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Abstract 

 

Index-linked securities are offered by banks, financial institutions and building societies to 

investors looking for downside risk protection whilst still providing upside equity index 

participation. This article explores how reverse cliquet options can be integrated into the 

structure of a guaranteed principal bond.  

 Pricing problems are discussed under the standard Black-Scholes model and under the 

constant-elasticity-of-variance model. Forward start options are the main element of this 

structure and new closed formulae are obtained for these options under the latter model. Risk 

management issues are also discussed. An example is described showing how this structure can 

be implemented and how the financial engineer may forecast the coupon payment that will be 

made to investors buying this product without exposing the issuing institution to risk of loss. 
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From an investor’s point of view traditional equity-linked instruments provide an opportunity 

to participate indirectly in the performance of a single share. For the last two decades 

increasingly complex, customised structures have been created in a way that enables, in many 

cases, regulatory constraints on the use of derivative securities, such as forwards, futures and 

options, to be by-passed. Convertible bonds provide a good example of an instrument that 

customarily has a pay out profile of a call option and that have been available to investors for 

many years. Liquid Yield Option Notes™ ® (LYONs™ ® ) evolved as a variation on the 

convertible bond theme. These securities were structured to provide investors with equity 

performance with a strong element of built-in price stability and are described and analysed in 

McConnell and Schwarz [1986,1992]. The evolution of single stock LYONs™ ® led to the 

development of many variations in single stock linked notes and in the late 1980s equity index-

linked instruments began to appear, for example, equity linked certificates of deposits 

explained in Gastineau and Purcell [1993].  

The growth of derivative markets globally, coupled with more informed investor 

understanding of the risk and return characteristics of structured investment opportunities, has 

led to an enormous growth in the number and variety of equity index-linked securities being 

offered by banks, mortgage banks, and building societies. The recent decline in the level of the 

major international equity indexes worldwide has further stimulated investor demand for 

financial products that limit downside risk whilst still offering upside equity index 

participation. Recent guaranteed bond and note issues, for example, can be found which draw 

on the performance of the EuroSTOXX50 index and offer investors a callable certificate issued 
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at a price above par, which guarantees a minimum return of par plus the full positive return on 

the underlying benchmark index. In the case of the bond not being called by the issuer the 

maturity redemption value of the bond can be expressed as: 
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where Bmat is the bond’s redemption value, P the guaranteed amount (par), IT the index level at 

the bond’s maturity date, I0 the initial index level or strike price.  

A second example issues a bond at par and offers a minimum redemption value above 

par over a specified time period but with a reduced participation level in the underlying equity 

index. At maturity the bond’s redemption value can be expressed as: 
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where: y represents guaranteed return above par expressed as a proportion, and x represents the 

benchmark index participation level as a proportion. 

The pricing and hedging of these types of structures is well-known (Eales [2000];  

Das [2001]). The financial institution offering the instrument will, ideally, invest in a zero 

coupon bond for a price less than the sum invested and use the residual to purchase the 

appropriate quantity of call options on the index. This approach to structuring a hedged 

investment instrument is most effective in a low volatility high interest rate economic climate. 

A variation on this can be found in equity index-linked cliquet participation notes. 

These instruments make use of cliquet which are well-established instruments. They were first 

introduced in France using the CAC 40 equity index as the underlying security. Cliquets are 

also called ratchet options in the literature because they are based on resetting the strike of a 

derivative structure to the last fixing of the reference underlying. Ratchets can be regular as 
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described by Howard [1995] or compound as discussed by Buetow [1999]. For the latter type 

there are no intermediary payments, all gains being used to increase the volume of the 

derivative that is used as a vehicle for the ratchet. A wide range of ratchet caps and floors in an 

interest rate context described in Martellini et al. [2003].   

