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Abstract
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1 Introduction

The question of how efficiently fiscal policy can be used for the stabilisation
of an economy has become a question of great importance for the European
Monetary Union. There is a growing body of literature to answer the call for
a theoretical framework; see Benigno and Woodford (2003), Dixit and Lam-
bertini (2003), Lambertini and Rovelli (2003), Beetsma and Jensen (2002,
2003) amongst others. Some authors study the question in a simplified,
non-strategic setup, or with complete cooperation between policymakers;
however it is clear that non-cooperative, leadership equilibria can be very
different and more realistic. Such a regime is examined by Dixit and Lam-
bertini (2003) using a static model.

A weakness of the static approach is that the stabilisation problem is
intrinsically dynamic, as the role of fiscal policy at least partly depends
on debt accumulation. The treatment of dynamic leadership equilibria in
the rational expectations literature has not always been either consistent
or satisfactory. For example, most of the voluminous literature on policy
coordination only considers Nash games. Much of the early analysis relied on
static albeit repeated games (e.g. Canzoneri and Henderson, 1996). In this
work the focus is on an equilibrium bias, where the average level of inflation
is permanently above the optimum. In dynamic games, the level bias is less
of an issue: we should rather be worried about so-called stabilisation bias
where it takes longer to reach the long run (or target) equilibrium. This is
manifested in increased unconditional variances of target variables such as
inflation or growth. However, any moderately complicated dynamic model
needs to be solved using numerical methods and these methods are neither
readily available nor well articulated for models with rational expectations.1

Therefore, the purpose of this paper is twofold. Firstly, we wish to
discuss the results of recent research on monetary and fiscal interactions
and leadership, in particular of Dixit and Lambertini (2003), in a dynamic
setting. We show that the form of the game and the leadership assumed
matters considerably: not all Dixit and Lambertini’s results are transferrable
to the analogous dynamic game. We discuss different leaderships regimes
and the consequent stabilisation benefits of fiscal policy in a single economy.

The first part is impossible to fulfill without a development of an appro-
priate modelling framework. Therefore, we discuss in details the concepts
of (and solution algorithms for) a leadership discretionary equilibrium for
dynamic linear rational expectations macroeconomic models where we make
the role of leadership in this context explicit. This is best done if one solves
the problem by using Lagrange multipliers. This method conveys the under-
lying information structure and allows the interpretation of the discretionary

1de Zeeuw and van der Ploeg (1991) provides an excellent discussion of discrete dynmaic
games and can be compared with our analysis.
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optima as feedback Stackelberg equilibria. This method, however, allows to
solve problems which are not indeterminate, i.e. where there is a unique
solution. Clearly, the initial approximation should deliver determinacy too.
It is often not the case in the current mainstream macromodels, at least for
initial conditions. Therefore, we then discuss how to find the same solution
with easy-to-use numerical procedures based on the principle of dynamic
programming, which can pickup a solution for indeterminate problem, but
has some other drawbacks instead. Although this framework is a contribu-
tion to the literature and a necessary preliminary step before we investigate
any real problem, we put detailed discussion of the concept and solutions
into Appendix.

In all that follows we are unashamedly game-theoretic in our approach,
and adopt the terminology of dynamic game theory, exemplified in Basar
and Olsder (1999), even when the game is in some sense implied rather
than explicit. This is somewhat at odds with much of the recent monetary
policy literature which constructs consistent equilibria with little regard to
the underlying strategic behaviour. However, we feel that correct treatment
of any potential interactions is vital to the understanding of the resulting
policy regimes.

2 Monetary and Fiscal Policy Interaction

In order to investigate monetary and fiscal policy interactions we use the
Dixit and Lambertini (2003) model modified to a dynamic context. We
aim to compare different leadership equilibria. We also comment on how
effective fiscal policy is in stabilising a single economy.

As it is discussed in Appendix A.6, unilateral commitment of one of au-
thorities is not possible in a dynamic game, so we only consider discretionary
game.

We consider a closed economy with two policymakers, the fiscal and
monetary authorities. Fiscal policy is allowed to support monetary policy
in stabilisation of the economy. As it is common in the recent literature, we
abstract from the problem of fiscal solvency, and consider short-run stabili-
sation only2.

It has been shown in the literature (Kollmann (2003), Schmitt-Grohe
and Uribe (2003) and others) that in a single economy a stabilising fiscal
policy can do very little — the consumption gain from stabilisation efforts
does not exceed 0.02% of a steady state consumption level. In a Monetary
Union, however Kirsanova et al. (2003) conclude that a stabilising fiscal

2 It was shown in Kirsanova, Satchi and Vines (2004) that it is enough for the fiscal
authorities to feed back on debt with a small coefficients in order to deliver sustainability
of the debt. All quantitative results are then almost identical for a model with debt and
without it.
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policy greatly improves welfare when economy faces asymmetric shocks, es-
pecially if there is substantial persistence. Therefore we keep a potentially
important property of inflation persistence in order to both have truly dy-
namic model3, and investigate welfare improvements from fiscal stabilisation
in a single country with persistence. Despite small stabilisation effect, the
leadership issues can be still worth studying — they might be important for
a policy design in a monetary union where the fiscal policy is more welfare
improving.

3 The Model

We consider the now-mainstream macro model, discussed in Rotemberg and
Woodford (1997), and slightly modified to give account to the effects of
fiscal policy, in a spirit of Beetsma and Jensen (2002). Here, we only briefly
discuss the main assumptions of the model and the reader is referred to the
Additional Appendix for a derivation of all equations4.

Our economy is inhabited by a large number of individuals, and there
are two policymakers: monetary and fiscal authorities. Each representative
individual is a yeoman-farmer, who specialises in the production of one dif-
ferentiated good, denoted by z, and spends h(z) of effort on its production.
An individual also consumes a consumption basket C, and ξ are technol-
ogy/taste shocks. Preferences are assumed to be:

max
{Cs,hs}∞s=t

Et
∞X
s=t

βs−t[u(Cs, ξs) + f(Gs, ξs)− v(hs(z), ξs)] (1)

An individual chooses optimal consumption and work effort to maximise
the criterion (1) subject to the demand system and the intertemporal bud-
get constraint. We have assumed that utility is separable in private and
government consumption.

