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ABSTRACT

Most of the stylized features of volatility dynamics of equity returns are drawn from the
aggregate indices of international stock markets. The inference is often based on the
class of univariate generalized autoregressive conditional heteroscedasticity (GARCH)
models. Owing to computational complexities, only a few studies utilize the multivariate
framework, which exploits the possible correlations of volatility across different markets.
In this paper, we investigate the applicability of the well-established facts of volatility
behaviour of aggregate indices to the sectoral indices. Two competing multivariate
(tetravariate) GARCH-type models with time-varying correlations are used to analyze the
sectors of the Japanese stock market. The proposed models can parsimoniously
capture the stylized features of long-memory, asymmetric conditional volatility, and time-
varying correlations associated with stock market returns. In contrast to what is widely
documented in the literature, we find that asymmetric effects are not invariably present in
the sectoral indices. In addition, the conditional correlations are frequently highly positive
and significantly time-varying. We also detect strong evidence of volatility persistence
and long memory, and the fractionally integrated models generally outperform those
models without long-memory structures in the conditional variance. Our findings not only
cast doubts on the “leverage effect” of equity returns, but also have bearing on the
strategy of portfolio diversification among various sectors.
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1. Introduction

In the past two decades, much research interest has focused on modeling the
temporal variation in the volatility of asset returns. Particularly instrumental in capturing
the time-varying asset returns volatility is the generalized autoregressive conditional
heteroscedasticity (GARCH) model proposed by Bollerslev (1986) and its extensions.
Franses and van Dijk (2000) provide an in-depth review of this subject and demonstrate
the importance of estimating conditional variance using GARCH-type models in the
research of empirical finance. Indeed, based on the class of univariate GARCH-type
models, several significant stylized facts pertaining to stock market volatility are well-
established in the literature. First, Black (1976) notes the tendency for negative shocks
to generate greater volatility in future periods compared with positive shocks of the same
magnitude, a phenomenon that he refers to as the “leverage effect”. Such asymmetric
volatility shocks are mainly detected from the returns of the aggregate stock market
indices. For instance, Engle and Ng (1993) employ various model specifications to test
for volatility asymmetry in the TOPIX of the Tokyo Stock Exchange; Nelson (1991)
applies the exponential GARCH (EGARCH) model to the value-weighted CRSP daily
market returns; while Ding, Granger, and Engle (1993) focus on New York’'s S&P 500
Index to examine the presence of asymmetry. More recent articles on asymmetric
conditional volatility of equity returns include Harvey and Shephard (1996), Loudon,
Watt, and Yadav (2000), Giot and Laurent (2003), and Asai and McAleer (2003). Despite
using different aggregate stock market indices, these studies uniformly conclude that

asymmetric effects are detected in the conditional volatility of stock market returns.

Another empirical regularity is that stock market volatility displays very long

temporal dependencies and strong persistence. For details, see Baillie (1996), Ding and



Granger (1996), Bollerslev and Mikkelsen (1996), Tse and Tsui (1997), Bollerslev and
Jubinski (1999), Andersen, Bollerslev, and Cai (2000), and Beran and Ocker (2001). In
particular, Andersen, Bollerslev, and Cai (2000) suggest that high-frequency returns
reveal the existence of important long-memory interdaily volatility dependencies. Again,
this empirical regularity is mainly established based on international aggregate stock
market indices, such as New York’s S&P 500 Index, Japan’s Nikkei 225, Hong Kong’s
Hang Seng Index, Singapore’s Straits Times Index, and Australia’s All Ordinaries Index.
The third stylized fact is the rejection of constant conditional correlations of asset
returns. Many studies, such as Longin and Solnik (1995), Tsui and Yu (1999), Tse
(2000), Bera and Kim (2002), and Engle (2002), and Ledoit, Santa-Clara, and Wolf
(2003) use maijor international stock market indices and find evidence of time-varying

correlations of returns.

These stylized facts, however, are based on the aggregate indices of the major
international stock markets. Little work has been conducted on the sectoral/component
indices of these stock markets. This over-emphasis on aggregate market indices is lop-
sided, as the volatility dynamics of the sectoral indices may evolve differently from the
aggregate indices. Hence, the stylized facts based on aggregate indices need not be
invariably applicable to the individual sectors. In addition, most studies on the conditional
volatility dynamics of asset returns either concentrate on the univariate GARCH-type
models, which fail to capture correlations of asset returns, or simply assume, for the
sake of tractability, that the conditional correlations are time-invariant. This could be
partially due to the difficulties associated with the modeling and estimation of the
conditional volatility of asset returns in a unified multivariate framework involving time-
varying correlations, long-range dependence, and asymmetries. One major challenge is

to ensure that the conditional variance-covariance matrix of the multivariate GARCH



(MGARCH) model is positive definite. Several researchers have proposed some
multivariate models that require certain parameter restrictions so as to guarantee
positive-definiteness of the variance-covariance matrix. For instance, Engle, Granger,
and Kraft (1984) have presented the necessary conditions for the matrix of the bivariate
ARCH model to be positive definite, but extending this model to higher dimensions is
rather intractable. As an alternative, Bollerslev, Engle, and Wooldridge (1988) have
proposed the vech-representation, which is the extension of the univariate GARCH
representation to the vectorized conditional variance-covariance matrix. However,
conditions that guarantee the positive-definiteness of the variance-covariance matrix are

not easy to monitor and impose continuously during optimization.