In an equity context a similar example of the use of ratchets can be found in a note 

which offers a minimum redemption value set above par and whose redemption yield is related 

to the monthly percentage changes in a specified index over a defined period of time. To 

manage the risk of large index movements the monthly percentage returns are collared in a 

tight band around the periodically reset index strike price. 
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A similar approach can be adopted when seeking to price and hedge this structure as 

that described in the guaranteed instruments introduced earlier. Following the purchase of a 

zero coupon bond residual funds can be used to buy a set of cliquet call and put options with 

monthly expirations extending to the bond’s maturity date. The portfolio of options required to 

create this position will be long ATM calls combined with short OTM calls and Short ATM 

puts combined with long OTM puts. Clearly the availability of any residual funds derived from 

the portfolio of options will help determine the feasibility, the attractiveness and the 

competitiveness of the instrument. A mirror image instrument could be constructed which links 

coupon to the percentage changes in an index to falls rather than rises index.  

The pricing of a cliquet option typically proceeds by regarding it as a portfolio of at-

the-money (ATM) forward start options. A cliquet bestows on the holder the right to buy a 

regular at-the-money call with time to maturity T at some future specified date T1. Thus, 
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tT −= 11τ  is the length of time that elapses before the forward start option comes into 

existence and tT −=τ  is the length of time to maturity. An early approach used in the pricing 

of a forward start option is presented by Rubinstein [1991]. This method bases the risk-neutral 

value of an ATM forward start call option on the expected value of the underlying security at 

time  t1 and results in the option value reducing to that of a regular ATM call where the time to 

maturity is the effective time 1τ−τ , Zhang [1998]. This implies that the Black and Scholes 

pricing formula can be used to obtain the cliquet option’s price (call or put). If the tenors are 

defined by the partition Tttt n ≡<<< +121 ...  then:  
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where S(t) represents the underlying asset at time t, r the risk free rate of interest, δ is the 

dividend yield, σ represents volatility, and: 
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Pricing forward start options is the key to pricing cliquets. A forward start option is a 

particular case of multi-stage options, which are derivatives allowing decisions to be made via 

conditions evaluated at intermediate time points during the life of the contingent claim (see 

Etheridge [2002]). Multistage options can be priced similarly to options on stocks paying 

discrete dividends at intermediate points over the life of the option. Under general common 

assumptions, the pricing equation of multistage options in a risk-less world is the well-known 

Black-Scholes PDE: 
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with some final condition such as V(T,S) = G(S). 

The Feynman-Kac solution of the above equation is:  
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where the expectation operator is taken under the risk-neutral measure. 

The forward start option is an option that comes into existence at time T1 and has maturity T. 

The following backward procedure can be used to calculate the price of this option:  

(a) Calculate the final payoff of the option at time T. 

(b) Calculate the value of the payoff from (a) at time T1; this is given as the solution of the 

Black-Scholes PDE with t = T1. 

(c) Check the conditions and calculate the terminal value of the option at T1 and for t < T1 use 

the Black-Scholes PDE to get the solution 
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Out-of-the-money (OTM),in-the-money cliquets (ITM), and more exotic structures can also be 

handled in the same partial differential equation (PDE) pricing framework.  

In the same vein Monte Carlo simulation (MCS) and quasi-MCS can be used to price cliquets 

taking into account the element of path dependency ignored by the standard Black and Scholes 

formula. Buetow [1999] suggests that pricing this type of instrument accurately is best 

undertaken using different methods and comparing the results obtained.  

These pricing methods, however, all suffer from the assumption of constant volatility. 

Wilmott [2002] highlights the problems associated with this assumption and illustrates the 

dangers faced by writers of cliquets when ignoring volatility risk. It can be shown that the 
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gamma of a cliquet option is the sum of gamma values for regular options because the gamma 

of a forward start option is zero before the starting time. This may create the impression that 

risk management is easy in this case. However, for this type of option, hedging can be quite  

complex because the delta, vega and theta have discontinuities around reset times.  

