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Abstract
Monetary policy is sometimes formulated in terms of a target level

of inflation, a fixed time horizon and a constant interest rate that is an-
ticipated to achieve the target at the specified horizon under rational
expectations These requirements lead to instrument rules for interest
rate setting that can be called CIP (constant interest rate projections)
rules. We consider the twin questions of determinacy and stability un-
der adaptive learning for CIP interest rate policy using the standard
New Keynesian model. It is shown that CIP policy necessarily leads
to both indeterminacy of equilibria and instability under learning if
the economy is fully forward looking. These unfavourable properties
of CIP policy remain in most cases of inertial demand and price be-
haviour.
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1 Introduction

A fairly commonly employed method for conducting monetary policy is based
on inflation forecast targeting when the forecasts are derived as constant-
interest-rate forecasts, see e.g. (Leitemo 2003) and (Svensson 1999). Given
a model of the macroeconomy, setting the forecast of inflation based on con-
stant interest rates at a given target level of inflation implies a rule for the
interest rate, the actual policy instrument of the central bank. Such an anal-
ysis needs to employ a concept of equilibrium and the literature follows the
current standard paradigm and assumes that the economy is in a rational
expectations equilibrium (REE) and that the central bank is able to use ra-
tional expectations (RE) as their forecasting procedure. We will refer to this
way of conducting policy as constant interest rate projection (CIP) inflation
targeting and corresponding interest rate rules as CIP rules.
CIP inflation targeting has been advocated as an easily understandable

and hence practical approach to conducting monetary policy; see eg.(Leitemo
2003) for a good discussion. Arguably, it has even been implemented by some
central banks like the Bank of England and Bank of Sweden. The inflation
target is set for some given forecast horizon h and policy tries to achieve that
target, so that

Etπt+h = π̄.

Here Etπt+h is the forecast of the inflation for period t+h and it is taken to be
the rational expectations (RE) forecast as the central bank is, for simplicity,
assumed to know the model of the economy.
Since the policy horizon h for deriving policy is usually higher than 1

assumptions have to be made about the level of the interest during the time
span from t to t + h before it is possible to derive explicit policy rules. A
common assumption here is to assume that the interest rate is held constant
during this time interval, so the policy might be referred to as “constant-
interest-rate inflation forecast targeting”, see e.g. the discussion in (Leitemo
2003).1

Since current models for monetary policy are forward-looking, issues of
determinacy of equilibria and their stability under (adaptive) learning have

1(Svensson 1999) and especially the appendix of the working paper version (see
(Svensson 1998)) have a somewhat different formulation of CIP policy. We will discuss it
further in Section XX.
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been raised in the recent literature. (Bullard and Mitra 2002) have derived
constraints on the interest rate instrument rules that achieve stability and
determinacy in a standard New Keynesian model of monetary policy. (Evans
and Honkapohja 2003b) and (Evans and Honkapohja 2003c) have shown that
some standard ways for implementing optimal policy under discretion or
commitment can lead to these difficulties. (Evans and Honkapohja 2003a)
survey this literature and provide further references.
CIP policies have not thus far been examined for determinacy and sta-

bility under learning and our goal in this paper is to fill this gap. We will
argue that CIP policies can often lead to unpleasant outcomes, i.e. the re-
sulting RE solution can exhibit both indeterminacy and instability under
learning. This problematic outcome necessarily happens in the basic New
Keynesian model, which has become a workhorse for the recent research on
monetary policy. We then examine the role of inertia for the indeterminacy
and instability results. A numerical examination shows that the results for
forward-looking models mostly remain unchanged, though for specific pa-
rameter configurations determinacy or stability under least squares learning
can occur.

2 The Framework

2.1 The Basic Model

The model we employ is the standard New Keynesian model of monopolistic
competition and (Calvo 1983) price stickiness. This model has been employed
in numerous recent studies, see e.g. (Clarida, Gali, and Gertler 1999) for a
survey. The log-linearized model is described by two equations

xt = −ϕ(it − E∗t πt+1) +E∗t xt+1 + gt, (1)

which is the “IS” curve derived from the Euler equation for consumer opti-
mization, and

πt = λxt + βE∗t πt+1 + ut, (2)

which is the price setting rule for the monopolistically competitive firms.2

We remark that in a later section we will add inertia terms to (1) and (2).