The first order conditions with respect to consumption, leads to the fa-
miliar Euler equation (intertemporal IS curve), where ct denotes consump-
tion and all variables are log-deviations from the efficient equilibrium:

ct = ct+1 − σ(it − πt+1) + ηt. (2)

In order to describe price setting decisions we follow Rotemberg and
Woodford (1997) as extended by Steinsson (2003) to get:

πt = (1− χ)βπt+1 + χπt−1 + κcct + κx0xt + κx1xt−1 + εt (3)

3Despite ignoring the dynamic debt accumulation equation, our model is highly dy-
namic: an appropreate treatment of household behaviour leads to the dynamic consump-
tion process and inflation process, which we considet to be highly persistent.

4Available from www.ex.ac.uk/~tkirsano/AppLeadership.pdf

3



where π denotes inflation and x denotes output. All coefficients can be
derived from microfoundations and given in Appendix B.

The system (2) and (3) is formally equivalent to the optimising behaviour
of a representative agent who maximises (1) subject to an aggregate ‘law
of motion’ of the economy (the demand system, the intertemporal budget
constraint and pricing decisions) when policymaker’s behaviour is taken to
be an exogenous process, independent of the individual’s actions.

Apart from the private sector’s behaviour, explained with (2) and (3),
the evolution of the economy, as observed by the policymakers, includes the
aggregate demand equation (4):

xt = θct + (1− θ)gt. (4)

Both policymakers are trying to minimise their loss functions. If they are
benevolent, each of them tries to minimise social loss. The one-period social
loss function can be derived as second-order approximation to consumer’s
utility, written in terms, which can be affected by policies. We follow the
approach discussed in Rotemberg and Woodford (1997) to derive it, see the
Additional Appendix. We assume that monopolistic distortions are offset
with subsidy, which is financed by a lump-sum taxation, so the social loss
only contains quadratic terms:

Wt = λcc
2
t + λgg

2
t + λxx

2
t + π2t + µπ(∆πt)

2+ µxx
2
t−1 + µπx∆πtxt−1. (5)

The last three terms in the loss function (µ− terms) are due to inflation
persistence, while the first four terms are more conventional and reflect
static functional form of household utility. Since our utility is separable in
the private and public consumption, we cannot collapse the three terms with
λ− coefficients into a single quadratic term in output.

If both authorities are benevolent, then the same social loss function
should be given to both of them, it implies that the costs of volatility of the
fiscal adjustment are important for the monetary authorities too.

The monetary authorities (MA) use the short-term interest rate to min-
imise the ‘cost-to-go’ with one-period social loss function:

min
{i}∞s=t

Et
∞X
s=t

βs−tWs. (6)

The fiscal authorities (FA) are given the same objective but use government
spendings as an instrument.

Although we start with identical loss functions, we aim to investigate
some implications of different objectives too. The two policymakers solve
their optimisation problems each period, given initial conditions and time
preferences. The resulting optimal policy reactions lead to stochastic equilib-
ria that should be compared across a suitable metric, independent of initial
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conditions. The obvious choice of this metric is the microfounded social loss,
which on the convenient assumption that social planner does not discount
the future, is a sum of unconditional variances with microfounded weights:

W = λcvar(c) + λgvar(g) + (λx + µx) var(x) + var(π) (7)

+ µπvar(∆π) + µπxcov(x−1,∆π).

Despite that monetary and fiscal authorities both affect demand, they
affect it in a very non-symmetric way. The fiscal authorities can change it
directly by means of government purchases, while the monetary authorities
can change intertemporal allocation of consumption and affect the demand
via consumption. Consumption constitutes the biggest part of the aggregate
demand, and we intentionally chose a substantial equilibrium ratio of the
public consumption to output, in order to increase the power of the fiscal
policy.

4 A Strategic Discretionary Game

Our problem can be formalised as follows. We have three players in the
game: two explicit players, monetary and fiscal authorities, whose objective
functions can be written as

min
{UL

s }∞s=t
Et

∞X
s=t

βs−tWL
s , min

{UF
s }∞s=t

Et
∞X
s=t

βs−tWF
s (8)

and one implicit player, the private sector, whose optimisation problem is
solved out and can be presented by a difference equation

Xs+1 = a21Ys + a22Xs + b21U
L
s + b22U

F
s . (9)

Here U denotes policy instruments of the authorities (either leader L or
follower F — interest rate and government expenditures) and X denotes
instruments of the private sector, inflation (inflation expectations) and con-
sumption, which are non-predetermined, or jump, variables. Additionally,
the can be predetermined state variables, Y, which evolution can be ex-
plained as

Ys+1 = a11Ys + a12Xs + b11U
L
s + b12U

F
s (10)

The example of such variable is output as explained by equation (4).
The monetary and fiscal authorities can either move first (leader) or

second (follower), but the private sector is an ultimate follower in the policy
game: it moves third and treats policy instruments parametrically.

We discuss in the Appendix the information structure of the game and
demonstrate that in a dynamic setup with two policymakers we are lim-
ited to considering discretionary equilibria only: commitment of one of the
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authorities is impossible unless the other authority precommit to the same
target. We discuss two numerical algorithms for a solution of a discretionary
problem in the Appendix, and here we only emphasize that the optimal so-
lution for the monetary and fiscal instruments can be written in the form:

UL
s = −FLYs, (11)

UF
s = −FFYs − LUL

s . (12)

Here F denotes feedback coefficients on the predetermined state and L is
the leadership parameter. The leader feeds back on the predetermined state
variables and the follower takes into account the leader’s actions. Thus, the
leader can manipulate the follower by changing its instrument.

5 Discretionary Leadership Equilibria

To compute equilibria, we use numerical algorithm described in Appendix.
We run the following four scenarios, most commonly discussed in the liter-
ature.