This article explores how reverse cliquet options can be integrated into the structure 

of a guaranteed principal bond. Pricing problems are discussed under the standard Black-

Scholes model and under the constant-elasticity-of-variance model. Forward start options are 

the main element of this structure and under the latter model the pricing of these important 

options is not easy. This problem is solved and en passant new closed formulae are derived for 

forward start options under the CEV model.  

 

 

I. FINANCIAL ENGINEERING WITH REVERSE CLIQUETS 

 

Unlike the structures discussed so far, reverse cliquet options are best employed 

either when volatility levels are substantially higher than historically observed volatilities and 

are expected to revert back to normal or when investors hold the view that the markets are 

likely to become more bullish (puts) or bearish (calls).  

A reverse cliquet can be integrated into the structure of a guaranteed principle bond. 

This is achieved by creating a pool of funds derived from, for example, investors augmenting 

their investment sum by writing forward start options. The fund starts with a value of greater 

than 100%1 and is drawn on over time if and when the written options expire in-the-money 

(ITM). Under this construction the bond may guarantee full return of principal invested and 



 8

offer a higher than market coupon that declines as the underlying asset, to which the bond is 

linked, declines in value (put) or rises in value (calls) as measured on pre-specified future 

dates. Coupons could be paid on defined intermediate dates or as a single payment at the 

instrument’s maturity. 

  

 

Reverse Cliquet with Put Options 

If it is assumed that investor’s views are bullish concerning equity market 

performance and that volatilies are high, a bond could be offered which pays out an amount 

determined by the total initial option net income fund less the sum of the declines in the 

benchmark index either at maturity or on intermediate coupon dates t1 t2 , …..tn+1. = T. 

From the issuing institution’s perspective one way in which the structure could be engineered 

would be to combine a zero coupon bond, purchased using the investor’s deposit, together with 

a portfolio of income generating forward start written put options. The put option premia 

represents an additional pool of funds that will need to be drawn on should the underlying asset 

decline in value in any period.  

There is clearly a real risk in the structure that needs to be addressed. Large falls or a 

series of falls in the asset’s value may result in the additional funds being exhausted and the 

investor’s investment principal being used to meet settlement obligations. In such situations, to 

ensure that the principal return guarantee is met, the institution offering the product will need 

to meet the cost from their own funds. To avoid this potentially expensive problem each cliquet 

in the portfolio will need to have insurance in place to ensure that potential losses are capped. 

                                                                                                                                                  
1 The figure of 100% being the investor’s initial cash investment (P). 
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Exhibit 1 illustrates this for the case of a single period whilst Exhibit 2 suggests the 

instrument’s construction.      

 

Insert Exhibit 1 Here 

 

  Insert Exhibit 2 Here  

 

 

 

A possible course of action that would create a series of appropriate loss limits would 

be for the institution to purchase offsetting OTM forward start put options for each of the short 

forward start put options held in the portfolio. This introduces a conflict. The long OTM 

options will act as a drain on the funds which are being used to enable the offering of a higher 

than market coupon as an incentive to the investor. On the one hand the product requires a 

coupon high enough to attract investors on the other the risk of severe market index falls must 

be capped, achieving this by buying OTM cliquet options will exert a downward pull on the 

coupon.  

 

 

 

II. PRICING UNDER CEV MODEL  

The pricing mechanism for reverse cliquets falls under the Black-Scholes umbrella. 

The essential step is pricing forward start options and as described by Zhang [1998] or 
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Etheridge [2002]. The key point is the factorization of the value of the option, at the time point 

where the option comes into existence, as the product of the underlying stock and a 

multiplicative factor that does not depend on the underlying. 

Fundamentally the Black-Scholes-Merton model is based on the modelling of the underlying 

assuming geometric Brownian motion.  While this has been a great theoretical development 

empirical observations have questioned some of the assumptions or implications of this 

celebrated model. The main criticism stems from the assumption of constant variance which is 

contradicted by the empirical evidence showing that volatility changes with stock price2. Since 

geometric Brownian motion cannot account for the empirical observation that the variation of 

stock returns is declining, most of the time, as the stock price levels rises we are led into 

considering a more complex Ito process than a standard geometric Brownian motion.  

