals as

Φ(L)

Ã
(1− L)d1 0

0 (1− L)d2
!Ã

ε21t
ε22t

!
= w +B(L)vt (10)

where Φ0 = B0 = I. From this form, it is clear that a direct testing for
common orders of LM, i.e., d1 = d2, is possible.

A Constant Correlation assumption may be far too restrictive given the
episodes of distress in Emerging Bond Markets during the nineties. More im-
portantly perhaps, none of the parameters in (10) captures the time varying
interdependence evident in the descriptive section before.

In order to explore the possibility of time varying correlation, Teyssière
(1997) relaxed the constancy assumption by allowing the conditional covari-
ance to be represented by a FIGARCH process too. Assuming a random
walk plus drift for the mean we get:

sit
sjt

=
=

ci + εit
cj + εjt

(11)

15Brunetti & Christopher (2000) used a bivariate CCC-FIGARCH framework to model
fractional cointegration in oil markets.

12



hij = wij +

Ã
1− (1− φijL)(1− L)dij

1− βijL

!
εit−kεjt−k i, j = 1, 2

This innovative extension allows to capture and test the presence of long
range cross dependencies. In particular the parameter dij becomes a natural
measure of volatility contagion and fractional comovement. It also captures
the effect of volatilities and is fully consistent with the perception of Forbes
& Rigobon (1999) who argue that contagion is not the result of changing
autocorrelations but derives from changing volatilities.

As pointed out by Teyssière (1997) there is no analytical set of conditions
for ensuring positive definiteness of the conditional variance-covariance so
this has to be implemented numerically in the estimation algorithm.

3.3 Bivariate Fractional GARCH-in-Mean process

We propose in this and the following sections our new models. As before,
it is assumed that credit risks follow a random walk plus drift. The key
contribution to the existing bivariate FIGARCH models is the inclusion of
risk premia as regressors of spread changes:

s1t
s2t

=
=

c1
c2

+
+

γ
11
h1t +γ

12
h2t + ε1t

γ
21
h1t +γ

22
h2t + ε2t

(12)

h1t
h2t

=
=

w1
1−β11L
w2

1−β22L
+

³
1− (1−φ11L)(1−L)d1

1−β11L
´
ε21,t³

1− (1−φ22L)(1−L)d2
1−β22L

´
ε22,t

h12,t = ρ12
p
h11,t

p
h22,t

As an additional feature, in the empirical section we will not only employ
the cross conditional variances (h1t or h2t) in (12) as regressors but also the
conditional covariances, i.e., h12t, in order to capture the association between
spreads changes and fundamentals as in Baillie & Bollerslev (1990).

Notice also that similar to Teyssière (1997) this model can easily be
extended by relaxing the assumption of time invariant correlation, in which
case we would have an extra equation in the variance process describing
the dynamics of the conditional covariances and hence an estimate of the
fractional comovement parameter (d12) as follows:

s1t = c1 + γ
11
h1t + γ

12
h2t + ε1t

s2t = c2 + γ
21
h1t + γ

22
h2t + ε2t

h1t =
w1

1− β11L
+

Ã
1− (1− φ11L)(1− L)d1

1− β11L

!
ε21,t (13)
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h2t =
w2

1− β22L
+

Ã
1− (1− φ22L)(1− L)d2

1− β22L

!
ε22,t

h12t =
w12

1− β12L
+

Ã
1− (1− φ12L)(1− L)d12

1− β12L

!
ε1,tε2,t

Model (13) can also include cross conditional covariances in-Mean replac-
ing individual variances. In this case, as well as in Teyssière (1997)’s model,
the positivity conditions have not been derived analytically and hence they
have to be imposed during estimation.

Empirical findings for high frequency financial returns suggest in gen-
eral that FIGARCH(1, d, 1) innovations are usually non-normal and ex-
hibit serial autocorrelation. To rule out such possibility in the estimation of
these models we use the Quasi-Maximum Likelihood Estimation (QMLE)
approach of Bollerslev & Wooldridge (1992).16

4 Estimation results

We now present the bivariate QMLE estimations for the credit risk models
introduced in the previous section. We assume that investors hold pair-based
portfolios and have four Latin American bonds to choose facing a total of
six combinations.

4.1 Common Long Memory

Decision criteria prefer random walk models for the mean and FIGARCH(1,d,1)
processes for the variance equation.17 To capture long-run comovement be-
tween sovereign markets, Table 3 reports the QMLE estimations of equation
(9),18 the bivariate Constant Correlation long memory model.