In the first scenario both authorities are benevolent and use the social loss
function (5) to stabilise the economy. They still act non-cooperatively under
either monetary or fiscal leadership. We use this scenario as a benchmark
for further investigations.

In the second scenario we, following Dixit and Lambertini (2003), we
investigate the case where the monetary authorities are more conservative
than fiscal authorities. The fiscal authorities still minimise social ‘cost-to-
go’.

In the third scenario, the monetary authorities minimise the social loss
function while the fiscal authorities also use the same function (they support
monetary policy) but, additionally, they are penalised for excessive volatility
of the primary deficit/surplus. Such constraint models restrictions similar
to those imposed by the Stability and Growth Pact.

In the fourth scenario the fiscal authorities minimise the social loss func-
tion, and the monetary authorities do the same, but they are also required
to change interest rate smoothly — there is a penalty on change in the in-
terest rate. A sluggishness of interest rate adjustment can be motivated by
the requirement of financial stability.

We vary these penalties (or conservatism parameter) to see robustness
of the results. Table 1 presents the results of welfare loss evaluation. We
keep realistic calibration of the Phillips curve with inflation persistence5.

5We calibrate the parameters as β = 0.99, σ = 0.5, � = 5, ψ = 2, θ = 0.6 and γ = 0.75.
The standard deviation of all shocks is 0.5%.
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5.1 Benevolent Policymakers

As well as Dixit and Lambertini (2003) we obtain that the leadership does
not matter for the two benevolent policymakers, see Table 1, the second
column. In a dynamic setup all components of the loss are also identical
for both leadership regimes. We also include column with non-strategic
behaviour by the fiscal authorities where their role is to keep government
expenditure constant, so monetary policy is left to stabilise shock alone6. A
comparison of the two columns reveals that if fiscal policy is allowed to be
stabilising, and even in a non-cooperative setup, both monetary and fiscal
policy together can do better than the monetary policy can do alone.

It is useful to note that with our preferred calibration of the model, the
optimal solution for a monetary and fiscal policy can be presented as follows.
For the monetary leadership

iLt = 12.23εt + 2.00ηt + 4.05πt−1 + 0.80xt−1
gLt = 0.03εt − 0.94ηt + 0.41πt−1 − 0.02xt−1 + 0.47iLt

and for the fiscal leadership

gFt = 5.76εt + 0.00ηt + 2.31πt−1 + 0.35xt−1
iFt = 6.33εt + 2.00ηt + 1.69πt−1 + 0.44xt−1 + 1.02g

F
t .

It is seen that in both cases the leadership coefficient is positive, so con-
tractionary monetary policy goes along with an expantionary fiscal policy.

5.2 Conservative Central Banker

We then increase conservatism of the monetary authorities. The fiscal au-
thorities are minimising ‘cost-to-go’ with social one-period loss function,
and the monetary authorities do the same, except their weight on output
stabilisation (all λ− coefficients) are multiplied by a common multiplier ρc
which is decreasing from one (benevolent monetary authorities) to almost
0.5 (conservative monetary authorities), see notes to Table 1. We rank the
outcomes using social metric (7). We find that

(i) a slight conservatism of monetary authorities delivers better stochas-
tic equilibrium than the two benevolent policymakers,

(ii) only with higher conservatism of the monetary authorities, the fiscal
leadership is preferable to the monetary one, and

(iii) if the conservatism is large enough, then both leadership regimes are
worse than the benevolent regime.

6Automatic stabilisers still operate via taxation.
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To understand these results it might be helpful to look at impulse re-
sponses to supply shocks7 in Figure 1. The benchmark solid line denotes
responses under benevolent authorities, they are identical for the two lead-
ership regimes. With an increase in the central bank conservatism, the
monetary authorities concentrate more on inflation stabilisation, and are
prepared to pay for this with higher output variability. If the monetary
authorities are a leader, they are able to manipulate the fiscal authorities
to help them to reach their conservative target. This requires an aggressive
reaction of the interest rate (with a consequent consumption volatility) and
it results in higher variability of a fiscal instrument too. The higher output
variability (and all its components: terms of (5) with λ− coefficients) has
smaller effect on the monetary autorities’ loss due to the reduced weight
of it. However, with increased conservatism the output costs soon become
substantial component in the social costs, so the regime stops being su-
perior to all other regimes. When the fiscal authorities lead, they try to
manipulate monetary authorities to use their instrument to affect demand
to help them to minimise their costs. However, the fiscal authorities are
more concerned with variability of the fiscal instrument, so they are less
able to manipulate the monetary authorities, as their instrument becomes
less volatile. So the monetary authorities are still successful in being tough
on inflation. This still improves the stochastic equilibrium. Because the
biggest relative penalty in the loss function is on inflation variability, this
determines the superiority of conservative regimes relative to the benevolent
regime. This effect is eliminated when it is paid for with high variability of
the fiscal expenditures.

The analysis of these interactions might suggest that a constrained pol-
icymaker performs worse when being a leader, as it is not only constrained
in optimisation, but also in manipulation of the follower, see formulae (11)
and (12). If the follower is penalised, the leader could still be flexible enough
to (partly) compensate for such constraint. However, the state of being con-
strained is difficult to define. In what follows we take examples with addi-
tional quadratic terms (with positive weights) in the loss function of one of
the policymakers. This determines constraint and we might expect that this
should increase social loss of a resulting stochastic equilibrium8. We next
look at two examples.

7Due to entirely forward-looking structure of the Euler consumption equation, demand
shocks are immediately suppressed with interest rate reaction, this reaction is identical
for all leadership regimes and does not contribute to the difference in losses.