In this section we develop this idea and model the underlying with a constant-

elasticity-of-variance (CEV) process and derive the price of the forward start options that are 

the building block for the reverse cliquets. Once this is achieved everything else regarding 

financial engineering with reverse cliquets follows more or less the same methodology as 

described above. 

The CEV model for an asset S is described by the following SDE 

)()()()( tdZtSdttStdS ασµ +=     (9) 

where µ is the drift parameter, α > 0 is a constant parameter and all other variables and 

parameters are exactly as for a geometric Brownian motion. This alternative stochastic process 

for pricing options has been proposed by Cox & Ross [1976] and they provided closed-

                                            
2 Schmalensee & Trippi (1978) found evidence of a negative relationship between stock price changes and 
changes in implied volatility while Black (1976) discovered using ten years of data of six stocks that a 
proportional increase, respectively decrease, in the stock price is associated with a larger proportional increase, 
respectively decrease in the standard deviation of the stock. 



 11

formulae for pricing European vanilla options when α < 1. Empirical evidence shows that the 

CEV model in general outperforms the Black-Scholes model. MacBeth and Merville [1980] 

and Emanuel and MacBeth [1982] found empirical evidence supporting this conclusion on 

stock options markets while Hauser and Bagley [1986] showed similar results on the currency 

options markets. For the particular case of square-root process, that is for 5.0=α , Beckers 

[1980] revealed that Black-Scholes ITM call and OTM put prices evaluated at implicit 

volatilities of at-the-money options are lower than those counterparts calculated with the CEV 

model. The CEV model implies a smile pattern that is frequently encountered on equity, index 

and currency options markets. However, the CEV model still leaves some Black-Scholes smile 

effects unexplained such as underpricing of ITM puts and OTM calls. Fortunately, for the 

structured product presented here the OTM puts are important. 

Emanuel and MacBeth [1982] determined the formulae for the case when α > 1, which for 

technical mathematical reasons and different boundary behaviour is different than the formulae 

for α < 1. Schroder [1989] showed how to express the CEV option pricing formulae in terms of 

the noncentral chi-square distribution. This is recovered here when pricing forward start 

options, although it is not mentioned in the text explicitly. 

For the sake of clarity we focus in this section on pricing an ATM forward start call 

option that kicks in at time T1 and matures at T. Similar calculations can be made for OTM or 

ITM forward start options. Employing risk-neutral valuation we get the value of the option at 

time T1 as: 
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For simplicity, and without loss of generality, we restrict to the case 5.0=α  which is the case 

most investigated in the literature. Denoting by ))(|)(()( tSuTSPuFt ≤=  Cox and Ross 

[1976] employed the following useful result due to Feller [1951]: 
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and )(1 ⋅I  is the modified Bessel function of the first kind of order one. 

For risk-neutral martingale pricing one sets either r=µ  or δµ −= r  if dividends are paid 

continuously at rate δ. For a general strike price X and maturity T the price of a European call 

at time t is: 
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and using Feller’s result given above it follows that: 
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However, the modified Bessel function can be approximated with the following series: 
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Replacing this in equation (11) leads to:  
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In the Appendix it is shown that in the end we get to: 
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m

e
m

xmxg −
−

Γ
=

)(
);(

1

 is the probability density function for a gamma distribution with 

mean and variance equal to m.  