16For further discussion about robustness, consistency, ergodicity and asymptotic nor-
mality properties under this estimation method see Baillie et al. (1996).
17We tried different FARIMA(p, d, q)−FIGARCH(1, d, 1) specifications and used the

Log-likelihood value, Schwartz Information Criterion (SIC) and Akaike Information Crite-
rion (AIC) to discriminate between models. As Teyssière (1997) points out, the statistical
properties of the AIC and SIC have not been stablished for the class of Long Memory
ARCH process; however we consider that these statistics provide good reasonable guid-
ance. They are calculated herein as:

AIC = −2ln(L(bθ)) + 2 ∗ nθ
SIC = −2ln(L(bθ)) + nθ ∗ ln(n)

where L(bθ) is the optimized likelihood value, nθ is the number of estimated parameters
and n is the sample size.
18The initial estimation procedure was kindly provided by Celso Brunetti, University of

Pennsylvania. The estimation strategy consisted in using starting values from univariate
FIGARCH(1, d, 1) estimations. Convergence was achieved by reducing the effect of out-
liers to no more than three standard deviations. The original samples of Argentina-Brazil
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All the estimates are highly significant. The behavior of the individual
conditional variances (h11 and h22) is fully described by the mean reversion
(φ and β) and persistence (d) parameters.

Table 3: EMBI, CCC-FIGARCH(1,d,1) QMLE estimations.
(sart, s

a
brt) (sart, smxt) (sart, svet) (sbrt, smxt) (sbrt, svet) (smxt, svet)

Conditional Mean
µ1 -0.0427

(0.0227)b
-0.0479
(0.0240)

-0.0418
(0.0247)

-0.0174
(0.0128)

-0.0267
(0.0132)

-0.0402
(0.0176)

µ2 -0.0657
(0.0158)

-0.0577
(0.0224)

-0.0644
(0.0224)

-0.0270
(0.0169)

-0.0317
(0.0201)

-0.0332
(0.0202)

Conditional Variances
ω1 0.1428

(0.0133)

0.1433
(0.0143)

0.1318
(0.0245)

0.0327
(0.0058)

0.0374
(0.0059)

0.0424
(0.0069)

β1 0.4446
(0.0229)

0.4878
(0.0288)

0.2817
(0.1019)

0.5004
(0.0222)

0.5029
(0.0212)

0.5451
(0.0204)

φ1 0.3162
(0.0178)

0.2686
(0.0201)

0.0897
(0.0914)

0.2820
(0.0149)

0.2886
(0.0147)

0.3041
(0.0160)

d1 0.3675
(0.0355)

0.4628
(0.0402)

0.3371
(0.0351)

0.4361
(0.0298)

0.4229
(0.0295)

0.3918
(0.0319)

ω2 0.0941
(0.0173)

0.1363
(0.0173)

0.1067
(0.0231)

0.0506
(0.0076)

0.1569
(0.0204)

0.1433
(0.0198)

β2 0.2234
(0.1196)

0.6218
(0.0592)

0.4449
(0.0318)

0.5469
(0.0226)

0.3995
(0.0243)

0.3915
(0.0264)

φ2 0.0615
(0.1031)

0.1437
(0.0381)

0.3509
(0.0200)

0.2964
(0.0172)

0.3826
(0.0127)

0.3789
(0.0133)

d2 0.4296
(0.0353)

0.6693
(0.0716)

0.2981
(0.0400)

0.4073
(0.0343)

0.2348
(0.0255)

0.2422
(0.0267)

ρ12 0.7155
(0.0052)

0.6078
(0.0074)

0.5998
(0.0109)

0.5189
(0.0099)

0.5624
(0.0109)

0.4944
(0.0108)

a(Sit,Sjt) indicate the bond components in a given portfolio. bRobust standard errors in paren-

thesis.

As expected from the graphical analysis before, all the correlation coeffi-
cients are large and positive, indicating a greater systematic risk effect–i.e.,
the risk of the portfolio that cannot be diversified away–on these portfolios.
The highest correlation is observed in Argentina-Brazil with 71.6 percent,
while the correlation of Argentina with Mexico and Venezuela is 60.8 and
59.9% respectively. The correlation for the rest of the portfolios is no less
than 49 percent.

and Argentina-Mexico converged satisfactorily without adjusting outliers. In all the es-
timations we used BFGS optimization algorithm although estimations via BHHH were
quiet similar and usually less computing intensive.
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As shown by the measures of long range volatility dependence in Table
3, and in line with the graphical inspection and semiparametric estimations
before, the memory parameters–see d1 and d2 in each column–do not seem
to significantly depart much from each other.

To assess this conjecture, we now formally test whether any two frac-
tional differencing parameters are statistically similar. The bivariate FI-
GARCH(1,d,1) specifications are constrained by imposing d1 = d2. The
penultimate row of Panel (a) in Table 5 shows the optimized mean log-
likelihood of the constrained models. Except for the cases of Brazil-Venezuela
and Mexico-Venezuela, a likelihood ratio cannot reject the hypothesis of
common orders of fractional integration–see p-values in brackets.