8This is not necessarily a general case, as the stochastic metric does not assume dis-
counting, for example.
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5.3 Stability and Growth Pact

There is much discussion in the literature of how restrictive is the Stability
and Growth Pact (SGP) for the member countries of the European Monetary
Union. By imposing penalty for excessive public deficit, the Pact reduces
the stabilisation ability of the fiscal policy and reduces union-wide welfare9.
Here we look at the leadership issue in a single country. It is a common
view that in a single country the fiscal authorities are the leader, although
it is also common that the fiscal authorities are not supposed to support
the stabilisation efforts of the monetary authorities — the priority is given
to stabilisation of the domestic debt. In the monetary union the question
about whether it is desirable to allow for stabilisation function of the fiscal
authorities is not solved yet. Additionally, there is no consensus on the
resulting information structure and how the fiscal policy should be organised:
it is only clear that the current situation can be improved but rules vs.
institution question is still open. We look here whether the leadership issue
might be important if we want to design an institutional structure.

Columns (4) and (5) of Table 1 suggest that under the SGP, the regime
of fiscal leadership is not only worse than the regime of monetary leadership,
but it is also often worse than the regime with non-strategic fiscal behav-
iour with automatic stabilisers (compare columns (3) and (5)). Figure 2
illustrates that under the fiscal leadership, when the fiscal authorities try
to manipulate monetary authorities, inflation is less controlled. Apparently,
this is enough to ensure inferiority of the fiscal leadership, as inflation vari-
ability constitutes the main component of the social loss. This component
can also be big enough so that the fiscal leadership becomes worse than the
regime with automatic stabilisers. This example supports the conjecture
that a non-constrained leader performs better. However, in this case, we
imposed a constraint on a policymaker whose participation in a stabilisa-
tion game improves welfare only marginally. In the next example we look
at a constrained monetary authorities.

5.4 Financial Stability

We now require the monetary authorities would change interest rate smoothly,
in order to protect financial stability. In this case the monetary policy is
not able to offset the demand shocks completely, so the costs will be higher
than under benevolent authorities simply because of the extra losses due to
demand shocks. As demand shocks cannot be eliminated by means of mon-
etary policy, the fiscal policy has to intervene thus raising costs of change
in its instrument. This cost is higher under monetary leadership regime as
monetary authorities still try to manipulate fiscal authorities inducing ex-
tra volatility. For supply shocks, when monetary policy is unable to react

9See Kirsanova et al. (2003)
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aggressively, the fiscal policy has to compensate for this lack of interest rate
adjustment, so it becomes contractionary. The solution for monetary leader-
ship looks like (past interest rate becomes another predetermined variable):

iLt = 0.71εt + 0.04ηt + 0.41πt−1 + 0.03xt−1 + 0.70it−1
gLt = −5.28εt − 1.23ηt − 3.00πt−1 − 0.27xt−1 + 0.00it−1 + 2.39iLt

Apparently, this may not be enough to eliminate shocks efficiently. Un-
der the fiscal leadership, it economises on the volatility of the fiscal instru-
ment and delivers slightly higher volatility of inflation, but lower volatility
of output. Fiscal policy is also unsuccessful in efficient manipulation of the
monetary policy so it is contractionary as well:

gFt = −2.28εt − 1.04ηt − 1.26πt−1 − 0.12xt−1 + 1.30iFt−1
iFt = 0.88εt + 0.10ηt + 0.52πt−1 + 0.04xt−1 + 0.062i

F
t−1 + 0.05g

F
t .

Although there is higher volatility of output due do demand shocks, the
relative weight of demand shocks in the welfare function is relatively small.
Thus both leadership regimes lead to increase of volatility of inflation. Our
numerical experiment shows that the fiscal leadership dominates, see also
Figures 3 and 4

To summarise, under our calibration of the model, when monetary policy
is constrained, then fiscal leadership delivers better results then monetary
leadership and, additionally, the participation of fiscal policy in the stabili-
sation process under both leadership regimes improves welfare.

5.5 Robustness of Results

In the analysis above we assumed a particular form of the Phillips curve with
substantial persistence, which we find realistic. Therefore, our conclusions
are built on the analysis of transmission of supply shocks. How results
of our analysis depend on the degree of inflation persistence? In Table 2,
we evaluate the welfare loss as a function of ω, which is a proportion of
backward-looking individuals in the economy. When ω → 1 the population
becomes more and more backward-looking, χ→ 1.

When the monetary authorities are slightly conservative, ρc = 0.9, the
fiscal leadership is inferior to the monetary leadership everywhere except
for very backward looking and the very forward-looking specifications. For
the very backward-looking population, the level of inflation is very much
determined by its past values, rather than by the impact of a policy. So
there is less difference in inflation variability under the two different regimes
and lower variability of the fiscal instrument ensures superiority of the fiscal
leadership. Similarly, for the very forward-looking consumers, the shocks are
quickly eliminated from the system so the implied volatility of output and

10



all its components, including the fiscal instrument, is small. Here the fiscal
leadership becomes superior due to lower variability of fiscal expenditures,
see also Figure 5.

For the ‘Stability and Growth Pact’ scenario, the fiscal leadership is
dominated by a monetary leadership for any degree of persistence.

The last case with constrained monetary authorities is different. For our
preferred calibration with ρi = 0.5 we have that superiority of monetary
leadership is changing several times with increase in persistence. For the
very backward-looking population the difference in variability of inflation
and output falls, so the role of variability of the fiscal instrument seem to
determine overall superiority of the fiscal leadership, despite that monetary
policy is constrained. For sufficiently forward-looking population, however,
we have a mixture of effects and apriori it is not clear which dominates.
Figure 6 plots the difference between cost components of fiscal leadership
regime and monetary policy regime, a weight multiplied by the difference in
variances. With diminishing χ, the difference between inflation, output costs
all fall to zero. This should ensure the priority of the fiscal leadership as the
one with lower instrument variability. However, for the very forward-looking
consumers, the fiscal instrument is more volatile for the fiscal leadership,
than for the monetary leadership, namely this creates inferiority of the fiscal
leadership for the very small χ.
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Table 1: Welfare Losses for different penalty
Conservative CB SGP Financial Stability

M (W c
t ) M (Wt) M (Wt + ρi(∆it)

2)
F (Wt) F (G) F (Wt + ρdd

2
t ) F (Wt) F (G)