The second factor delimited by the large brackets is a function ))(,,,,( 11 TSTTr σψ  so 

that we can write:  
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Unfortunately, under a CEV model, we cannot continue as described above when using a 

Black-Scholes model because the second factor is not independent of the underlying. This will 

complicate the calculation of the value of the forward start option at time t = 0, however, since 

we can still apply risk-neutral pricing, we can write:  
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In the Appendix it is shown that:  
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III. RISK CONTROL ISSUES 

 
The way in which the guaranteed principal instrument has been created by Financial 

Institution A, falls in the equity index result in sums being drawn down from the fund. The 

fund is protected from becoming negative by the holding a portfolio of long OTM puts, which 

form caps. Three market scenarios can be considered (1) the equity index rises by η%, (2) the 

equity index remains at its current level, (3) the equity index falls by η%. On reaching maturity 

in cases (1) and (2) the investor’s achieved coupon will be the maximum offered in the bond’s 

indenture Cmax. Under the third scenario the achieved coupon will be determined by: 
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In the case of the institution providing the cliquet options the pay out will be the mirror image 

of those generated by the investor. Under scenarios (1) and (2) the institution will meet the 

coupon pay out from the funds made up of the original investment plus the net income 

generated by the collar. Under scenario (3) the coupon paid to the investor will be reduced by 

an amount reflecting the downside protected fall in the index. Exhibits 3. and 4. illustrate the 

effect on the coupon as a result of period-on-period declines in the index value. At around a 

3.8% fall in the index the funds experiences it maximum depletion rate. Unrealistic 80% 

period-on-period declines result in the investor’s coupon payment rising as the percentage pay 

out declines due to the cliquet resets being implemented at much lower index values. 

For simplicity we shall assume that the guaranteed amount to the investor is 100%. In other 

words the structured investment product guarantees the return in full of the sum invested at 

maturity T.  
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Let H denote the price, at time 0, of a zero coupon risk free bond with maturity T. Obviously 

0< H < 100 and 100-H is available for using in the reverse cliquet structure. Over each period 

of time ],[ 1 ii tt −  of constant length 1−−=∆ ii tti , with 1,...,2,1 += ni  the financial institution 

will sell ATM forward start put options and buy OTM forward start put options. Let )(iS be the 

price of the index at time it   and let 0<η<1 be a factor defining the OTM strike price as 

)( 1−η itS  for the period ],[ 1 ii tt − . 

The payoff of the short ATM forward start put at it  is [ ]0),()(max 1 ii tStS −− −  and the 

payoff of the long OTM forward start put at the same time is [ ]0),()(max 1 ii tStS −η − . This 

forward start spread has the combined value: 
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At time 0 this can be priced as a portfolio of options using risk-neutral valuation in the 

framework developed by Harrison and Kreps [1979]. Using the formulae3 for forward start put 

options provided in Zhang [1998] the premium of the forward spread at time 0 is 
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Recall that for the OTM forward start option: 
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The total revenue at time 0 from the forward start engineered structure is 
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so the seller of the reverse cliquet has 1-H+Q at their disposal. 
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Fixed Coupon 

 

Suppose now that the investor is also rewarded with a coupon x (%) paid at the end of 

each period, where for simplicity we take iti ≡  for all Ti ,...,2,1= . Thus the present value of 

what the   investor will get over the life of the product, assuming a flat interest rate r and 

continuous  compounding for simplicity is:  
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At each reset time, say time i, the maximum payout that the reverse cliquet seller may have to 

pay to third parties, following the decline of the index, is: 
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so the total maximum payout that may be paid, at time 0, is worth: 
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Therefore the following inequality relating the coupon rate x and floor level represented by the 

deflating factor η is: 
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The only weakness in this construction is that future index levels are uncertain. Assuming that 

the index follows a geometric Brownian motion4 with drift parameter µ and volatility 

parameter σ it is known that:  

                                                                                                                                                  
3 We have corrected some typos that appear in Zhang [1998]. 
4 This is not exactly correct from a pure mathematical finance point of view but it seems to work well in practice 
and it can be therefore used as least as a very good approximation. 
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ieSiSE µ= )0()]([0                  (30) 

Passing the expectation operator, in real world, over the above inequality constraint leads to the 

following average condition: 
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            (31) 

Alternatively the financial engineer may try to simulate ‘what-if’ scenarios using the evolution 

equation of the index: 

)()2/2()0()( iWieSiS σ+σ−µ=     (32) 

where W is a Wiener process. 