In other words, despite the fact that each individual bond spread pre-
sumably follows its own individual volatility process, they both seem to be
driven by a common information arrival process. This is consistent with
the claim of Cunninham et al. (2001) who suggests that a single factor may
drive all EBM spreads in the same direction. This finding also gives support
to the view of Forbes & Rigobon (2000) for Latin American Brady markets
in the sense that volatility is not driven by any individual country or subset
of countries, but it is instead shared by all countries in the region. And
finally, these conclusions add to the propositions of Kaminsky & Reinhart
(2002) indicating that developed markets act as conduits between regions of
developing countries.

4.2 Default Risk Contagion

The long term time invariant comovement assumption may seem far too
restrictive given the number of distress episodes observed in Latin America
during the nineties. In fact, time varying cross correlations have already
been found in stock and sovereign bond markets–see Hausler (2003) and
Cunninham et al. (2001).

Thus, to take this fact into account, in Table 4 we relax the constancy
assumption and present the estimation results of the unrestricted bivariate
FIGARCH(1,d,1) model introduced in equation (11) of section four. While
the previous constant correlation model provided a good insight into the
degree of association between any two bond spreads, the time variant speci-
fication will allows us to capture the extent of interdependence or fractional
comovement in these markets.

The conditional covariance (h12) is a measure of volatility in a given
portfolio. It represents the risk perceived by the investor of holding two
bonds. The joint long memory parameter, i.e., d12, indicates the extent
of long term default risk volatility contagion and, as shown, it is highly
significant in all cases. We interpret default risk contagion as the situation
in which the risk perception of default about one sovereign bond affects the
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risk perception of default of another bond in the same market.19

It is worth noticing in Table 4 that the orders of individual fractional
integration, as well as their statistical significance, do not seem to be affected
by the relaxation of the time invariant correlation assumption. What is
more, the hypothesis of common long range dependencies cannot be rejected.
The optimized likelihood functions resulting from imposing the constraint
d1 = d2 are presented in the fourth rows of Panels (a) and (c) in Table 5
respectively and are labeled as L(θ)d1=d2 . As indicated by the Likelihood
Ratio (LR) tests–p-values in squared brackets–with the exception of the
last two portfolios, sovereign exhibit decay rates that are not statistically
different.

It was suggested in section two that the decay rate of individual volatili-
ties was different to that of the joint volatility measures. To test this conjec-
ture we re-estimate the model in equation (11) by imposing the restriction
of common orders of fractional integration but now conditional covariances
are included, i.e., d1 = d2 = d12. The row labeled L(θ)d1=d2=d12 in Panel
(c) of Table 5 shows the optimized mean log-likelihood of these estima-
tions. The results show a strong rejection of this hypothesis–see p-values
of LR tests–indicating that even though countries may individually share
the same degree of LM, interdependent shocks are propagated differently.
That is, individual volatilities and volatility propagation in EBM–i.e., di
and dij–may arise from different market sources.

4.3 The risk premium

Spreads in EBM are usually taken as measures of risk premium. However,
spreads per se leave out the compensation required by investors for holding
volatile sovereign instruments. Hence, to take this volatility component into
account we now include the conditional variances as regressors as proxies for
time varying risk premia.20

Tables 6 and 7 show mixed results with respect to the significance of indi-
vidual risk premium estimates–see γij . This seems consistent with Eichen-
green & Mody (1998) who have suggested that individual risk premiums
often fail to reflect changing economic conditions and to respond to changes
in the spreads of other countries. Nonetheless, LR tests against the no in-
mean specifications–see Panels (a) to (d) in Table 5–and SIC strongly
confirm that time varying risk premia do jointly drive the behavior of excess
returns in Emerging Bond Markets.

19Definitions for credit contagion can be found in Avellaneda & Wu (2001) or Giesecke
& Weber (2003).
20 In addition to these specifications, we also considered the inclusion of two additional

in mean functions: g =
√
Ht and g = log(Ht). Preliminary results suggest that the

qualitative conclusions remain unchanged. Also, the squared root transformations seem
to perform better than simple in-mean effects.
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Overall and as it would be expected, during the period under analysis
a greater volatility has been reflected in higher risk premia. The extent of
individual risk premium in one market differs greatly from portfolio to port-
folio. For instance, if we consider the portfolio Argentina-Brazil in the first
column of Table 6,21 we observe that the magnitude of the risk premium
required to hold Argentinean bonds (γ11) is equivalent to the size of the
mean return standard deviation. Similarly, the risk premium for holding
Brazilian bonds (γ22) in this portfolio is equivalent to more than two stan-
dard deviations of its mean return. These magnitudes are quite substantial
and indicate a stronger risk aversion by investors during the sample period.