ML FL n/s ML FL ML FL n/s
w (1) (2) (3) (4) (5) (6) (7) (8)
0 1.4748 1.4748 1.5490 1.4748 1.4748 1.4748 1.4748 1.5490
1 1.4721 1.4726 1.5465 1.4762 1.4867 1.601 1.596 1.660
2 1.4701 1.4709 1.5446 1.4821 1.5014 1.652 1.647 1.719
3 1.4690 1.4698 1.5434 1.4905 1.5159 1.687 1.682 1.762
4 1.4691 1.4696 1.5430 1.4998 1.5292 1.714 1.709 1.798
5 1.4708 1.4703 1.5437 1.5094 1.5411 1.736 1.731 1.829
6 1.4744 1.4722 1.5456 1.5188 1.5517 1.754 1.750 1.856
7 1.4804 1.4756 1.5491 1.5279 1.5612 1.771 1.767 1.882
8 1.4897 1.4807 1.5543 1.5364 1.5695 1.786 1.782 1.905
9 1.5030 1.4880 1.5618 1.5444 1.5770 1.799 1.796 1.926

Notes: ML — Monetary leadership; FL — Fiscal leadership; n/s —
non-strategic;

ρi = w/10; ρd = w/100; ρc = 1− w/2;
ω = 0.5, χ = 0.7.

Table 2: Table Caption
Benevolent Conservative CB SGP Financial Stability

M(Wt) M(Wt) M (W c
t ) M(Wt) M(Wt + ρi(∆it)

2)
F(G) F(Wt) F(G) F(Wt) F(Wt + ρdd

2
t ) F(Wt) F(G)

χ n/s ML&FL n/s ML FL ML FL ML FL n/s
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

0.0 0.226∗ 0.207∗ 0.226∗ 0.207∗ 0.207∗ 0.211∗ 0.215∗ 0.220∗ 0.220∗ 0.230∗

0.1 0.310∗ 0.280∗ 0.311∗ 0.281∗ 0.281∗ 0.287∗ 0.294∗ 0.304∗ 0.304∗ 0.316∗

0.2 0.418∗ 0.373∗ 0.417∗ 0.372 0.372 0.383∗ 0.395∗ 0.417∗ 0.417∗ 0.432∗

0.3 0.573 0.506 0.571 0.504 0.504 0.523 0.541 0.598∗ 0.597∗ 0.617∗

0.4 0.745 0.657 0.740 0.654 0.655 0.681 0.707 0.820∗ 0.820∗ 0.853∗

0.5 0.975 0.875 0.969 0.869 0.871 0.907 0.939 1.122∗ 1.123∗ 1.190∗

0.6 1.227 1.132 1.221 1.126 1.127 1.168 1.203 1.412 1.410 1.507
0.7 1.549 1.475 1.545 1.470 1.471 1.509 1.541 1.736 1.731 1.829
0.8 2.020 1.976 2.017 1.973 1.974 2.002 2.027 2.186 2.180 2.257
0.9 3.086 3.067 3.084 3.067 3.066 3.079 3.095 3.207 3.202 3.254

Notes:
ML —Monetary leadership; FL — Fiscal leadership; n/s — non-strategic;

ρd = 0.05; ρi = 0.5; ρc = 0.9;
∗ — shows cases where the economy under control is indeterminate
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Figure 1: Supply shock for the ‘conservative central bank’ scenario. Solid
line denotes responses under the benevolent authorities, the dashed line
denotes responses under slightly conservative central bank, and the dotted
line denotes responses under more conservative central bank.
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Figure 2: Supply shock for the ‘Stability and Growth Pact’ scenario. Solid
line denotes responses under the benevolent authorities, the dashed line
denotes responses under small penalty on fiscal deficit, and the dotted line
denotes responses under bigger penalty on the fiscal deficit.
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Figure 3: Supply shock for the ‘Financial Stability’ scenario. Solid line
denotes responses under the benevolent authorities, the dashed line denotes
responses under small penalty on change in interest rate, and the dotted line
denotes responses under bigger penalty on change in interest rate.
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Figure 4: Demand shock for the ‘Financial Stability’ scenario. Solid line
denotes responses under the benevolent authorities, the dashed line denotes
responses under small penalty on change in interest rate, and the dotted line
denotes responses under bigger penalty on change in interest rate.
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Figure 5: Supply shocks for ‘conservative central bank’ scenario. The solid
line presents no persistence case, the dashed line presents increased persis-
tence and the dotted line shows case with high persistence.

17



0 0.2 0.4 0.6 0.8
0

2

4

6

8
x 10-4

va
r(
π )

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1
x 10-4

va
r(c

)

0 0.2 0.4 0.6 0.8
-8

-6

-4

-2

0
x 10-4

va
r(

x)

0 0.2 0.4 0.6 0.8
-2

-1.5

-1

-0.5

0

0.5

1
x 10-4

va
r(g

)

0 0.2 0.4 0.6 0.8
-5

0

5

10
x 10-5

va
r(
∆
π )

χ
0 0.2 0.4 0.6 0.8

-2

-1.5

-1

-0.5

0
x 10-4

co
v(

x,
π )

χ

Figure 6: Difference in costs components between fiscal leadership regime
and monetary leadership regume.
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A Leadership equilibria under discretion

What role is there for leadership under discretion? This question was posed
(and answered) by Cohen and Michel (1988). They made a distinction be-
tween the ability to lead within the periodicity of the model and over all
time. In their model, a continuous time one, the periodicity of the model
is infinitesimal. There is still a gain from leadership.10 Acting as a Stack-
elberg leader for all time is akin to being able to adopt a time-inconsistent
commitment strategy (see the discussion in Fudenberg and Tirole, 1991, p.
74—77). We eschew this, but indicate how a leadership role can still be mod-
elled.11 In this section we discuss the forms of model we are interested in
and set up some useful relationships before discussing the policy equilibria.
We pay careful attention to the key relationships that we use in deriving our
leadership equilibria.