2See e.g. (Woodford 1996) or (Woodford 2000) for further details of the linearization
and the original nonlinear model.
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The inertia is usually justified by empirical relevance even though the micro
foundations of the model are then fairly weak.3

Here xt and πt denote the output gap and inflation for period t, respec-
tively. it is the nominal interest rate, expressed as the deviation from the
steady state real interest rate. The determination of it will be discussed be-
low. E∗t xt+1 and E

∗
t πt+1 denote the private sector expectations of the output

gap and inflation next period. Since our focus is on learning behavior, these
expectations need not be rational (Et without ∗ denotes RE). The parameters
ϕ and λ are positive and β is the discount factor so that 0 < β < 1.
The shocks gt and ut are assumed to be observable and followµ

gt
ut

¶
= F

µ
gt−1
ut−1

¶
+

µ
g̃t
ũt

¶
, (3)

where

F =

µ
µ 0
0 ρ

¶
,

0 < |µ| < 1, 0 < |ρ| < 1 and g̃t ∼ iid(0,σ2g), ũt ∼ iid(0,σ2u) are independent
white noise. gt represents shocks to government purchases and or potential
output. ut represents any cost push shocks to marginal costs other than those
entering through xt. For simplicity, we assume throughout the paper that µ
and ρ are known (if not, they could be estimated).
For brevity, details of the derivation of equations (1) and (2) are not dis-

cussed. The derivation is based on individual Euler equations under (identi-
cal) subjective expectations, together with aggregation and definitions of the
variables. The Euler equations for the current period give the decisions as
functions of the expected state next period. Rules for forecasting the next
period’s values of the state variables are the other ingredient in the descrip-
tion of individual behavior. Given forecasts, agents are assumed to make
decisions according to the Euler equations.4

3See (Christiano and Evans 2001) and (Galí and Gertler 1999) for possible justifications.
4This kind of behavior is boundedly rational but in our view reasonable since agents

attempt to meet the margin of optimality between the current and the next period. Other
models of bounded rationality are possible. Recently, (Preston 2002b) has proposed a
formulation in which long horizons matter in individual behavior. See also (Preston 2002a)
and (Honkapohja, Mitra, and Evans 2002) for further discussion.
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2.2 The CIP Policy

To derive CIP policy we follow the approach of (Leitemo 2003), which can
be consulted for further details. First, we write the model in matrix-vector
form

yt = AE∗t yt+1 +Bwt +Dit, (4)

wt = Fwt−1 + vt,

where yt = (xt,πt)0, wt = (gt, ut)0 and vt = (g̃t, ũt)0. The coefficient matrices
are

A =

µ
1 ϕ
λ β + λϕ

¶
, B =

µ
1 0
λ 1

¶
, D =

µ −ϕ
−λϕ

¶
. (5)

We note that in the derivation of CIP policies it is assumed that expectations
are rational.
Next, we introduce the (strict) inflation target

Etπt+h = π̄ = 0, (6)

where for simplicity the target is assumed to be zero.5 We express this
constraint as

0 = K(Etwt+h, Etyt+h)
0, K = (0, 0, 0, 1). (7)

Rewriting (4) as µ
wt+1
Etyt+1

¶
= Ω

µ
wt
yt

¶
+Ψit +

µ
vt
0

¶
, (8)

where

Ω =

µ
F 0

−A−1B A−1

¶
,Ψ =

µ
0

−A−1D
¶
,

and keeping the interest rates it+s at constant value it we obtain the interest
rate rule

it = G

µ
wt
yt

¶
, (9)

5This is without loss of generality as the precise values of model constants affect neither
determinacy nor stability under learning.
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where

G = −
Ã
K

h−1X
j=0

ΩjΨ

!−1
KΩh.

We will refer to (9) as the CIP-rule I.
The CIP-rule I, equation (9), has the general form

it = χggt + χuut + χxxt + χππt (10)

and it is possible to compute (10) explicitly for different values of h. For
h = 2

χg = ϕ−1,χu = −
1 + βρ+ λϕ

βλϕ
,χx = −

1 + β + λϕ

βϕ
,χπ =

1 + λϕ

βλϕ

and for h = 3 we have

χg =
1 + β + βµ+ λϕ

ϕ+ 2βϕ+ λϕ2
,χu = −

β2ρ2 + (1 + λϕ)2 + β(ρ+ λϕ+ λϕρ)

βλϕ(1 + 2β + λϕ)
,

χx = −β + β2 + 2βλϕ+ (1 + λϕ)2

βϕ(1 + 2β + λϕ)
,χπ =

1 + (2 + β)λϕ+ λ2ϕ2

βλϕ(1 + 2β + λϕ)
.