Hence, holders of Argentinean bonds claimed a considerable premium for
investing in its own instrument. However they might also have adjusted for
the effect of holding Brazilian bonds in their portfolio. The cross effects–
(γ12)–measure the extra premium arising from holding the second bond in
the portfolio.22 The magnitude of γ12 in the first column of Table 6 indi-
cates that the additional compensation required by Argentinian investors
for holding Brazilian bonds is not only large–two thirds of standard devia-
tion of mean return–but also statistically significant. In contrast, Brazilian
investors however do not significantly adjust their premiums to account for
their Argentinian holdings, suggesting that cross premia are not necessarily
symmetric.

Additionally, the risk premia here obtained could be interpreted as a
broad estimate of the probability of default attached to EBM. The sub-
stantial levels of compensation for investing in EBM reflect the investors’
perception of increased credit risk and could also show the high probability
of default expected by the market during the sample period.23

4.4 In-Mean shared default risk perceptions

The high frequency nature of our model has prevented us from including
consumption, prices or other critical fundamentals as regressors in the mean
equation. However, our models are fully consistent with Eichengreen &
Mody (1998) who have also argued that risk premia in emerging debt mar-
kets are incapable of adjusting to reflect changing economic conditions, infor-
mation and news from other markets. An alternative to take fundamentals
into account has been proposed by Baillie & Bollerslev (1990) who have
suggested the inclusion of the asset return covariances as proxies of the co-
movement between bond returns and consumption. In this section we follow
this approach by including the conditional covariances as regressors.

21Similar conclusions may be drawn for the analysis of all the portfolios in Tables 6, 7
and 8. We consider only one case to save space.
22These could also be interpreted as short-term contagion measures.
23This is a natural interpretation given the many events of financial distress, devalua-

tions, defaults and crisis in LA markets during the end of the nineties.
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The estimations of equation (13) using covariances as well as the variance
in-Mean terms as regressors are shown in Table 8 where γ12 and γ21 now
measure the impact of the covariances on excess returns. The results using
these cross premia proxies are at best weakly significant. In fact, from
the information in Panels (d) and (e) of Table 5, we observe that the only
case in which there is a clear preference for covariance in-mean terms–
as indicated by the optimized Likelihood value and Schwartz Information
Criteria (SIC)–is in the portfolio Argentina-Brazil.24

The results seem to go in line with Eichengreen & Mody (1998) who
have observed that changes in fundamentals, here proxied by conditional
covariances, may only explain a fraction of spread compression in periods of
crisis.

4.5 Econometric Performance

Teyssière (1997) and Teyssière (1998) have shown that the optimized log-
likelihood value of unrestricted bivariate FIGARCH(1,d,1) models is in gen-
eral greater than the CCC-FIGARCH(1,d,1) of Brunetti & Christopher
(2000). Selection criteria (AIC and SIC) overwhelmingly favor the unre-
stricted bivariate FIGARCH(1, d, 1) model lending support for time vary-
ing correlation models. As can be observed in Table 5 this finding is verified
for Latin American EBM–compare Panels (a) and (c).

Interestingly, by comparing Teyssière (1998) and Brunetti & Christopher
(2000) models against our in-Mean versions we observe in general that the
inclusion of in-mean terms improves the optimized Likelihood value. Also,
Schwartz Information Criterion (that penalizes the inclusion of additional
parameters) strongly prefers our new in-Mean models. We test the restric-
tion Ho : γ11 = γ12 = γ21 = γ22 = 0 using standard LR tests and as it
can be observed, there is a clear rejection of the null in favor of in-mean
parameters–see p-values in brackets in Panels (b) and (d) respectively.25

Among the different proxies of risk premia AIC and SIC seem to prefer
the Variance-in-Mean terms. The optimized Likelihood function however is
greater for the unrestricted specifications.

In terms of stability, apart from risk premia, parameter estimates re-
main highly significant and the magnitudes and precision do not seem to be
affected after the inclusion of in-mean terms. A simulation study is being un-
dertaken in continuing work to assess the relative improvement/performance
of the QMLE estimation of the fractional differencing parameters in small
samples. The models are also extended to consider the effect of asymmetries
in a bivariate FIEGARCH context.
24The weak significance of these parameters is also in agreement with the results of

Baillie & Bollerslev (1990).
25Such testing framework however renders mixed results for the case of covariance in

mean parameters–see Panel (e).
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5 Conclusions and discussion

The contribution of this paper has been twofold: first we have uncovered
the high degree of volatility persistency, strong fractional comovement and
risk premia of Latin American EBM’s and, second, we have proposed a new
family of bivariate long memory models to capture these salient features.
These new models not only allow to derive time varying estimates of volatil-
ities, correlations and investors’ risk aversion series, but also account for the
high predictability observed in these markets.

Long Memory in EBM is explained as the result of financial market rigidi-
ties and informational deficiencies. A potential implication of this finding is
that domestic policies–e.g., capital controls–oriented at constraining the
effect of sudden destabilization shocks may only be of temporary use. In line
with the arguments of Forbes & Rigobon (2000) short-run isolation strate-
gies may be costly and only delay a country’s adjustment to equilibrium.