Despite the computational complexities, the multivariate GARCH approach
remains important for at least two reasons. First, as many assets are subject to similar
information or events, it is expected that their volatilities may be correlated conditional on
the given information set. Such conditional correlations can be utilized to design
dynamic optimal portfolios comprising different assets. Second, there may be a gain of
efficiency by jointly estimating the conditional volatilities of returns of several assets

(see, for example, Bera and Higgins (1993)).

To circumvent the obstacles associated with multivariate GARCH models, Engle
and Kroner (1995) introduce the Baba-Engle-Kraft-Kroner (BEKK) model, which
automatically ensures the positive-definiteness of the variance-covariance matrix once
parameter estimates are obtained. Another approach examines the conditional
volatilities of different assets as a factor model; see Diebold and Nerlove (1989), Engel
and Rodrigues (1989) and Engle, Ng, and Rothschild (1990) for details. However, the

main drawback of the BEKK and factor models is that the parameters cannot be easily



interpreted, and their net effects on the future variances and covariances are not readily
observed. Moreover, since the estimation of the BEKK and factor-GARCH models
involves a large number of parameters, especially when the number of assets increases,
this lacks parsimony and exacerbates the difficulties of achieving convergence. For
example, Bera, Garcia, and Roh (1997) report that the BEKK model does not perform
well in the estimation of the optimal hedge ratios, and Lien, Tse, and Tsui (2002) report

difficulties in obtaining meaningful estimates for the BEKK model during optimization.

A more manageable alternative is Bollerslev’s (1990) constant (conditional)
correlations-GARCH approach, which automatically guarantees the positive-definiteness
of the variance-covariance matrix once the parameter estimates are obtained. Under the
constant-correlation assumption, the maximum likelihood estimate of the correlation
matrix is equal to the sample correlation matrix. As the sample correlation matrix is
always positive definite, the optimization will not fail as long as the conditional variances
are positive. In addition, the parameter estimates are relatively easy to interpret, as the
univariate GARCH equations are still retained. Nonetheless, the highly restrictive
assumption of constant correlations can adversely affect the reliability of statistical
inference if it were violated. Indeed, many studies have highlighted the untenability of
this assumption. For details, see Longin and Solnik (1995), Tsui and Yu (1999), Tse

(2000), Bera and Kim (2002), and Ledoit, Santa-Clara, and Wolf (2003), respectively.

In this paper, we investigate the applicability of the well-documented facts on
volatility behaviour of aggregate indices to the sectoral indices. To ensure consistency in
comparison, our study is confined to the multivariate GARCH approach. Specifically, we
propose two competing tetravariate GARCH-type models to analyze the volatility

dynamics of the sectoral indices. They are the varying-correlations-fractionally



integrated asymmetric power ARCH (VC-FIAPARCH) and the VC-FI asymmetric
GARCH (VC-FIAGARCH) models. The main reason for considering these models is that
they parsimoniously capture the stylized features of volatility asymmetry, long-range
persistence in volatility, and time-varying correlations. In addition, these two competing
models do not nest each other. Another advantage is that the parameters are relatively
easy to interpret, as the univariate GARCH equation is retained for each asset return
series. Moreover, once convergence is achieved, the conditional variance-covariance

matrix automatically satisfies the positive-definite condition.

The proposed models are applied to four sectoral indices of the TOPIX (Tokyo
Stock Price Index) of the Tokyo Stock Exchange (TSE). We detect significant evidence
that the asymmetric conditional volatility is not uniformly present in all sectoral indices,
even though Engle and Ng (1993) have previously observed the presence of the
leverage effect in TOPIX. Apparently our findings cast doubts on the well-established
fact that stock market returns exhibit the leverage effect, a phenomenon partially
explained by the existence of operating leverage of firms (see Black (1976)). The
absence of volatility asymmetry in some sectors may have important bearing on option
pricing and on the construction of diversified domestic asset portfolios based on different
sectors. In addition, we detect evidence of long-range persistence in volatility for all the
sectors, regardless of which GARCH-type model is used. Some sectors apparently
share similar degrees of fractional integration. In general, the fractionally integrated
models outperform those models without long-memory structures in the conditional
variance. Additionally, we also observe that conditional correlations are frequently highly
positive and significantly time-varying. Our findings imply that the dynamic nature of
sectoral correlations could be further exploited in constructing diversified portfolios over

time.



The rest of the paper is organized as follows. Section 2 discusses the
methodology adopted in this study. Section 3 describes the nature of the data sets and
the estimation results. Section 4 then concludes by highlighting some implications of our

findings.

2. Methodology

In this section, we first briefly describe the basic features of the multivariate
GARCH(1,1) model with time-varying conditional correlations proposed by Tse and Tsui
(2002). We then incorporate the features of asymmetric volatility and long memory into
the conditional variance equations by synthesizing Tse and Tsui’s (2002) methodology
with other models. Two main classes of multivariate GARCH-type models are developed

based on this synthesis.