It is seen that, for h = 2, 3, the rule (9) surprisingly has χx < 0, i.e. the inter-
est rate should react negatively to the output gap. For higher values of h the
expressions become quite cumbersome, but numerical computations indicate
that the negative coefficient on the output gap is a robust phenomenon of
the CIP-rule I.6

This unexpected result can be given an economic interpretation in the
case h = 2. Shift the New Phillips curve (2) forward and take RE. This
yields the positive relation between Etπt+1 and Etxt+1. Recalling that the
inflation target is assumed to be zero, we have

Etπt+1 = λEtxt+1,

which will pin the expectations terms in (1). By (2) we also have

Etπt+1 = β−1(πt − λxt),

6The Mathematica routine is available on request.
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which indicates that bothEtπt+1 andEtxt+1 depend negatively on the current
output gap under this policy. Finally, rewriting the IS curve (1) as

ϕit = −xt + ϕEtπt+1 +Etxt+1

= −(1 + β−1 + β−1λϕ)xt + (β−1ϕ+ β−1λ−1)

it is seen that it and xt are negatively related, both directly as part of the IS
relationship and indirectly through the negative dependence of Etπt+1 and
Etxt+1 on the current xt.
We remark that (9) should be viewed as an instrument rule as, in addition

to the observable exogenous shocks, it depends on current endogenous vari-
ables. It is an instrument rule in the same sense as the widely discussed rule
proposed by (Taylor 1993) is so. (9) can be viewed as a behavioral rule in the
same sense as demand and supply functions of private agents are behavioral
rules, i.e. the central bank “goes to the market” with that schedule and is
assumed to be able to adjust the interest rate within the period. Such rules
are sometimes said to be non-operational, see (McCallum 1999) for further
discussion.7

For this reason a different rule, which depends only on predetermined
variables is often suggested instead. It can be derived as follows. Substituting
(9) into (8) we haveµ

wt+1
Etyt+1

¶
= (Ω+ΨG)

µ
wt
yt

¶
+

µ
vt
0

¶
,

for which it is possible to derive the MSV solution of the form

yt = Hwt

using standard techniques (we omit the precise form of H). Introducing the
partition G =

¡
Gw Gy

¢
, we can rewrite the interest rule (9) as

it = (Gw +GyH)wt, (11)

which we will call the CIP-rule II.
7Alternatively, this kind of rule is referred to as an equilibrium condition; see e.g.

(Leitemo 2003).
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3 Indeterminacy and Instability

We consider whether CIP interest rate rules, either in the form (9) or (11),
yield determinacy and stability under learning. We will assess stability under
learning using the concept of E-stability, which is known to be the relevant
condition convergence of adaptive learning.8 The analysis is conducted using
the forward-looking model (1) and (2), together with either (9) or (11).
We start with (11). In the basic model it has unpleasant properties on

both counts:

Proposition 1 CIP-rule II, i.e. equation (11), leads to both indeterminacy
and instability under adaptive learning.

Proof. We can directly apply Proposition 2 in (Evans and Honkapohja
2003b), which states that, in this model, any interest rate rule that depends
only on the exogenous shocks lead to both indeterminacy and instability
under learning.
The indeterminacy result means that there other stationary REE to the

model under the CIP-rule II besides the MSV solution used above. These
equilibria include various sunspot solutions and it is possible to examine
whether the non-MSV solutions are stable under learning. The results of
Section 3 of (Honkapohja and Mitra 2001) are directly applicable and it can
be shown that the non-MSV REE are also E-unstable.9

Taken together, the results suggest that, in the forward-looking context,
implementation of monetary policy using the CIP-rule II can lead to fluctu-
ations since it is likely to be difficult for the private economy to coordinate
on the MSV REE on which the derivation of the rule was based.
The difficulties spelled out by Proposition 1 naturally raise the question

whether the instrument rule form of CIP monetary policy, i.e. CIP-rule
I given by equation (9) has better determinacy or learnability properties.
Unfortunately, this is not the case:

Proposition 2 CIP-rule I leads to both indeterminacy and E-instability in
model (1)-(2) when h ≥ 3. For h = 2 the model has indeterminacy but the
unique MSV solution is E-stable.

8(Evans and Honkapohja 2001) provides a treatise on adaptive learning, while (Evans
and Honkapohja 1999), (Evans and Honkapohja 1995), (Marimon 1997), (Sargent 1993)
and (Sargent 1999) are surveys of the subject.

9Under (11) the coefficient matrix of the forecasts is A in (4) and the matrix A can be
shown to have an eigenvalue greater than one, whereby we have E-instability.
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Proof. To prove the results we first note that it is unnecessary to consider
the exogenous shocks for these results. They play no role in indeterminacy
and also, in this setting, the E-instability part follows from considering the
model without the shocks. We now consider determinacy and E-stability
under (10) for different values of h.
We will derive analytic results for h = 2, 3, 4 and then illustrate numeri-

cally that, using a calibration of the model, the same results remain true for
higher values of h.10 Substituting (10) into (4) and omitting the shocks, we
have the system

Myt = NE∗t yt+1, where

M =

µ
1 + ϕχx ϕχπ

−λ 1

¶
, N =

µ
1 ϕ
0 β

¶
.

In the case h = 2 matrix M is singular, but we can assess determinacy by
computing

N−1M =

µ −β−1 (βλ)−1

−λβ−1 β−1

¶
.