A.1 A class of models

We need to set up an analytical framework. We assume a nonsingular linear
stochastic rational expectations model of the type described by Blanchard
and Kahn (1980) augmented by a vector of control instruments. Specifically,
the evolution of the economies is explained by the following system:·

Yt+1
Xt+1

¸
=

·
A11 A12
A21 A22

¸ ·
Yt
Xt

¸
+

·
B11 B12
B21 B22

¸ ·
UL
t

UF
t

¸
+

·
εt+1
0

¸
(13)

where Yt is an n1-vector of predetermined variables with initial conditions
Y0 given, Xt is n2-vector of non-predetermined (or jump) variables, UF

t and
UL
t are two vectors of policy instruments of two policymakers, F and L, of
size kF and kL respectively, and εt+1 is vector of innovations to predeter-
mined variables with covariance matrix Σ. Some of elements in Yt could be
exogenous variables, like the level of domestic debt. For notational conve-
nience we define the n-vector Zt = (Y

0
t ,X

0
t)
0 where n = n1+n2 and a vector

of control variables Ut = (U
L0
t , UF 0

t )
0.

Typically, this system represents the solved out optimisation problem for
the ultimate follower in the policy game. This player also has ‘instruments’,
represented by Xt. Rational agents when solving their optimisation problem
treat the instruments of other players parametrically. Additionally, there
is an equation explaining evolution of predetermined variable Y , so these
two equations together describe the ‘evolution of the economy’ (13). In a
canonical representation of such a system the first equation explains the
evolution of Y and the second equation describes the reaction function X.
In what follows, we will treat the second equation in this system as to an one

10Of course, in the original formulation of static policy games, this form of commitment
is all (Barro and Gordon, 1983).
11For completeness we discuss the implications for solution in Section A.6.
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explaining the behaviour of the third player. One can draw the analogy with
the behaviour of the private sector in macroeconomic models, presented by
the Euler consumption equation and the Phillips curve, see Section 2 below.

The two policymakers have the following loss functions:

JFt =
1

2
Et

∞X
s=t

βs−t(GF 0
s QFGF

s ) =
1

2
Et

∞X
s=t

βs−t( eZ 0sKF eZs) (14)

=
1

2
Et

∞X
s=t

βs−t(Z 0sQFZs + 2Z
0
sPFUs + U 0sRFUs)

JLt =
1

2
Et

∞X
s=t

βs−t(GL0
s QLGL

s ) =
1

2
Et

∞X
s=t

βs−t( eZ 0sKL eZs) (15)

=
1

2
Et

∞X
s=t

βs−t(Z 0sQLZs + 2Z
0
sPLUs + U 0sRLUs)

The vectors GF
s and GF

s are the goal variables of policymakers F and L
correspondingly, Gj

s = C eZ 0s so Kj = Cj0QjCj , j = {L,F}, where:

Kj =

· Qj Pj

Pj0 Rj

¸
, eZ 0s = (Y 0t ,X 0

t, U
L0
t , UF 0

t )
0 (16)

and the matrices KF and KL are symmetric (without loss of generality) and
contain weights on each goal. The loss function of each player can include
instrument costs of both players, but no assumptions of invertibility of Rj

are made.

A.2 Useful Relationships

In a linear-quadratic setup the optimal solution of a time-consistent feedback
policy is necessarily a linear rule. Therefore, when imposing this functional
form we do not narrow the class of possible solutions. We now derive several
useful relationships between parameters of our model.

In a leadership equilibrium, the follower treats the leader’s policy instru-
ment parametrically. We denote:

L = −∂U
F
t

∂UL
t

Therefore, the follower’s reaction function will necessarily be a rule of the
following form:

UF
t = −FFYt − LUL

t (17)

and the leader’s reaction will be:

UL
t = −FLYt. (18)
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The evolution of the system under control can be written as:·
Yt+1
Xt+1

¸
=

·
A11 −B12(F

F − LFL)−B11F
L A12

A21 −B22(F
F − LFL)−B21F

L A22

¸ ·
Yt
Xt

¸
+

·
εt+1
0

¸
.

(19)

Therefore, using either Blanchard and Kahn (1980) formula or a generalised
Schur decomposition (see, e.g., Söderlind, 1999) it is easy to find the current
value of jump variables (or the reaction of the third player):

Xt = −NYt. (20)

We can bring this representation into an equivalent form in terms of prede-
termined variables and controls (as did Oudiz and Sachs, 1985).

This implies that the following relationships always hold:

Xt+1 = −NYt+1 = −N(A11Yt +A12Xt +B1U
F
t +B11U

L
t ) (21)

= A21Yt +A22Xt +B2U
F
t +B21U

L
t

from where we can obtain:

Xt = −(A22 +NA12)
−1[(A21 +NA11)Yt

+ (B22 +NB1)U
F
t + (B21 +NB11)U

L
t ]

= −JYt −KFUF
t −KLUL

t . (22)

In the last formula:

J = (A22 +NA12)
−1(A21 +NA11) (23)

KF = (A22 +NA12)
−1(B22 +NB12) (24)

KL = (A22 +NA12)
−1(B21 +NB11) (25)

therefore the matrix N can also be determined from:

N = J −KF (FF − LFL)−KLFL. (26)

This is an important implication of the system under control. N obtained
from (20) should coincide with that from (26).

So far we have discussed properties of policy equilibria without discussing
the optimisation problems explicitly. We note that the treatment of rational
agents is that they have essentially solved an optimisation problem already
treating the behaviour of all other decision makers as parametric. However
we are able to describe their reactions to potential changes in policies by
those agents using (22).
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A.3 Method of Lagrange Multipliers

We begin by solving the relevant optimisation problems using the method
of Lagrange multipliers.