The results also suggest a high degree of fractional comovement in these
markets. The default risk contagion parameters are in all cases highly sig-
nificant. This outcome is consistent with the claims of Mauro et al. (2000),
Fiess (2003) and Cunninham et al. (2001) who report strong comovement
of spreads in EBM.

We find that the individual degrees of LM are not statistically different.
This lends support to the conjecture that a common market factor drives
EBM spreads. Episodes of contagion for instance may have a common base
being either Brady markets (Baig & Goldfajn (2000)) or any other devel-
oped financial market acting as the conduit between regions of developing
markets–Kaminsky & Reinhart (2002). In order to deal with pervasive
shock, LA countries should then coordinate their efforts rather than cope
with turmoils in an individual basis.

Derivative markets on these instruments are not still fully developed.
For this reason, focusing on volatilities implicit in market prices of option-
like credit derivatives would not be sensible. Bielcki and Rutowski (2001)
have already observed that the valuation of credit derivatives requires to
take into account credit spread volatilities and, if several distinct assets are
modeled simultaneously, credit spread correlations. The models proposed
here provide estimates of these parameters.

In addition, policy makers and investors in LA sovereign bond mar-
kets might be interested in assessing the effect of contagious shocks on the
volatility of its own market and on the market perception of default risk.
The models presented here are capable of capturing such phenomena.

Another potential implication of the LM finding relates to the pricing
of derivatives. Baillie et al. (1996) have already showed that valuation of
derivatives under the presence of Long Memory may be highly unreliable
and heavy loses are possible. A future line of research should investigate the
effect of LM in the valuation of sovereign basket derivatives.
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Table 4: EMBI, unrestricted FIGARCH(1,d,1) QMLE estimations.
(sart, s

a
brt) (sart, smxt) (sart, svet) (sbrt, smxt) (sbrt, svet) (smxt, svet)

Conditional Mean
µ1 -0.0475

(0.0250)

-0.0552
(0.0250)

-0.0348
(0.0251)

-0.0223
(0.0134)

-0.0183
(0.0133)

-0.0415
(0.0176)

µ2 -0.0572
(0.0189)

-0.0481
(0.0250)

-0.0569
(0.0231)

-0.0309
(0.0170)

-0.0316
(0.0191)

-0.0372
(0.0202)

Conditional Variances
ω1 0.1133

(0.0112)

0.1769
(0.0272)

0.1549
(0.0269)

0.0228
(0.0134)

0.0223
(0.0050)

0.0404
(0.0068)

β1 0.4784
(0.0138)

0.3588
(0.0807)

0.2684
(0.0894)

0.5063
(0.0603)

0.5204
(0.0189)

0.5483
(0.0176)

φ1 0.3230
(0.0122)

0.1809
(0.0703)

0.0928
(0.0835)

0.2946
(0.0581)

0.3071
(0.0125)

0.3121
(0.0136)

d1 0.3539
(0.0245)

0.3900
(0.0310)

0.3019
(0.0268)

0.3788
(0.0262)

0.3858
(0.0251)

0.3759
(0.0272)

ω2 0.0748
(0.0131)

0.1947
(0.0286)

0.0972
(0.0188)

0.0431
(0.0073)

0.1007
(0.0149)

0.1234
(0.0182)

β2 0.1886
(0.0539)

0.3424
(0.0733)

0.4818
(0.0253)

0.5456
(0.0202)

0.4624
(0.0215)

0.4395
(0.0224)

φ2 0.0011
(0.0446)

0.1454
(0.0601)

0.3483
(0.0169)

0.3018
(0.0152)

0.3635
(0.0129)

0.3768
(0.0123)

d2 0.3441
(0.0232)

0.4020
(0.0330)

0.3034
(0.0338)

0.3965
(0.0304)

0.2729
(0.0258)

0.2463
(0.0245)

Conditional Covariance
ω12 0.0573

(0.0093)

0.1282
(0.0181)

0.0837
(0.0191)

0.0149
(0.0052)

0.0201
(0.0061)

0.0369
(0.0096)

β12 0.3599
(0.0299)

0.3842
(0.0677)

0.4348
(0.0650)

0.2976
(0.0199)

0.5134
(0.0168)

0.5215
(0.0169)

φ12 0.1971
(0.0310)

0.2311
(0.0666)

0.2819
(0.0626)

0.3055
(0.0408)

0.3576
(0.0110)

0.3780
(0.0116)

d12 0.3599
(0.0299)

0.3391
(0.0260)

0.2582
(0.0249)

0.4989
(0.0448)

0.2848
(0.0220)

0.2439
(0.0233)

aSee notes in Table 3.
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Table 5: EMBI, decision criteria FIGARCH(1,d,1) estimations.
(sart, s

a
brt) (sart, smxt) (sart, svet) (sbrt, smxt) (sbrt, svet) (smxt, svet)