Let yi = (Y1, Y2 Yat.--Ykt) be the k-variate vector of variables with time-varying
variance-covariance matrix H;, and let uy(&;) be the arbitrary conditional mean functions
which depend on &, a column vector of parameters. A typical k-variate GARCH(1,1)

model may be specified as follows:
Vi = 1,(8) + & i=12,..k (1)
where (SII’SZI’SBI""’SI([)' | CDH ~ (OaHt ) (2)

Note that @ is the c-algebra generated by all the available information up to time t. The
random disturbance terms g; (which are obtained from equation (1)) and the conditional

variance equations h;; are modelled as follows:

E,=+h,e,, wheree, ~N(0,Ll) (3)



hiit = 77[ + al 8571 + ﬂihiitfl (4)
where (4) is the popular Bollerslev’s (1986) GARCH(1,1) model.

Denoting the ij-th element (i, j = 1, 2,...,k) in H; by hy, the conditional correlation

Jhich i

varying conditional correlation matrix I", = {p

coefficients are given by p;;, = Tse and Tsui (2002) assume that the time-

it }is generated by the following recursion
I =0-m - +ml_ +m¥ )

where I' = {pi/.} is a time-invariant k x k positive-definite correlation matrix, ©y and m

are assumed to be nonnegative and sum up to less than 1, and ¥ is a function of the

standardised residuals e, .

Denoting ¥, = {y/ijt } the elements of ¥, are specified as

ZM, ei tfae/ t—a . .
el , 1<i<j<k (6)

l//g“,t— =
e e e

where M is set equal to k. For further details of the model, see Tse and Tsui (2002).
Assuming conditional normality, the log-likelihood function (ignoring the constant term) of
the vector of parameters in equations (1), 4), and (5)

t9=(51,52,...,§k,771,nz,...,nk,al,...,ak,ﬁl,...,,Bk,pi/.,zzl,zzz) is specified as

1 1 _ ,
1 (0)= _EIOg | H, | —5(8“,82t,83t,...,8kt)Ht N,y E5rrenrEpy) (7)

where ¢; are the random disturbance terms obtained from equation (1). The conditional

variance-covariance matrix H; can be further defined as

H, ={n,}=D,1\D,, D, =diaghh, |, and T, ={p,, |

It can be easily shown that the log-likelihood function can be rewritten as



1 1
lz (9) = _Elog | Dz rzDz | _E(glz’821’831""’gkt)DIIF;IDII(811’821’831""’81{:)' (8)

where T is defined by the recursion in (5). Note that by this

formulation, (€,,,&,,,&;,,--.€,, )D, represents the standardized residuals (e, , e, ...¢,,) .

Equations (1)-(8) summarize the gist of the varying-correlations GARCH (VC-
GARCH) model of Tse and Tsui (2002). In particular, when k = 2, the bivariate VC-

GARCH(1,1) model is obtained and equations (5)-(7) can be simplified as follows:
P =U=7, =7,) iy + 70, Pro s W (5)

2
Zazl el,tfa eZ,tfa
Vigia = > >
2 2
NSRS

(6)

2 2
e, te;, — 2p12telt €,

2(1- piy)

Note that the VC-GARCH model nests Bollerslev’s (1990) constant-correlations GARCH

1 1 :
L(0)==_3, logh, — log(1-py) - ™)

(CC-GARCH) model when my = m; = 0. As such, the likelihood ratio test can be readily

applied to compare the performance of both models.

In order to incorporate asymmetric volatility and long memory dynamics into the
VC-GARCH model, we have to modify the symmetric conditional variance equation in
(4). Among the GARCH-type models with asymmetric volatility, we choose two well-
established structures: the asymmetric GARCH(1,1) (AGARCH(1,1)) model proposed by
Engle (1990) and the asymmetric power ARCH(1,1) (APARCH (1,1)) model of Ding,
Granger, and Engle (1993), respectively. Their main features are summarized below.

[a] Engle’s (1990) asymmetric GARCH(1,1) (AGARCH(1,1)) model:

hm =7, +; (git—l — 7 )2 + :Bi hiit—l 9)



where vy is the asymmetric coefficient. When v, = 0, (9) becomes the GARCH(1,1) model
and when B; = 0, it becomes the prototype ARCH(1) model.

[b] Ding, Granger, and Engle’s (1993) asymmetric power ARCH(1,1) (APARCH (1,1))

model.
5.2 5, 5,2
hiit/ =1 + 0 (€1 |=7ig, )" +5; hiitzl (10)

where v; is the asymmetric coefficient. When ¢, = 2, (10) becomes the leveraged GARCH
(LGARCH(1,1)) model, which nests the GJR model of Glosten, Jaganathan and Runkle
(1993). When & = 1, it becomes the threshold GARCH(1,1) (TGARCH(1,1)) model,
which includes an asymmetric version of the Taylor/Schwert (1986/1989) model and
Zakoian’s (1994) threshold ARCH (TARCH) model. Ding, Granger, and Engle (1993)
show that when &; approaches 0, the logarithmic GARCH(1,1) (LOGGARCH(1,1)) model
is obtained, which incorporates an asymmetric version of the Geweke/Pantula (1986)
model. Although the APARCH structure nests 7 models in total (see Ding, Granger, and

Engle (1993) for details), it does not nest the AGARCH model.