A.3.1 Follower’s optimisation problem

The follower is maximising its objective function with respect to UF
t , taking

Xt as given, but recognising dependence of Xt on UF
t . The instrument of the

leader, UL
t is given too and treated parametrically. We define a constrained

welfare loss function as:

w = Et
∞X
s=t

HF
s

where:

HF
s =

1

2
βs−t(Z 0sQFZs + 2Z

0
sPFUs + U 0sRFUs)

+ λ0s+1(A11Ys +A12Xs +B1Us − Ys+1)

with λs+1 is a vector of (non-predetermined) Lagrange multipliers. The
first-order conditions are written as:

∂HF
s

∂UF
s

+
∂Hs

∂Xs

∂Xs

∂UF
s

= 0 (27)

∂HF
s

∂Ys
+

∂HF
s

∂Xs

∂Xs

∂Ys
+

∂HF
s−1

∂Ys
= 0 (28)

∂Hs

∂λs+1
= 0 (29)

where:

∂HF
s

∂UF
s

= B012λs+1 + βs−t(PF 0
12Ys + PF 0

22Xs +RF
21U

L
s +RF

22U
F
s ),

∂HF
s

∂Xs
= A012λs+1 + βs−t(QF

21Ys +QF
22Xs + PF

21U
L
s + PF

22U
F
s )

∂HF
s

∂Ys
= A011λs+1 + βs−t(QF

11Ys +QF
12Xs + PF

11U
L
s + PF

12U
F
s )

∂Hs−1
∂Ys

= −λs

and matrices Q, P and R were partitioned conformably with Zt = (Y
0
t ,X

0
t)
0

and UF
s correspondingly. However, the non-predetermined variable Xt is

chosen given the information about the behaviour of the policymakers (26)
and the state of the economy:

∂Xs

∂Ys
= −J 0, ∂Xs

∂UF
s

= −KF 0,
∂Xs

∂UL
s

= −KL0
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This system must be solved for UF
t = −FFYt − LUL

t as function of state
variables Yt and UL

t . Then it will be substituted back into the evolution
of the system and the leader will chose its instrument optimally. We now
demonstrate how it can be done.

We first rewrite the first order conditions (27)—(29) as:

0 = (PF 0
12 −KF 0QF

21)Ys + (PF 0
22 −KF 0QF

22)Xs (30)

+ (RF
21 −KF 0PF

21)U
L
s + (RF

22 −KF 0PF
22)U

F
s + β(B012 −KF 0A012)µs+1

0 = (QF
11 − J 0Q21)Ys + (QF

12 − J 0QF
22)Xs (31)

+ (PF
11 − J 0PF

21)U
L
s + (PF

12 − J 0PF
22)U

F
s + β(A011 − J 0A012)µs+1 − µs

0 = A11Ys +A12Xs +B11U
L
s +B12U

F
s − Ys+1 = 0 (32)

here we used µs = βs−tλs. We now substitute Xt = −JYt−KFUF
t −KLUL

t

into system (30)—(32). Then it will have three variables, predetermined Yt
and non-predetermined µt and UF

t . In matrix form, the system can be
written as:·

I 0
0 ΦF22

¸ ·
Yt+1eUF
t+1

¸
=

·
ΨF
11 ΨF

12

ΨF
21 ΨF

22

¸ ·
YteUF
t

¸
+

·
ΩF1
ΩF2

¸ £
UL
t

¤
(33)

where eUF = (UF 0, µ0)0. This system is similar to (13) but with singular
matrix ΦF , because ΦF22 contains columns of zeros. Now we repeat the same
procedure as we did in equations (13)—(22). We assume that UL

t = −FLYt,
so we substitute it into equation (33) to obtain:·

I 0
0 ΦF22

¸ ·
Yt+1eUF
t+1

¸
=

·
ΨF
11 − ΩF1 FL ΨF

12

ΨF
21 − ΩF2 FL ΨF

22

¸ ·
YteUF
t

¸
(34)

As before, this equation can now be solved using the generalised Schur de-
composition, which leads to the following ralationships:

Yt+1 =MYt (35)eUt = −SYt (36)

from where it follows that:

ΦF22 eUF
t+1 = −ΦF22SFYt+1 = −ΦF22S(ΨF

11Yt +Ψ
F
12
eUF
t +Ω

F
1 U

L
t )

= ΨF
21Yt +Ψ

F
22
eUF
t +Ω

F
2 U

L
t

Therefore, we can solve for eXF
t and obtain:eUF

t = −(ΦF22SΨF
12+Ψ

F
22)
−1((ΨF

21+Φ
F
22SΨ

F
11)Yt+(Ω

F
2 +Φ

F
22SΩ

F
1 )U

L
t ) (37)

and if matrix ΦF22SΨ
F
12 + Ψ

F
22 is invertible, we get a decomposition of the

follower’s reaction on the predetermined state and the leader’s instrument:·
UF
t

µt

¸
=

· −FF

−Fµ

¸
Yt +

· −L
−Lµ

¸
UL
t (38)
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Therefore, from the final formula (38) we have UF
t = −FFYt−LUL

t and this
reaction function should be substituted in the optimisation problem for the
leader. Note that matrices KF , KL and J in system (30)—(32) are unknown.
They must be found from the iterative procedure which we will discuss later
in the text.

A.3.2 Leader’s optimisation problem

Leader takes into account the follower’s reaction function. Thus, we define
constrained loss function as:

HL
s =

1

2
βs−t(Z 0s eQLZs + 2Z

0
s
ePLUL

s + UL0
s
eRLUL

s )

+ κ0s+1((A11 −B12F
F )Ys +A12Xs + (B11 −B12L)U

L
s − Ys+1)

with κs+1 is a vector of (non-predetermined) Lagrange multipliers. Since
the feedback rule (17) is essentially static relationship, we substitute it into
objective function (15) in order to obtain matrices with tilda . Namely,
matrix (16) can be found as:

eKL = C0KLC

where matrix C translates the vector of all variables into the vector of vari-
ables relevant for the leader’s problem:

Yt
Xt

UL
t

UF
t

 =


I 0 0
0 I 0
0 0 I
−FF 0 −L


 Yt

Xt

UL
t


The feedback rule is also substituted into constraint.

Thus, our problem has collapsed to the standard problem of finding
discretionary equilibrium, see e.g., Söderlind (1999).