Both eigenvalues of N−1M are zero, so that we have indeterminacy. The
analysis of E-stability for h = 2 is given in the appendix since the singularity
of M raises additional technical and conceptual issues.
In the case h = 3 we get

M−1N =

Ã
1+2β+λϕ

β
−1+(β−1)λϕ

βλ
λ(1+2β+λϕ)

β
(β−1)(1+β+λϕ)

β

!
.

The model is determinate if and only if both eigenvalues ofM−1N lie outside
the unit circle. Equivalently, it is required that

0 > Abs[Det(M−1N)]− 1
0 > Abs[Tr(M−1N)]− 1−Det(M−1N).

However, it turns out that Det(M−1N)− 1 = 2β + λϕ > 0, so that indeter-
minacy prevails. For E-stability it is required that

Tr(M−1N − I) < 0,

Det(M−1N − I) > 0.

10The Mathematica routine is available on request.
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In this case we have Tr(M−1N − I) = β + λϕ > 0.
In the case h = 4 we have

Det(M−1N)− 1 =
3β2 + 3βλϕ+ λϕ(1 + λϕ)

1 + 2β + λϕ
> 0,

T r(M−1N − I) =
2β2 + 3βλϕ+ λϕ(1 + λϕ)

1 + 2β + λϕ
> 0

so that both indeterminacy and E-instability prevail.
For higher values of h we have computed the relevant conditions numer-

ically using the calibration β = 0.99, λ = 0.3, ϕ = 1 due to (Clarida, Gali,
and Gertler 2000). We also set µ = 0.4 and ρ = 0.4. The results reported in
Table 1 for h = 5, . . . , 12 after the proof clearly indicate that the CIP-rule I
delivers neither determinacy nor stability under learning.

h Det(M−1N)− 1 Tr(M−1N − I)
5 0.986466 0.857115
6 0.856092 0.791627
7 0.791006 0.756621
8 0.756244 0.737238
9 0.737011 0.726297
10 0.726162 0.720055
11 0.719975 0.716473
12 0.716426 0.71441

Table 1: Indeterminacy and E-instability for CIP-rule I

4 Model with Inertia

The model given by (1) and (2) is entirely forward-looking and as a result has
difficulty capturing the inertia in output and inflation evident in the data,
see (Fuhrer and Moore 1995b), (Fuhrer and Moore 1995a) and (Rudebusch
and Svensson 1999). Consequently, we look at an extension of this model
considered in (Clarida, Gali, and Gertler 1999), Section 6, with important
backward-looking elements. The model now consists of the structural equa-
tions

xt = −ϕ
³
it − Êtπt+1

´
+ θÊtxt+1 + (1− θ)xt−1 + gt (12)

πt = λxt + βγÊtπt+1 + (1− γ)πt−1 + ut (13)

10



The parameters θ and γ capture the inertia in output and inflation inherent
in the model and are assumed to be between 0 and 1. The shocks gt and ut
continue to follow the process (3). As in Section 2.2, we can write this model
in matrix form as

yt = A1E
∗
t yt+1 + L1yt−1 +Bwt +Dit, (14)

wt = Fwt−1 + vt,

where yt = (xt,πt)0, wt = (gt, ut)0 and vt = (g̃t, ũt)0. The coefficient matrices
are

A1 =

µ
θ ϕ
λθ βγ + λϕ

¶
, L1 =

µ
1− θ 0

λ(1− θ) 1− γ

¶
. (15)

with B and D as defined before in (5). Strict inflation targeting is defined
as before by equations (6) and (7). This leads to the form corresponding to
(8) as µ

y1,t+1
Ety2,t+1

¶
= Ω1

µ
y1,t
y2,t

¶
+Ψ1it +

µ
vt
0

¶
, (16)

where y2,t = (xt,πt)0, y1,t = (gt, ut, xlt,πlt)0, vt = (g̃t, ũt)0, and xlt ≡ xt−1,πlt ≡
πt−1. Also

Ω1 =



µ 0 0 0 0 0
0 ρ 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−1
θ

ϕ
θγβ

−1−θ
θ

ϕ(1−γ)
θγβ

1+ϕλγ−1β−1
θ

− ϕ
θγβ

0 − 1
γβ

0 − (1−γ)
γβ

− λ
γβ

1
γβ


,Ψ1 =


0
0
0
0
ϕ
θ

0

 .