Panel (a): Brunetti CCC − FIGARCH(1, d, 1)
L(θ)b -4,911.3 -5,989.1 -5,361.4 -5,624.1 -5,391.9 -6,389.3
AICc 9,844.6 12,000.3 10,744.7 11,270.3 10,805.9 12,800.7
SICd 9,908.2 12,063.8 10,808.4 11,336.3 10,871.9 12,866.7
L(θd1=d2)

e -4,911.9 -5,991.3 -5,361.6 -5,624.3 -5,397.9 -6393.9
LRf [0.5488]g [0.1108] [0.8187] [0.8190] [0.0025] [0.0101]
Panel (b): CCC-FIGARCH(1,d,1) Variance in-Mean
L(θ) -4,906.0 -5,982.5 -5,654.7 -5,619.9 -5,386.4 -6,648.6
LR [0.0314]h [0.0103] [–] [0.0780] [0.0266] [–]
AIC 9,842.0 11,995.0 11,159.4 11,269.9 10,802.7 13,327.2
SIC 9,928.7 12,081.7 11,246.1 11,359.9 10,892.9 13,417.3
Panel (c): Unrestricted FIGARCH(1,d,1)
L(θ) -4,737.7 -5,794.5 -5,268.4 -5,524.4 -5,300.8 -6,342.7
AIC 9,503.5 11,617.0 10,564.8 11,076.8 10,629.6 12,713.4
SIC 9,584.4 11,697.9 10,645.8 11,160.9 10,713.7 12,797.5
L(θd1=d2) -4,737.9 -5,794.5 -5,268.4 -5,524.5 -5,304.5 -6,347.8
LR [0.4966] [0.9999] [0.9999] [0.9048] [0.0247] [0.0074]
L(θd1=d2=d12) -4,810.3 -5,840.3 -5,275.3 -5,540.1 -5,309.4 -6,357.1
LR [–] [0.0001] [0.0032] [0.0000] [0.0006] [0.0001]
Panel (d): Unrestricted-FIGARCH(1,d,1) Variance in-Mean
L(θ) -4,731.0 -5,786.4 -5,260.2 -5,519.1 -5,297.6 -6,339.5
LR [0.0095]i [0.0028] [0.0025] [0.0314] [0.1712] [0.1700]
AIC 9,498.1 11,608.8 10,556.5 11,074.2 10,631.2 12,715.0
SIC 9,602.1 11,712.9 10,660.5 11,182.4 10,739.4 12,823.2
Panel (e): Unrestricted-FIGARCH(1,d,1) Covariance in-Mean
L(θ) -4,729.3 -5,787.4 -5,261.9 -5,522.4 -5,297.5 -6,339.9
LR [0.0021]i [0.0067] [0.0113] [0.4060] [0.1586] [0.2311]
AIC 9,495.2 11,610.8 10,559.9 11,080.9 10,630.5 12,715.7
SIC 9,598.7 11,714.9 10,663.9 11,188.9 10,739.2 12,823.9
aSubindex i,j indicate the bond components in a portfolio. bMaximized Log-likelihood. cAkaike

Information Criteria. dSchwartz Information Criterion. eMaximized likelihood function with res-

triction in sub-index. fLR stands for Likelihood Ratio and is computed as LR=-2×[L(θo)-L(θ)]
where LR~χ2m with m being to the number of linear restrictions.gP-values corresponding to the

Likelihood Ratio between the restricted model and the extended models respectively. h P-value

of the LR between the in-mean version and the CCC-FIGARCH(1,d,1) model–Panels (b) and

(a) respectively. iP-value of the LR between the in-mean version and Teyssière FIGARCH(1,d,1)

model–Panels (d) and (e) against (c) respectively.
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Table 6: EMBI, CCC-FIGARCH(1,d,1) Variance-in-Mean.
(sart, sbrt) (sart, smxt) (sart, svet) (sbrt, smxt) (sbrt, svet) (smxt, svet)

Conditional Meana

µ1 -0.0963
(0.0277)

-0.1320
(0.0305)

-0.1336
(0.0283)

-0.0429
(0.0173)

-0.0849
(0.0179)

-0.0655
(0.0211)

µ2 -0.1057
(0.0184)

-0.0917
(0.0299)

-0.1162
(0.0273)

-0.0473
(0.0233)

-0.1131
(0.0328)

-0.0698
(0.0252)

γ11 0.0283
(0.0143)

0.0289
(0.0165)

0.0294
(0.0139)

-0.0234
(0.0288)

-0.0137
(0.0252)

0.0082
(0.00147)

γ12 0.0176
(0.0115)

0.0205
(0.0127)

0.0321
(0.0071)

0.0293
(0.0142)

0.0547
(0.0140)

0.0139
(0.0071)

γ21 0.0010
(0.0049)