As regards the structure of long-memory dynamics in volatility, we may
generalise the conditional variance equations in (4), (9), and (10), such that they are
fractionally integrated. We adopt the approach of Baillie, Bollerslev, and Mikkelsen

(BBM) (1996), which is demonstrated below:

First, consider a GARCH(p,q) model, which is an extension of equation (4):
h, =1, +a, (L)S; +B,(Dh, (11)
where ¢, (L)and f.(L)are lag polynomials of order q and p, respectively. Equation (11)

may be rewritten in terms of an ARMA(m,p) process in & :



[1- ﬂ[ (L)-¢; (L)]g; =1, +[1- ﬂ[ (D)]v, (12)

where m = max(q,p) and v, :glf —h,, is the innovation to the variance process. The

iit
GARCH(p,q) model is covariance-stationary if all the roots of 1-8.(L)—¢o,(L) lie

outside the unit circle. If a unit root exists, (11) becomes the integrated GARCH

(IGARCH) model with a polynomial ¢ (L) such that 1- 8 (L)—a,(L)=(1-L)¢(L),
where the characteristic equation ¢.(L)= 0has all the roots outside the unit circle. This

model represents an extreme case of persistence in the conditional variance. The BBM's
approach replaces the first difference operator in the factorisation with a fractional

difference operator to obtain the FIGARCH(p,d,q) model as below:

(1-L)" g(L)e; =n,+[1- (L), (13)
where 0<d. <1,and 1-B(L)—a.(L)=(1-L)"¢.(L)

Conceivably, the FIGARCH(p,d,q) model has a more general structure which nests the

usual GARCH and the IGARCH models. Alternatively, (12) may be expressed as the

following infinite ARCH process:

_n, 1 . N2
hm_—l_ ,Bi(l)+[l (1-4.(L)" ¢(L)1-L)" e, (14)

When both 1-,(L)and ¢, (L) are reduced to polynomials of degree 1, we obtain the

FIGARCH(1,d,1) model:

h, =%+4(L)e§ (15)

1

where A(L)=>" A, L'=1-(1-BL)"'1-¢L)1-L)".

a=1 1
However, the FIGARCH(1,d,1) model does not include the feature of asymmetric
volatility, whereby negative shocks have a different impact on future volatilities

compared with positive shocks of the same magnitude. To remedy the shortcoming of

10



(15), we may apply the fractionally integrated process to the conditional variance

equations specified in (9) and (10).

In what follows we derive the fractionally integrated asymmetric GARCH

(FIAGARCH) model using the BBM’s approach. Consider the AGARCH(p,q) model:
hiit :771‘ +ai(L)(git _7/1‘ )2 +ﬂl (L)hiit (16)

By redefining g(¢,)= (e, —¥,)° . and 7, =g(e,) —h, , the fractionally integrated

process can be straightforwardly applied to the AGARCH model by rewriting equation

(16) as follows:
[1-B.(L) -a(D)]g(e,) =n+1-B L)z, (17)
After factorizing the lag polynomial 1-8.(L)— o, (L) =(1- L) @.(L), and rewriting (17)

as an infinite ARCH operation applied to g(&,), we obtain

By, = —p (1)+[1 (1= BL) " $(L)1-L)"1g(e,) (18)

For a particular case of FIAGARCH(1,d,1), we have

it _ ﬂ

+ A (L)E, ~7,) (19)

where A(L)=>" A,L'=1-(1-BL)"'(1-L)1-L)"

Note that (19) is similar to the FIGARCH(1,d,1) model in (15), except that it allows past

return shocks to have asymmetric effects on the conditional volatility.

Similarly, we derive the FIAPARCH(p,d,q) model using the BBM’s procedure

based on an APARCH(p,q) model in (20). Specifically, we now define

g(e,) =€, |-y, and7, = g(e,)® —h)/*, and (20) can be rewritten as (21):

it

11



0:/2 0 0:/2
hiié/ =1, +0; (L&, [-7€,)" +5; (L)hiilt/ (20)

[1-B(L)-e(D)]g(e,)” =n,+01-B(L)z, (21)
By factorizing 1- . (L)—«,(L), (21) can be further rewritten as an infinite ARCH

operation applied to g(¢,) . Finally, the FIAPARCH(p,d,q) takes the following form:

0;/2 _ 771‘ _(1_ -1 _ d; S
B _—1—,@(1)+[l A-BL) " ¢(L)1-L)"1g(,) (22)

In particular, the FIAPARCH(1,d,1) model is specified as:

iit

héi/z - % + &(L)d git | _%8”)5" (23)

where A (L)is defined as in (19). Similar to the FIAGARCH(1,d,1) model in (19), (23)

allows past shocks to have asymmetric effects on the conditional volatility.