 

Variable Coupon 

A more common practice is to provide investors with a variable coupon that pays at 

each reset time or in one payment at maturity the difference between a fixed coupon rate x (%) 

and the level of percentage decline in the index over the ending period. For period ],[ 1 ii tt −  the 

decline in the index is: 

]0),()1(max[ iSiS −−  

so when all payments are settled at maturity T  the coupon paid is: 

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−−

−=Π
T

i iS
iSiSx

1

0],0,
)1(

)()1(max[max .   (33) 
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As in the previous section, considering the worst case scenario that for each period the ATM 

put options will be exercised due to a decline of the index at or below the cap provided by the 

OTM options, the financial engineer must make sure that:   

( )∑
=

−− −−−−+Π≥+−
T

i

rirT eiSiSiSeQH
1

)1()1(],0),()1(max[min1 η   (34) 

otherwise payments may be missed or losses will be made. 

 

IV. APPLICATION 

 

In order to examine how this type of product can be engineered consider the following 

example: 

A non-callable bond is issued offering a minimum return of full principal invested at 

the end of three years or full principal plus x% - the sum of the annual declines in the 

defined equity index.  

Recall that the financial engineer has to establish at what level x can be set and this will in turn 

be determined by the amount available from the sale of ATM puts less the cost of the OTM 

puts needed to create the cap.  To illustrate how the structure can be replicated we will price 

both long and short forward start put options that comprise the cliquet option collar initially in 

a Black and Scholes framework. This, of course, ignores volatility stochasticity and any 

volatility smile. Proceeding with this approach we assume that the discount rate is 2.35% this 

implies that the institution will today pay 93.27% for a zero coupon bond with a three year 

maturity.  

( ) ( )
%27.93

0235.01
100

1 3 =+
=

+
= Tdr

FVH    (35) 
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Thus (1 – H) = (1 - 0.9327) = 0.0673%, implies that a 6.73% residual is immediately available 

to invest in the fund that will be used to make payments to the put holders if and when 

required. To price the forward start options we assume that the yield curve is flat and that risk 

free rate for all maturities is 2.52%; dividend yield is 1.58%; volatility is 25% p.a. and the life 

span of each option is 360-days. Using the formulae presented in equation (5) above the price 

of each ATM forward start option in this regime is 9.232% and since 1 regular put and 2 

forward start puts are needed to cover the maturity of the bond and the number of resets the 

total income from ATM options will be 27.70%. In order to cover the period-by-period 

downside investor risk, the institution will need to buy 2 OTM forward start put options and 1 

OTM regular put option for the first year of the structured product life at a total cost of 

20.47%. The net contribution of the put option transactions to the fund will be 7.23%, combing 

this with the 6.73% residual from the zero coupon bond purchase, we have a fund of 13.96%. 

This fund provides an indication of the maximum coupon that the investor can expect to 

receive when there are no payouts from the fund at any of the reset dates. Should the index fall 

to a level below the relevant floor in each period the long OTM put options will be exercised 

ensuring that the investor receives the minimum return on the instrument, namely the original 

investment principal.       
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If we assume that one single payment will be made to the investor at the bond’s 

maturity and that a 100 basis point transactions fee is imposed by the financial institution 

structuring the transaction the maximum final coupon that can be offered to the investor is 

12.95%. If the issuing institution is willing to accept only 25 basis points for its services the 

maximum coupon that can be attached to the bond is 13.70%.  In both of these cases the 100% 

principal guarantee can be met as illustrated in Exhibits 3 and 4.  

 
 
 
 

  Insert Exhibit 3 Here 

  Insert Exhibit 4 Here 
 

  For risk control purposes we can simulate possible paths for the index and check the 

amounts that will be paid under each scenario to the counterparty in the forward start options 

and from that derive the amount left to pay the coupons to the investor. Continuing with the 

same data provided above in this section and assuming in addition that r = 3% and the fixed 

coupon rate x is 3% per annum paid at maturity, our Monte Carlo simulation exercise suggests 

that the maximum present value of total payment made by the seller of the structured product is 

16.34%. This should be compared with the 13.96% funds available. A more informative view 

is described in Exhibits 5. and 6. showing the total payments made under each simulated path 

of the index. It can be seen that there are only two scenarios where the payments made by the 

financial institution exceed the funds they have for the reverse cliquet.  