0.0025
(0.0068)

-0.0004
(0.0051)

0.0349
(0.0278)

0.0009
(0.0258)

0.0037
(0.0097)

γ22 0.0519
(0.0189)

0.0203
(0.0164)

0.0487
(0.0167)

-0.0106
(0.0227)

0.0644
(0.0315)

0.0289
(0.0186)

Conditional Variances
ω1 0.1426

(0.0134)

-0.0917
(0.0299)

0.1236
(0.0124)

0.0327
(0.0058)

0.0363
(0.0058)

0.0591
(0.0081)

β1 0.4420
(0.0233)

0.4741
(0.0755)

0.4415
(0.0245)

0.5002
(0.0220)

0.4972
(0.0213)

0.5041
(0.0528)

φ1 0.3183
(0.0183)

0.2586
(0.0589)

0.3132
(0.0187)

0.2858
(0.0147)

0.2981
(0.0143)

0.2749
(0.0464)

d1 0.3634
(0.0366)

0.4599
(0.0458)

0.3736
(0.0373)

0.4284
(0.0294)

0.4037
(0.0286)

0.4429
(0.0346)

ω2 0.0929
(0.0179)

0.1379
(0.0177)

0.1653
(0.0218)

0.0513
(0.0076)

0.1567
(0.0207)

0.1813
(0.0177)

β2 0.2093
(0.1279)

0.6167
(0.0597)

0.3278
(0.0287)

0.5442
(0.0229)

0.3976
(0.0239)

0.2958
(0.0242)

φ2 0.0593
(0.1115)

0.1399
(0.0377)

0.3338
(0.0168)

0.2968
(0.0176)

0.3854
(0.0125)

0.3561
(0.0131)

d2 0.4169
(0.0349)

0.6631
(0.0715)

0.3324
(0.0337)

0.4064
(0.0351)

0.2293
(0.0249)

0.2879
(0.0262)

ρ12 0.7154
(0.0053)

0.6088
(0.0080)

0.5943
(0.0089)

0.5198
(0.0099)

0.5627
(0.0108)

0.4982
(0.0101)

aSee notes in Table 3.
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Table 7: EMBI, unrestricted FIGARCH(1,d,1) Variance-in-Mean.
(sart, sbrt) (sart, smxt) (sart, svet) (sbrt, smxt) (sbrt, svet) (smxt, svet)

Conditional Meana

µ1 -0.1063
(0.0307)

-0.1556
(0.0317)

-0.1712
(0.0400)

-0.0598
(0.0213)

-0.0652
(0.0196)

-0.0759
(0.0267)

µ2 -0.1169
(0.0234)

-0.1115
(0.0329)

-0.1832
(0.0387)

-0.0605
(0.0268)

-0.0920
(0.0303)

-0.1165
(0.0339)

γ11 0.0249
(0.0153)

0.0294
(0.0154)

0.0479
(0.0218)

-0.0139
(0.0298)

-0.0084
(0.0254)

0.0163
(0.0211)

γ12 0.0262
(0.0197)

0.0273
(0.0121)

0.0472
(0.0286)

0.0338
(0.0149)

0.0429
(0.0170)

0.0136
(0.0231)

γ21 0.0013
(0.0062)

-0.0001
(0.0083)

0.0149
(0.0127)

0.0439
(0.0308)

0.0102
(0.0274)

0.0139
(0.0168)

γ22 0.0656
(0.0184)

0.0479
(0.0366)

0.0779
(0.0271)

-0.0087
(0.0230)

0.0405
(0.0304)

0.0502
(0.0292)

Conditional variances
ω1 0.1116

(0.0111)

0.1709
(0.0262)

0.1490
(0.0269)

0.0243
(0.0089)

0.0227
(0.0050)

0.0408
(0.0068)

β1 0.4788
(0.0140)

0.3639
(0.0839)

0.2550
(0.0947)

0.4872
(0.0809)

0.5186
(0.0189)

0.5479
(0.0178)

φ1 0.3237
(0.0125)

0.1883
(0.0728)

0.0847
(0.0878)

0.2812
(0.0740)

0.3114
(0.0125)

0.3127
(0.0140)

d1 0.3526
(0.0250)

0.3884
(0.0323)

0.2939
(0.0269)

0.3685
(0.0354)

0.3772
(0.0249)

0.3746
(0.0281)

ω2 0.0703
(0.0127)

0.1832
(0.0276)

0.0908
(0.0192)

0.0436
(0.0114)

0.0991
(0.0150)

0.1191
(0.0183)

β2 0.1984
(0.0538)

0.3638
(0.0693)

0.4811
(0.0243)

0.5433
(0.0242)

0.4632
(0.0211)

0.4436
(0.0222)

φ2 0.0146
(0.0453)

0.1649
(0.0571)

0.3535
(0.0163)

0.3016
(0.0173)