The parameters of the different multivariate fractionally integrated GARCH-type
models can be estimated using Bollerslev and Wooldridge’s (1992) quasi-maximum
likelihood estimation (QMLE) approach. To facilitate convergence in the estimation, we

have to make appropriate assumptions for the start-up conditions, including the

computation of 4. (L), the number of lags, and the initial values. In particular, to compute

the response coefficients, A(L)=Y " A,L'=1-(1-BL)"'(1-¢L)1-L)", we adopt

=] a
the following infinite recursions given in Bollerslev and Mikkelsen (1996):

/11‘1 :Q_ﬂi-i_di’

(24)
ﬂ’ib :ﬂiﬂ’ib—l+[(b_1_di)/b_¢i]é/ib—l’ b=12,.,00

where ¢, ={, (b—1-d;)/b, with {, =d,

1

(The derivation is given in Appendix ).
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It can be observed from (24) that since b goes to infinity, an appropriate finite truncation
is required during estimation. In our calibration, we have used 1000 and 2000 lags,
respectively. We find that the parameter estimates obtained by truncating at 1000 lags

are reasonably close to those based on 2000 lags. To save the computational time, we

truncate A (L) after the first 1000 lags.

As regards the choice of initial values, we set the presample observations gj to

the unconditional sample variance for the FIGARCH(1,d,1) model. However, this

assumption is inappropriate for the other models, as the infinite ARCH representation

affects g(g,). For the multivariate FIAGARCH(1,d,1) model, we equate the presample
observations of g(g,)= (¢, — ¥, ) to the sample mean of (£, -7,)*, where 7 is the
estimate of y, based on the univariate FIAGARCH(1,d,1) model. As for the multivariate
FIAPARCH(1,d,1) model, the presample observations of g(&,)* =(|&,|~7e¢,)” are
equated to the sample mean of (| ¢, |—77,~5‘,~t)$', where 7 and &, are the estimates of 7,

and ¢, based on the univariate FIAPARCH(1,d,1) model.

3. Data and Estimation Results

The Tokyo Stock Exchange (TSE) was established in 15 May 1878, but its
present form was founded in 1 April 1949. The TSE domestic stock market is divided
into two sections - the First and Second Sections. In simple terms, the First Section is
the market place for stocks of larger companies, and the Second Section is for those of
smaller and newly listed companies. Relative to global stock exchanges, TSE has a

market value of 232 trillion yen as of end March 2003, and an average daily trading

13



value of 739 billion yen in the fiscal year 2002. This makes it one of the leading stock
exchanges in the world in terms of both size and liquidity. Indeed, the TSE is a major
international capital market with trading by non-Japanese investors accounting for nearly

one-third of the value of its trading turnover during 2002.

On 1 July 1969, the TSE introduced TOPIX (Tokyo Stock Price Index), a
composite index of all the common stocks listed on the First Section of TSE, to provide a
comprehensive measure of the market trend for investors who are interested in general
market price movements. This composite index is supplemented by subindices for each
of the 33 industry groups, which are categorized according to the industrial sectors
defined by the Securities Identification Code Conference. These 33 subindices can be
classed based on the following broad groups: Fishery, Agriculture, and Forestry; Mining;
Construction; Manufacturing; Electric Power and Gas; Transport and Communications;

Commerce; Finance and Insurance; Real Estate; and, Services.

The sectors analyzed in this paper are tabulated as follows:

TOPIX Sectoral Index Category

Air Transportation (ATRN) Transport and Communication
Electric Power and Gas (EPOW) Electric Power and Gas
Precision Instruments (PREI) Manufacturing

Other Products (OPRD) Manufacturing

As the manufacturing category occupies approximately half the number of
sectors in the TOPIX, we select two sectors from this category: precision instruments
(PREI) and other products (OPRD). The next largest category is transportation and
communication, from which we pick one sector, air transportation (ATRN). The fourth

sector is chosen from electric power and gas (EPOW). Our data sets cover the sample

14




period from 4 January 1983 to 21 February 2003, thereby providing 5254 daily

observations. These series are obtained from DataStream International.

[Insert Figures 1-2 and Table 1 here]

Figure 1 presents the plots of the four sectoral series. The OPRD and the PREI
series apparently move quite closely together, whereas the ATRN series exhibits a
significant amount of fluctuation, with peaks occurring in the period from 1987-1990. In
contrast, the EPOW series is relatively less volatile, and remains sluggish after 1990.
Table 1 displays the descriptive statistics of the return series of all the sectors
(calculated on a continuously compounding basis).? For a standard normal distribution,
the skewness and kurtosis take the values of 0 and 3, respectively. As can be observed
from Table 1, all the return series have kurtosis higher than 3. In addition, some of the
data series exhibit significant serial correlations, as indicated by the Ljung-Box Q-
statistics (Ljung and Box (1978)). Also, the BDS test statistics (Brock, Dechert, and
Scheinkman (1996)), which are calculated based on the correlation integral, indicate that
the series are not independently and identically distributed. Furthermore, the highly
significant ARCH (Engle (1982)) and QARCH (Sentana (1995)) Lagrange Multiplier (LM)
test statistics consistently suggest the presence of conditional heteroscedasticity; as

such, GARCH-type modeling might be required.