 
  Insert Exhibit 5 here  
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A possible strategy that the financial engineer may follow is to search for the coupon rate x  

that makes the maximum payment, over the already simulated paths of the index, equal to the 

total sum of funds available 1 – H + Q. For the above example this is realised for a coupon rate 

x = 2% (per annum). Exhibit 6. shows that indeed for all scenarios no payment is higher than 

the targeted 13.96%. 

 
  Insert Exhibit 6 here 
 
 

V. CONCLUSION 

 

Structured products are establishing as a class of instruments in modern finance. Here 

we have investigated a product underpinned by reverse cliquet options. We provided an 

approach to pricing and implementing this type of structure under the standard Black-Scholes 

model. The financial engineer is able to perform calculations that determine how large the 

coupon offered to investors can be. The main difficulty in valuing of this structure revolves 

around the pricing of the required forward start options. Since a cap is also created using OTM 

forward start puts, we considered that models that take account of known empirical facts 

should be investigated in addition to the standard Black and Scholes model. For this reason we 

have used the CEV model as a starting point and derived a new option pricing formula for 

forward start options.  

Future research will continue by looking at more general stochastic volatility models 

for the equity index and larger models that consider jointly the term structure of interest rates 

and a model for the equity index.  
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Appendix 

 
First we show how to calculate the following integral   
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⎭
⎬
⎫

⎩
⎨
⎧

+
−

+
=− ∫ ∑∫ ∑

∞ ∞

=

−
∞ ∞

=

−−−−

X k

kk
t

k
ts

X k

kk
t

k
ts

tt
tTr ds

kk
s

eXds
kk

s
seeetTtSV ttt

00

)(

)!1(!)!1(!
)),((

ϑθϑθ
ϑθ θθϑ  

Making the change of variable yst =θ  we get 
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 is the probability density function for a gamma distribution with mean 

and variance equal to m and the incomplete gamma function is defined as in the text in formula 

(9) it follows then that  
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Hence, at time t =T1, the value of the ATM forward start option is  
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The second calculation detailed here is  
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Lets denote the first term by 1Ω  and the second term by 2Ω . The key element in the 

subsequent calculations is the integral ∫
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List of Exhibits 
 
 

Exhibit 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Long OTM put creates a floor 

Short ATM put 

Underlying Asset Value 
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Exhibit 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Financial Engineering structure of the indexed-linked guaranteed principal bond. 
 

Issuing Financial 
Institution 

Investor 

Sells ATM Puts 

Buys OTM Puts 

Contingent Payout 
max[ηS(ti-1) - S(ti), 0] – 

max[S(ti-1) - S(ti),0] 

Payout at Maturity 

Guaranteed amount +  

( ) ( )( )[ ]∑ −− −−
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Counterpart 
Investment bank 
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Exhibit 3 
 
 

 
 
 
The value of coupon at maturity with respect to the fall in the underlying index on a simulated 

scenario where the issuer is charging 100 basis points; the principal is always guaranteed. 
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Exhibit 4 

 
 
The value of coupon at maturity with respect to the fall in the underlying index on a simulated 

scenario where the issuer is charging 25 basis points; the principal is always guaranteed.  
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Exhibit 5 
 
 

Sample of total payments
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Monte Carlo simulations when the coupon rate is x=3% p.a. There are only two cases 
where the total payment is higher than 13.956. 
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Exhibit 6 

 
 

Sample of total payments
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Monte Carlo simulations when the coupon rate is x=2% p.a. There are no cases 
where the total payment is higher than 13.956. 

 
 
 