0.3644
(0.0128)

0.3774
(0.0122)

d2 0.3393
(0.0237)

0.3992
(0.0339)

0.2930
(0.0326)

0.3965
(0.0346)

0.2713
(0.0256)

0.2451
(0.0244)

Conditional Covariance
ω12 0.0555

(0.0086)

0.1152
(0.0165)

0.0785
(0.0191)

0.0162
(0.0081)

0.0205
(0.0061)

0.0370
(0.0096)

β12 0.3618
(0.0301)

0.4258
(0.0614)

0.4308
(0.0692)

0.4850
(0.0596)

0.5123
(0.0168)

0.5215
(0.0168)

φ12 0.1998
(0.0319)

0.2687
(0.0628)

0.2855
(0.0668)

0.2921
(0.0536)

0.3597
(0.0110)

0.3789
(0.0117)

d12 0.3072
(0.0194)

0.3419
(0.0268)

0.2502
(0.0245)

0.2952
(0.0260)

0.2807
(0.0219)

0.2422
(0.0234)

aSee notes in Table 3.
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Table 8: EMBI, unrestricted FIGARCH(1,d,1) Covariance-in-Mean.
(sart, sbrt) (sart, smxt) (sart, svet) (sbrt, smxt) (sbrt, svet) (smxt, svet)

Conditional Meana

µ1 -0.1188
(0.0306)

-0.1424
(0.0312)

-0.1381
(0.0378)

-0.0390
(0.0197)

-0.0368
(0.0173)

-0.0638
(0.0244)

µ2 -0.1222
(0.0231)

-0.0939
(0.0322)

-0.1549
(0.0368)

-0.0382
(0.0253)

-0.0863
(0.0305)

-0.1095
(0.0329)

γ11 0.0450
(0.0219)

0.0457
(0.0187)

0.0409
(0.0255)

-0.0303
(0.0398)

-0.0777
(0.0429)

0.0010
(0.0288)

γ12 0.0080
(0.0355)

0.0137
(0.0258)

0.0543
(0.0501)

0.0775
(0.0512)

0.1499
(0.0592)

0.0425
(0.0611)

γ21 0.0700
(0.0317)

0.0517
(0.0344)

0.0396
(0.0485)

0.0663
(0.0566)

-0.0038
(0.0556)

-0.0046
(0.0546)

γ22 0.0031
(0.0346)

-0.0058
(0.0261)

0.0544
(0.0395)

-0.0210
(0.0280)

0.0508
(0.0382)

0.0662
(0.0374)

Conditional Variances
ω1 0.1127

(0.0112)

0.1716
(0.0260)

0.1553
(0.0275)

0.0243
(0.0089)

0.0242
(0.0057)

0.0407
(0.0068)

β1 0.4765
(0.0143)

0.3657
(0.0821)

0.2538
(0.0948)

0.4904
(0.2812)

0.5044
(0.0474)

0.5482
(0.0178)

φ1 0.3236
(0.0127)

0.1899
(0.0715)

0.0841
(0.0880)

0.2812
(0.0739)

0.2969
(0.0431)

0.3121
(0.0139)

d1 0.3528
(0.0253)

0.3858
(0.0319)

0.2946
(0.0271)

0.3734
(0.0359)

0.3776
(0.0266)

0.3758
(0.0278)

ω2 0.0712
(0.0128)

0.1830
(0.0276)

0.0947
(0.0193)

0.0436
(0.0113)

0.1004
(0.0150)

0.1213
(0.0185)

β2 0.1928
(0.0538)

0.3727
(0.0697)

0.4790
(0.0247)

0.5451
(0.0243)

0.4627
(0.0211)

0.4414
(0.0222)

φ2 0.0074
(0.0449)

0.1731
(0.0580)

0.3529
(0.0164)

0.3011
(0.0174)

0.3648
(0.0127)

0.3784
(0.0122)

d2 0.3412
(0.0237)

0.4036
(0.0343)

0.2942
(0.0329)

0.3987
(0.0348)

0.2704
(0.0254)

0.2431
(0.0243)

Conditional covariance
ω12 0.0562

(0.0087)

0.1168
(0.0165)

0.0825
(0.0194)

0.0162
(0.0082)

0.0213
(0.0062)

0.0372
(0.0096)

β12 0.3581
(0.0302)

0.4276
(0.0609)

0.4312
(0.0692)

0.4867
(0.0599)

0.5121
(0.0166)

0.5219
(0.0168)

φ12 0.1974
(0.0319)

0.2703
(0.0625)

0.2867
(0.0668)

0.2928
(0.0536)

0.3587
(0.0110)

0.3789
(0.0116)

d12 0.3082
(0.0195)

0.3428
(0.0269)

0.2508
(0.0246)

0.2971
(0.0263)

0.2825
(0.0219)

0.2420
(0.0233)

aSee notes in Table 3.
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