' We have also used our models on the rest of the sectoral indices, but the main findings that we
highlight in this paper remain largely unchanged. In particular, we have evidence that asymmetric
conditional volatility is either weak or absent in sectors such as Land Transportation, Insurance,
Mining, Pulp & Paper, Real Estate, and Wholesale. Time-varying (pair-wise) correlations are also
detected, and several sectors apparently share a common degree of fractional integration in
volatility. The complete results are obtainable from the authors upon request.

2 All the return series are stationary as indicated by the augmented Dickey-Fuller and Phillips-
Perron test statistics (which are not reported here due to space constraints).

15



To estimate the conditional mean, variance and correlation components of the
proposed multivariate GARCH-type models simultaneously, we adopt Bollerslev and
Wooldridge’s (1992) quasi maximume-likelihood estimation (QMLE) procedure, with all
the programmes coded using Gauss Version 5.0. The QMLE approach provides
consistent estimators even when the disturbance term follows a thick-tailed distribution.
For the mean equation, we find that the parsimonious AR(2) model is a reasonably
adequate autoregressive filter, taking into account of the significance of individual
parameters, the log-likelihood values and the residual diagnostics. To save space, we
shall only report the estimates of the conditional variance and correlation equations from
the following models: the VC-GARCH, the VC-AGARCH, the VC-APARCH, the VC-
FIGARCH, the VC-FIAGARCH, and the VC-FIAPARCH. In addition, other than the
correlation coefficients and the log-likelihood values, most of the parameter estimates
from the constant-correlation models are omitted. The complete set of estimation results

is available upon request.

[Insert Tables 2-7 here]

Tables 2 and 3 summarize the QMLE of the parameters of the tetravariate VC-
GARCH, VC-AGARCH, VC-APARCH, VC-FIGARCH, VC-FIAGARCH and VC-
FIAPARCH models for all the sectoral returns, respectively. Quite clearly, the estimated
values of the coefficient of asymmetry (y) vary considerably across the sectors, ranging
from -0.0062 to 0.2924. In particular, for the ATRN and EPOW indices, we do not find
evidence of asymmetric volatility, and this is robust across different specifications, such
as the VC-AGARCH, VC-APARCH, VC-FIAGARCH, and VC-FIAPARCH models. For
the OPRD index, there is some evidence of asymmetric volatility, especially based on

the AGARCH specification. As for the PREI index, we find significant evidence of

16



asymmetric effects across different models. More specifically, as summarized in the
second main column of Table 4, for the VC-APARCH (VC-FIAPARCH) and the VC-
AGARCH (VC-FIAGARCH) models, the estimated absolute values of the coefficient of
asymmetry y for PREI are 0.1666 (0.1554) and 0.2924 (0.2528) respectively, and they
are significant at the 5% level. In contrast, those estimated values for ATRN (EPOW)
are: -0.1871 (-0.0516), -0.0586 (0.0062), -0.2295 (-0.1106), and -0.0620 (-0.0111) for
the VC-AGARCH, VC-APARCH, VC-FIAGARCH, and VC-FIAPARCH models,
respectively, and they are insignificant even at the 10% level. Apparently the absence of
leverage effects in some of the sectors indicates that the widely accepted leverage
effects in the aggregate indices of the highly developed stock markets (such as TOPIX
(Engle and Ng (1993)), S&P 500 (Ding, Granger, and Engle (1993)) and several other
Asia-Pacific counterparts (see, for example, Tse and Tsui (1997)) are not invariably
applicable to the sectors. We shall discuss in greater detail some implications of this

finding in the conclusion.

The estimated values of the fractional differencing parameter d are reported in
the first main column of Table 4. As can be observed, all the estimates are statistically
different from zero and one at the 5% significance level, regardless of the sectors and
the models. This implies that the impact of shocks on the conditional volatility of the
sectoral returns consistently exhibits a hyperbolic rate of decay. In addition, most of the
estimates of d are quite similar in magnitude across different models for the same
sector; and the sectors ATRN, OPRD, and EPOW seem to share a common degree of
fractional integration in the conditional volatility process. For example, the estimated
values of d for sectors ATRN, OPRD, and EPOW are 0.3457 (0.3470), 0.3423 (0.3431),
and 0.3224 (0.3021) in the FIGARCH (FIAGARCH) models, respectively. Moreover, the

likelihood ratio test statistics reported in Table 7 are all significant at the 5% level,
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thereby indicating that the fractionally integrated models outperform those without the

long memory structures.

[Insert Figures 3-4 here]

Figures 3-4 present the plots of the time path of conditional standard deviation for
each sector based on the VC-FIAPARCH, VC-APARCH, VC-FIAGARCH, and the VC-
AGARCH models, respectively. As can be observed from these plots, the non-Fl
models seem to under-estimate the magnitude of volatility, and this is more conspicuous
during periods in which the conditional standard deviation is relatively high (such as in
1987). At the risk of oversimplification, the under-estimation of the risk premium of

assets could be more acute in the non-FI models than the FI models.