It is possible to compute the interest rule based on constant interest rate
projections in the same way as before. The CIP-rule I corresponding to (9)
is now

it = −
Ã
K

h−1X
j=0

Ωj1Ψ1

!−1
KΩh1

µ
y1,t
y2,t

¶
, (17)
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where nowK = (0, 0, 0, 0, 0, 1). The CIP-rule I, equation (17), has the general
form

it = agt + but + cxt−1 + dπt−1 + ext + fπt (18)

and it is possible to compute this rule explicitly for different values of h. For
instance, with h = 2, the rule is

a = ϕ−1, b = −θ + βγθµ+ λϕ

βγλϕ
, c =

1− θ

ϕ
, d = −(1− γ)(θ + λϕ)

βγλϕ
,

e = −θ + βγ + λϕ

βγϕ
, f =

θ{1− βγ(1− γ)}+ λϕ

βγλϕ
. (19)

Note that as in the non-inertial model, the response of the interest rule to the
contemporaneous output gap is negative and that to the contemporaneous
inflation term is positive. In addition, the response of the interest rate to
the lagged output gap is positive and negative to lagged inflation. Similar
qualitative responses follow for the baseline values for other horizons.
The analysis of determinacy and E-stability for CIP-rule I can be con-

ducted using (12), (13), and (18).

4.1 CIP Rule I: Determinacy and E-stability

We now examine determinacy and E-stability for the CIP-rule I for the case
when the central bank pursues strict inflation targeting. When the forecast-
ing horizon h equals 2, we are able to obtain analytical results and we analyze
this case first. For computation of E-stability, we assume that agents’s ex-
pectations are based on information at time t − 1 which we believe is more
realistic since contemporaneous data on output and inflation are not usually
available for making forecasts; see (McCallum 1999) and the discussion in
Section 10.3 of (Evans and Honkapohja 2001).
When h = 2, we have indeterminacy for all values of output and inflation

inertia. This follows since the matrix for checking determinacy, namely,
− 1

βγ
1+βγ(γ−1)

βγλ
0 γ−1

βγλ

− λ
βγ

1
βγ

0 γ−1
βγ

1 0 0 0
0 1 0 0
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has all eigenvalues zero. Since there are 2 free and 2 pre-determined variables,
the above matrix should have 2 eigenvalues inside and 2 outside the unit circle
for determinacy. Since there is indeterminacy, the possibility of multiple
stationary MSV solutions arises. However, we now prove that there exists a
unique MSV solution when h = 2.
Plugging the interest rule, (18), with the coefficients (19), into the system

(14), we get the reduced form system

yt = AfE
∗
t yt+1 +Alyt−1 +Awwt, (20)

Af =

Ã
−(1− γ)−1 1−βγ(1−γ)

λ(1−γ)
−λ(1− γ)−1 (1− γ)−1

!
, Al =

µ
0 −λ−1(1− γ)
0 0

¶
Aw =

µ
0 [λ(γ − 1)]−1(1− γ + ρ)
0 −ρ(1− γ)−1

¶
.

Note that the lagged output gap and the gt shock do not appear in the
reduced form system (20); the interest rule has offset both these terms. The
MSV solution of (20), consequently, takes the form

xt = ax + bxπt−1 + cxut, (21)

πt = aπ + bππt−1 + cπut. (22)

It is easy to verify that there exists a unique MSV solution of this form and
it involves

ax = 0, aπ = 0, (23)

bx = −λ−1(1− γ), bπ = 0.

We now check E-stability of this unique MSV solution. Assuming agents
have a PLM of the form (21)-(22), they compute their forecasts E∗t xt+1 and
E∗t πt+1 and these forecasts used in (20) lead to an ALM of the same form. If
agents use t − 1 data to compute their forecasts, the E-stability conditions
for such a system are given by Proposition 10.1 in (Evans and Honkapohja
2001). For the constant term, the eigenvalues corresponding to the following
characteristic polynomial p(τ) need to have negative real parts for E-stability.

p(τ) = τ 2 + τ +
βγ

γ − 1
However, p(0) < 0, p(∞) > 0 which implies that there exists a positive
eigenvalue. The discussion is summarized in:
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Proposition 3 CIP-rule I leads to indeterminacy in the model (14) when
h = 2. Nevertheless, there exists a unique MSV solution which turns out to
be E-unstable.

For h > 2, we need to resort to numerics and we let γ and θ take values
from 0.1 to 0.9 at intervals of 0.1. Table 2 below reports the results when
h = 3. In this table, column 3 shows determinacy (D) or indeterminacy (I).
Column 4 shows the number of stationary MSV solutions. Obviously, in the
determinate case, there is only one stationary solution whereas there may
be more than one in the indeterminate region. The final column examines
E-stability of the stationary MSV solutions whether in the determinate or
indeterminate region.11