We now discuss the conditional correlation dynamics of the four sectors. Under
the null hypothesis that both wy and m, are zero, the likelihood ratio test statistic is
asymptotically distributed as a chi-squared with 2 degrees of freedom. As can be
gleaned from Tables 2, 3, and 6, all the test statistics indicate that the null hypothesis of
no time-varying conditional correlations is rejected. In addition, all the estimates of
and m, are individually significant at the 1% level, which further suggest that the
conditional correlations are time-varying. Such findings are robust across different model

specifications.

Table 5 displays estimates of the (pair-wise) time-invariant component of the

conditional-correlation equation from different VC-models. Quite obviously, these pair-

wise correlations are all positive and remarkably close, with those obtained from the VC-
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FIAPARCH model being slightly higher. Additionally, the estimates of the time-invariant
correlation between OPRD and PREI sectors are the highest (regardless of the VC
models), probably because these sectors belong to the same industrial category and are
therefore influenced by similar factors. In contrast, the pair-wise correlations of these two
sectors with EPOW are relatively lower compared with other pair-wise correlations, but
they are nonetheless positive. The positive pair-wise correlations we have obtained for
all the return series may imply that limited benefits are possible from diversification
among the sectors. However, effective diversification among different sectors may still
be feasible by changing the optimal portfolio weights in tandem with changes in the

correlations over time.

[Insert Figures 5-6 here]

The VC-models allow us to keep track of the evolution of the pair-wise
conditional correlations over time. Figures 5-6 plot the time paths of the pair-wise
correlations for two selected models: VC-FIAPARCH and VC-FIAGARCH. It can be seen
that their patterns are largely similar. Specifically, during the period from 1989-1995,
most of the conditional correlations experienced a gradual upward shift. After this, it is
particularly evident that there is a drop in the level for the following pairs: ATRN-EPOW,
EPOW-OPRD, and EPOW-PREI, respectively. For the other pairs like ATRN-OPRD,
ATRN-PREI, and OPRD-PREI, the magnitude of their correlations rebounded after 1999.
In addition, there are episodes in which the pair-wise correlations of EPOW-PREI,
ATRN-OPRD, and ATRN-PREI are quite low (and occasionally negative); these might
be exploited when designing the optimal weights of a diversified portfolio over time.

[Insert Table 8 here]
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Finally, we perform some residual diagnostic tests to evaluate the adequacy of
the proposed models. Due to space constraints, only the test statistics for the VC-
APARCH, VC-FIAPARCH, VC-AGARCH, and VC-FIAGARCH models are reported in
Table 8. As can be observed from the summary statistics in Panel A, the kurtosis
coefficients of all standardized residuals across sectors and across models are lower
than those reported in Table 1. In addition, the Q-statistics, as shown in Panel B of
Table 8, indicate no strong evidence of serial correlation in the standardized residuals.
Moreover, the McLeod-Li test statistics suggest that the fractionally integrated (FI)
models are more adequate compared with the non-FI models. This could be because
the FlI models are more capable of capturing long-range temporal dependencies in
volatility. The adequacy of the FI models is further corroborated by the BDS and the
runs test statistics. In particular, most of the BDS test statistics tabulated in Panel E for
the VC-FIAPARCH and VC-FIAGARCH models are insignificant at the 5% level. In
contrast, the BDS tests for the VC-AGARCH and the VC-APARCH models are still

significant at the 5% level .

4, Conclusion

We have investigated the applicability of the stylized facts of volatility behaviour
of aggregate indices to the sectoral indices. Two main classes of multivariate GARCH-
type models with time-varying correlations are proposed to analyze four sectors of the
Japanese stock market. These models can concurrently capture the stylized features of

long-memory, asymmetric conditional volatility, and time-varying correlations commonly

3 Strictly speaking, portmanteau test statistics, such as the Box-Pierce test, the Ljung-Box Q-
statistics, and the McLeod-Li test statistics, are not asymptotically distributed as chi-squared
variables under the null hypothesis of no misspecification (see Ling and Li (1997)). Nonetheless,
it has been suggested that the chi-squared distribution may still be used as an approximation
(see, for instance, Bollerslev (1990) and Tse and Tsui (1999)).
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associated with equity returns. Besides the possible gains in efficiency through the joint
estimation of parameters, such a multivariate approach also has the advantage of
providing us with the time-history of the conditional correlations between any two

sectoral return series.

In contrast to what is widely documented in the literature, we find strong evidence
that asymmetric effects are not invariably present in the sectoral indices. Our result is
robust across different models that incorporate asymmetric structures in the conditional
volatility. This finding not only casts doubts on the well-established fact that equity
returns exhibit the leverage effect, but also affects the strategies for option pricing and
portfolio diversification. More specifically, options based on sectoral indices may be
wrongly priced if asymmetric effects are falsely assumed for those sectors without such
features. Furthermore, in order to make optimal hedging decisions, market practitioners
probably have to take into account the existence (or absence thereof) of asymmetric
effects in the conditional volatility of different sectors. In addition, although constructing
theoretical explanations as to why volatility is not entirely asymmetric across different
sectors of the same market is beyond the scope of this paper, this does present a

challenging topic for future research.

We also find corroborating evidence that the conditional correlations between
sectors are frequently highly positive and significantly time-varying. Highly positive
correlations may imply limited advantages from domestic diversification among sectors;
however, effective diversification exploiting the time-varying nature of conditional
correlations may still be possible by altering the portfolio weights of different sectors over

time.
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Lastly, we also detect strong evidence of volatility persistence and long memory
in all the sectoral indices for different models. Some sectors apparently have a common
degree of fractional integration. We conjecture that this may provide some support of
fractional co-integration in volatility, an issue which has not been widely studied in the
literature to date (see Brunetti and Gilbert (2000) for an exception). This topic is left for

future research.
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Appendix |

In this appendix we obtain the response coefficients of the FIGARCH(1,d,1) model.
Consider the fractional differencing operator (1—L)? , where L is the lag (backshift)
operator, and d €[0,1] is the fractional differencing parameter. The Maclaurin series
expansion is applied to the fractional differencing operator as follows:

(1-L)

=1-dL-

d(i-d) , d(-d)2-d),;  d(1-d)2-d).[(n-D-d] , (A1)
5 < .

As noted in the text, the FIGARCH(1,d,1) model of Baillie, Bollerslev, and Mikkelsen
(1996) can be expressed as an ARCH(«) representation:

U
T1-p

+ ML)’ (A.2)

ML) =" AL'=1-(1-BLy'(1-¢L)1-L)’ (A.3)
Substitute (A.1) into (A.3):

A(L)
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Redefine the fractional differencing operator in (A.1) as below:

(1-1L)

1 dl— d(l—d)Lz _ d(l—d)(2—d)...[(n—l)—d]Ln B (A5)
2 n!

El_i(blfb

where é/b = §b71(b_1_d)b71, b= 2,3,...00 and 4/1 =d ,

The response coefficients A(L)in (A.4) can be calculated by the following recursions:

ﬂl =¢-p+d,

/’Lb = ﬁﬂ“b—l +[(b _l_d)/b - ¢]§b—17 b= 2,3,...,00 (A'6)

The response coefficients of the FIAPARCH(1,d,1) and FIAGARCH(1,d,1) models can
be obtained in a similar fashion.
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Table 1 Summary Statistics of the Returns of the TOPIX Sectoral Indices
(4 January 1983 — 21 February 2003)

Variable | ATRN | EPOW | oPRD | PREI
Panel A: Moments, Maximum, Minimum
Mean 0.0004 0.0163 0.0105 0.0121
Median 0.0000 -0.0136 0.0000 0.0000
Maximum 12.3433 12.6845 8.4182 10.8793
Minimum -15.5253 -15.8122 -13.3764 -16.9355
Std. Dev. 1.7932 1.4598 1.2694 1.5034
Skewness 0.1404 0.6701 -0.2453 -0.1016
Kurtosis 8.8508 14.0606 9.7354 8.8749
Observations 5254 5254 5254 5254
Panel B: Ljung-Box Q-statistic
5 lags 7.1332 10.1723 28.3657 22.2856
10 lags 11.4545 24.8193 34.4645 31.4357
Panel C: McLeod-Li Test
5 lags 454.9580 867.3978 458.8415 458.6054
10 lags 507.4569 1070.3095 577.5608 522.4805
Panel D: ARCH LM Test
5 lags 342.2827 586.3227 300.9401 338.9370
10 lags 352.7244 634.3523 320.2767 352.1614
Panel E: QARCH LM Test
1 lag 265.3754 518.8192 192.0298 300.8171
4 lags 410.0523 766.5183 429.8772 494.1323
Panel F: BDS Test
e=1,1=3 18.0955 24.7634 15.7275 13.6280
e=1,1=4 20.3098 28.5376 18.5109 15.8524
e=1,1=5 22.6325 31.7168 21.0787 17.8060
e=1.5,1=3 17.5865 23.5251 17.2398 13.6560
e=1.5,=4 18.7314 26.0731 19.5668 15.2663
e=1.5,=5 20.0159 27.9693 21.2810 16.4700
Panel G: Runs Test
R4 1.7060 -2.4347 -4.3558 -5.4276
R2 -7.9305 -12.4141 -6.9193 -5.7632
R3 -11.1357 -14.7822 -7.8492 -6.8424
Notes:
1. ATRN = Air Transportation, EPOW = Electric Power and Gas, OPRD = Other Products, PREI =
Precision Instruments
2. QARCH LM test statistic is due to Sentana (1995) and it is distributed as chi-squared with q(q+3)/2
degrees of freedom, where q is the number of lags.
3. For the BDS Test, e represents the embedding dimension whereas | represents the distance

between pairs of consecutive observations, measured as a multiple of the standard deviation of the series.
Under the null hypothesis of independence, the test statistic is asymptotically distributed as standard normal.
4. For the Runs Test, R; fori = 1, 2, 3 denote the runs tests of the series R;, |R|, and RZ respectively.
Under the null hypothesis that successive observations in the series are independent, the test statistic is
asymptotically standard normal.
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