Table 2. CIP Rule I: E-stability of MSV solution when h=3
γ θ Det/Indet # of stat solns E-stability
.1 {.1,..,.5} D 1 No
.1 {.6,..,.9} I 2 No in both cases
.2 {.1,..,.4} D 1 No
.2 {.5,..,.9} I 2 No in both cases
.3 .05,.07,.1 D 1 Yes
.3 {.2,..,.4} D 1 No
.3 {.5,..,.9} I 2 No in both cases
.4 .1 D 1 Yes
.4 .2,.3 D 1 No
.4 {.4,..,.9} I 2 No in both cases
.5 .1,.2 D 1 No
.5 {.3,..,.9} I 2 No in both cases
.6 {.1,..,.9} I 2 No in both cases
.7 {.1,..,.3},{.7,..,.9} I 2 No in both cases
.7 .4,.5,.6 I 3 No in all cases
.8 {.1,..,.5} I 2 No in both cases
.8 {.6,..,.9} I 3 No in all cases
.9 .1,.2,.3,.5,.6,.7 I 2 No in both cases
.9 .4,.8,.9 I 3 No in all cases

11Agents are assumed to use t− 1 data in their forecasts as their information set under
learning.
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The table shows that most values of inflation and output inertia lead to
indeterminacy when h = 3. Even in cases, when determinacy obtains, the
(locally) unique solution is usually E-unstable. In the indeterminate region,
all MSV solutions always turn out to be E-unstable. This shows that a
constant interest rate policy continues to have undesirable properties in the
presence of inertia.
Table 3 below shows that similar qualitative features obtain with CIP

rule I when h = 4. Thus, we conclude that CIP policy I is not a good policy
to adopt even in the presence of empirically realistic features of the data in
the model.

Table 3. CIP Rule I: E-stability of MSV solution when h=4
γ θ Det/Indet # of stat solns E-stability
.1 {.1,..,.5} D 1 No
.1 {.6,..,.9} I 2 No in both cases
.2 .1 D 1 Yes
.2 {.2,..,.5} D 1 No
.2 {.6,..,.9} I 2 No in both cases
.3 .1 D 1 Yes
.3 .2,.3,.4 D 1 No
.3 {.5,..,.9} I 2 No in both cases
.4 .1 D 1 Yes
.4 .2,.3 D 1 No
.4 {.4,..,.9} I 2 No in both cases
.5 .1 D 1 Yes
.5 .2 D 1 No
.5 {.3,..,.9} I 2 No in both cases

{.6,.7} {.1,..,.9} I 2 No in both cases
.8 {.1,..,.6},.9 I 2 No in both cases
.8 .7,.8 I 3 No in all cases
.9 {.1,..,.5},.8 I 2 No in both cases
.9 .6,.7,.9 I 3 No in all cases

4.2 CIP Rule II: Determinacy and E-stability

CIP-rule II is based only on pre-determined variables so that the values of
xt and πt in CIP-rule I, (18), need to be replaced by their values in the
MSV solution. The latter is computed from the model with inertia, namely
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equations (12) and (13), with it given by CIP-rule I, (18). The MSV solution
for the model with CIP-rule II will be a function only of the contemporaneous
shocks and last period values of inflation and output. Assuming this solution
takes the explicit form

xt = axxxt−1 + axππt−1 + cxut + dxgt, (24)

πt = aπxxt−1 + aπππt−1 + cπut + dπgt. (25)

which when plugged into the interest rule (18) lead to the explicit form of
the CIP-rule II:

it = (c+ eaxx + faπx)xt−1 + (d+ eaxπ + faππ)πt−1 + (a+ edx + fdπ)gt
+(b+ ecx + fdπ)ut. (26)

Note that the coefficients in (24)-(25) are the ones for the MSV solution
computed using CIP-rule I, (18). Determinacy and E-stability for CIP-rule
II is then examined with equations (12), (13), and (26), that is, with system
(14) and with it given by (26). For ease of exposition, we write the latter
system explicitly as

yt = A1E
∗
t yt+1 +D1yt−1 +Ewt, (27)

wt = Fwt−1 + vt,

where yt = (xt,πt)0, wt = (gt, ut)0 and vt = (g̃t, ũt)0. The coefficient matrices
in (27) are

D1 =

µ
1− θ − ϕ(c+ eaxx + faπx) −ϕ(d+ eaxπ + faππ)

λ(1− θ)− λϕ(c+ eaxx + faπx) 1− γ − λϕ(d+ eaxπ + faππ)

¶
.

and A1 defined in (15) (E is not important for our analysis).
We first tackle the case when h = 2. In this case, the unique MSV

solution with CIP rule I is given by (21)-(22) with the MSV coefficients
given in (23). It is easy to verify that this MSV solution remains unaltered
even with CIP rule II. However, unlike CIP rule I, when this solution was
always E-unstable, the situation is not as straightforward with CIP rule II.
As it happens, E-stability depends on the inertial parameters γ and θ. Most
values of γ and θ imply E-stability. The possibility of E-instability arises for
large enough values of γ. For instance, using the calibrated parameters values
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in (Woodford 1999), namely ϕ = (.157)−1,λ = .024, β = .99 together with
µ = .35, ρ = .9, we find that E-stability holds for all γ ≤ 0.84 (independent
of θ) and that E-instability holds for all γ ≥ 0.87 (independent of θ).12
We now examine the performance of CIP rule II for longer horizons nu-

merically. However, before we do this, a couple of things are worth noting.
First, as might be expected, determinacy (or E-stability) computed with
CIP-rule I does not necessarily imply determinacy (or E-stability) with CIP-
rule II. This will be illustrated below by our numerical results. Second, in
cases when we have indeterminacy with the CIP-rule I and there are two
(sometimes even three) MSV solutions, we can examine determinacy and
E-stability for each such solution with the CIP-rule II. In addition, it is pos-
sible that an MSV solution in the indeterminate region with CIP-rule I may
nevertheless lead to determinacy with CIP-rule II.13

The numerical results below illustrate that the qualitative features of CIP
rule II are roughly unchanged from those of CIP rule I in the sense that most
parameter values continue to lead to indeterminacy with CIP rule II and
all such solutions continue to be E-unstable.14 So, indeterminacy and E-
instability is a robust feature with CIP rule II even in the presence of inertia.
As a consequence, for ease of presentation, the tables below only report pa-
rameter values for which either determinacy obtains or there is indeterminacy
but there exist one (or potentially more) E-stable MSV solution.
We first report in Table 4 the parameter values of output and inflation

inertia for which determinacy obtains with CIP-rule II. As shown there, E-
stability of the determinate solution may or may not obtain.

Table 4. CIP Rule II: E-stability of Determinate MSV solution
when h=3

γ θ E-stability
.1 .1,.2,.3 Yes
.2 .1,.2 Yes
.2 .3 No

12For γ = .85, .86, E-instability holds for θ large enough. E-stability was computed
numerically through the eigenvalues of the relevant matrices using a grid search of 0.01
for both γ and θ in the interval (0, 1).
13In some cases of indeterminacy with CIP rule II, we nevertheless have only one MSV

solution. Indeterminacy means that there are potentially other solutions though not of
the MSV type.
14The number of stationary solutions varies from 1 to 5 with CIP rule II.
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It is obvious from Table 4 that determinacy prevails for very few values.
Table 5 below reports those parameter values for which there exist either 2
(or 3) stationary MSV solutions with CIP rule I and E-stability prevails for
exactly one of these MSV solutions with CIP rule II. In other words, for these
values, one of the MSV solutions is determinate and E-stable with CIP rule
II while the remaining (1 or 2) solutions are indeterminate and E-unstable.

Table 5. CIP Rule II: Multiple MSV solutions of which one is
E-stable when h=3

γ θ
.4,.5,.6 .4,.5
.5 .3
.6,.7 .6
.7 .7
.8 .9

Finally, for the parameter values {γ, θ} = {.6, .3}, {.7, .5}, {.8, .8, }, we
have determinacy obtaining with one MSV solution and indeterminacy with
the other solutions; however, all these solutions (whether determinate or
indeterminate) are E-unstable.
We remind the reader that parameter values not reported in Tables 4

and 5 all lead to indeterminacy with all stationary MSV solutions being E-
unstable demonstrating the robustness of such a situation. Appendix 2 shows
that these qualitative results remain roughly unchanged even when h = 4.

5 Concluding Remarks

The results in this paper suggest that the conduct of inflation targeting by
using a fixed target at a fixed horizon and a constant interest rate to meet
the target is subject to two fundamental difficulties. First, there may be
multiple stationary RE solutions under such a policy. Second, the suggested
interest rates rules of this approach lead to instability of these solutions.
We examined the issues of determinacy and stability under learning the-

oretically in the forward-looking New Keynesian model. On the other hand,
extensions of the study to inertia in prices or in demand had to be conducted
numerically. In most cases the results remained unchanged, i.e. there both
indeterminacy and learning instability problems with this policy.

18



The analysis can be extended in various ways. First, we made the strong
assumption that the central bank knows the structural parameters of the
economy. Learning of structural parameters ought to be examined along the
lines discussed in (Evans and Honkapohja 2003b) and (Evans and Honkapohja
2003a).
Second, we have limited attention to the formulation of CIP policy sug-

gested by (Leitemo 2003). While Leitemo’s approach is very natural, the
appendix of (Svensson 1998), which is the unpublished version of (Svensson
1999), suggests a different formulation of what is meant by inflation target-
ing with a fixed target at fixed horizon. One possible interest rate rule from
Svensson’s approach leads to a rule, for which the interest rate depends only
on exogenous shocks in the basic forward-looking model and a result anal-
ogous to Proposition 1 is then applicable. However, other formulations and
the model with inertia remains to be examined.

A Appendix 1: E-stability for h = 2

Substituting the interest rate rule when h = 2 into (4) we can obtain the
system

Qyt = AE∗t yt+1 + Pwt, (28)

Q =

Ã
−1+λϕ

β
1+λϕ
βλ

−λ(1+β+λϕ)
β

1+β+λϕ
β

!
, P =

Ã
0 1+βρ+λϕ

βλ

0 1+β+βρ+λϕ
β

!
and A is defined in connection with (4). It can be computed that the eigen-
values of Q are 0 and 1.
We first consider whether there is a unique MSV REE to this system. Let

a perceived law of motion (PLM) be

yt = a+ bwt

and compute forecasts

E∗t yt+1 = a+ bFwt.

Substituting the PLM and the forecast into (28) yields the equations

Ma = Aa

Mb = AbF + P
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to compute a and b. It is easily verified that these equations have a unique
solution.
Next, consider E-stability. The first step is to consider the temporary

equilibrium for given forecasts, i.e. the equations

Myt = A(a+ bFwt) + Pwt,

where yt = a∗ + b∗wt, are to be solved for the actual law of motion (ALM).
For a∗ and b∗ we have the equations

Ma∗ = Aa,

(I ⊗M)vecb∗ = (F ⊗A)vecb+ vecP,
where the equation for b∗ has been vectorized. (Here ⊗ is the Kronecker
product of two matrices.) The equation determining a∗ has either a unique
solution or a continuum of solutions since the rank of M is 1. Correspond-
ingly, the rank of I ⊗M is 2. This means that there is either no ALM for a
given PLM or the ALM is not unique. The analysis of E-stability must thus
be restricted to those PLM that lead to a solution for a∗ and b∗. However, in
this case the non-uniqueness of the ALM present a further difficulty as the
E-stability differential equations are then not well-defined.
We can analyze E-stability only in partial manner in which, for example,

only one component of a∗ and a take values other than the MSV REE values
while the other component is kept at the REE value. Likewise for vecb∗

and vecb we can consider E-stability only in the limited sense that just two
components of these vectors are not at the REE values.
For a∗ and a we then have the E-stability differential equations

da1
dτ

= a∗1 − a1 =
A11
M11

a1 − a1,
da2
dτ

= a∗2 − a2 =
A22
M22

a2 − a2,

where we use the notationM = (Mij), A = (Aij) for the elements of the two
matrices. We have

A11
M11

= − β

1 + λϕ
< 0,

A22
M22

=
β(β + λϕ)

1 + β + λϕ
< 1,

so that these two differential equations are locally stable.
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For vecb∗ and vecb it is easily seen that the system is block diagonal since

I ⊗M =

µ
M 0
0 M

¶
.

This form implies that we can have one component from each block to deviate
from the REE to define the E-stability equations. Moreover,

F ⊗M =


µ µϕ 0 0
λµ µ(β + λϕ) 0 0
0 0 ρ ρϕ
0 0 λρ ρ(β + λϕ)

 ,
so that the E-stability differential equations for the first block are

db11
dτ

=

µ
− µβ

1 + λϕ
− 1
¶
b11 + other,

db21
dτ

=

µ
µβ(β + λϕ)

1 + β + λϕ
− 1
¶
b21 + other,

where “other” refers to constant terms that do not affect stability. Both of
these differential equations are stable. Finally, for b21 and b22 we get the
same differential equations, except that ρ replaces µ in the matrices. This
completes the proof of E-stability.

B Appendix 2: CIP II results when h=4

Here we present results on determinacy and E-stability with CIP rule II when
h = 4. Table 6 shows the values of γ and θ for which indeterminacy holds for
each MSV solution corresponding to the model with CIP rule I. The total
number of stationary MSV solutions with CIP Rule II ranges from 3 to 7 in
Table 6 and all of these solutions are E-unstable.

Table 6. Values for which all MSV solutions are E-unstable when
h=4 with CIP Rule II
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γ θ
{.1,..,.9} .3,.6,.7,.8,.9
{.3,..,.9} .5
.4,.5,.7,.8,.9 .4
{.2,..,.9} .2
{.3,..,.6} .1
.1,.2,.3 .4
.8 .6,.9
.9 .7,.8,.9

Parameter values for which determinacy and E-stability obtain for this
unique MSV solution are given by {γ, θ} = {.1, .1}, {.1, .2}, {.2, .1}.
When θ = .1, and γ = {.7, .8, .9}, we have indeterminacy with one MSV

solution and determinacy with the other solution; however, all these solutions
are E-unstable. When {γ, θ} = {.6, .4}, we have determinacy and E-stability
corresponding to the first MSV solution and indeterminacy (with 3 stationary
solutions) corresponding to the other MSV solution and all of the latter solu-
tions are E-unstable. Finally, for the pairs {γ, θ} = {.8, .7}, {.8, .8}, {.9, .6},
there were 3 MSV solutions corresponding to the original model with CIP
rule I. Each of these solutions are indeterminate and E-unstable with CIP
Rule II. This shows that indeterminacy and E-instability continues to be a
robust feature when h = 4.
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