The first-order conditions can be written as:

∂HL
s

∂UL
s

+
∂HL

s

∂Xs

∂Xs

∂UL
s

= 0 (39)

∂HL
s

∂Ys
+

∂HL
s

∂Xs

∂Xs

∂Ys
+

∂HL
s−1

∂Ys
= 0 (40)

∂HL
s

∂κs+1
= 0. (41)
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Here:

∂HL
s

∂UL
t

= βs−t( eRLUL
s + ePL0

1 Ys + ePL0
2 Xs) + (B11 −B12L)

0κs+1

∂HL
s

∂Xt
= A012κs+1 + βs−t( eQL

21Ys + eQL
22Xs + ePL

2 U
L
s )

∂HL
s

∂Ys
= βs−t( eQL

11Ys + eQL
12Xs + ePL

1 U
L
s ) + (A11 −B12F

F )0κs+1

∂HL
s−1

∂Ys
= −κs,

∂Xs

∂UL
s

= −(KL −KFL)0,
∂Xs

∂Ys
= −(J −KFFF )0

We substitute these matrices into system (39)—(41) and obtain the following
system:

0 = ( eRL − (KL −KFL)0 ePL
2 )U

L
s + ( ePL0

1 − (KL −KFL)0 eQL
21)Ys (42)

+ ( ePL0
2 − (KL −KFL)0 eQL

22)Xs + β((B11 −B12L)
0 − (KL −KFL)0A012)νs+1

0 = ( eQL
11 − (J −KFFF )0 eQL

21)Ys + ( eQL
12 − (J −KFFF )0 eQL

22)Xs (43)

+ ( ePL
1 − (J −KFFF )0 ePL

2 )U
L
s + β((A11 −B12F

F )0 − (J −KFFF )0A012)νs+1 − νs

0 = (A11 −B12F
F )Ys +A12Xs + (B11 −B12L)U

L
s − Ys+1 (44)

where we used notation νs = βs−tκs. Additionally, we have the feedback
rule:

Xs = −JYs −KFUF
s −KLUL

s = −(J −KFFF )Ys − (KL −KFL)UL
s

that should be substituted into equations (42)—(44) which can be written in
a matrix form as:·

I 0
0 ΦL22

¸ ·
Ys+1eUL
s+1

¸
=

·
ΨL
11 ΨL

12

ΨL
21 ΨL

22

¸ ·
YseUL
s

¸
(45)

where eUL = (UL0, ν 0)0, and solved, using Schur decomposition, as:

Ys+1 =MYs (46)·
UL
s

νs

¸
=

· −FL

−F ν

¸
Ys. (47)

Equation (47) gives the optimal feedback rule UL
t = −FLYt.

A.3.3 Iterative Procedure

We start with initial approximation for policy rules, with FF
(0), F

L
(0) and L(0)

and solve the follower’s problem, using formulae (36), (38) in turn. We will
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improve FF
(1) and L(1) but not FL

(0). We then update matrices in equations
(23)-(25) and solve the leader’s problem. This will give us new best reaction
FL
(1). Then we again solve the problem for the follower to update FF

(2) and
L(2) and so on.

A.4 Dynamic Programming Approach

We turn to an alternative characterisation using dynamic programming.

A.4.1 The Follower’s Optimisation Problem

As discussed above, both policymakers implement policy using feedback
rules. The leader feeds back on the predetermined state knowing the fol-
lower’s reaction, UL

t = −FLYt. The follower observes the leader’s action
and treats it parametrically, UF

t = −FFYt − LUL
t = −(FF − LFL)Yt.

The cost-to-go from time t satisfies the following dynamic programming
equation:

Wt =
1

2
(Z 0tQFZt + 2Z

0
tPFUt + UF 0

t RFUt) + βWt+1 (48)

There is only one state variable, Y , so the welfare loss from time t should
be given by:

Wt =
1

2
(Y 0t StYt). (49)

We can substitute this into (48) and using the fact that Xt = −JYt −
KFUF

t − KLUL
t and Yt+1 = (A11 − A12J)Yt + (B1 − A12K

F )UF
t + (D1 −

A12K
L)UL

t we obtain:

Y 0t StYt = Y 0t (Q
s + β(A011 − J 0A012)St+1(A11 −A12J))Yt

+ UF 0
t (U

s0
F + β(B01 −KF 0A012)St+1(A11 −A12J))Yt

+ Y 0t (U
s
F + β(A011 − J 0A012)St+1(B1 −A12K

F ))UF
t

+ UL0
t (U

s0
L + β(D0

1 −KL0A012)St+1(A11 −A12J))Yt

+ Y 0t (U
s
L + β(A011 − J 0A012)St+1(D1 −A12K

L))UL
t

+ UF 0
t (β(B

0
1 −KF 0A012)St+1(B1 −A12K

F ) +Rs)UF
t

+ UF 0
t (β(B

0
1 −KF 0A012)St+1(D1 −A12K

L) + P s0)UL
t

+ UL0
t (β(D

0
1 −KL0A012)St+1(B1 −A12K

F ) + P s)UF
t

+ UL0
t (β(D

0
1 −KL0A012)St+1(D1 −A12K

L) + T s)UL
t (50)
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where:

Qs = QF
11 −QF

12J − J 0QF
21 + J 0QF

22J,

Us
F = J 0QF

22K
F −QF

12K
F + PF

12 − J 0PF
22,

Us
L = J 0QF

22K
L −QF

12K
L + PF

11 − J 0PF
21,

Rs = KF 0QF
22K

F +RF
22 −KF 0PF

22 − PF 0
22K

F ,

P s = KL0QF
22K

F −KL0PF
22 +RF

12 − PF 0
21K

F ,

T s = KL0QF
22K

L −KL0PF
21 − PF 0

21K
L +RF

11.

Now, we can substitute the reaction rules (17) and (18) in (50) to obtain
recursive equations for St:

St = T0 + βT 0St+1T (51)

where:

T0 = Qs + FF 0RsFF + FL0L0RsLFL + FL0TsFL

− FF 0Us0
F − Us

FF
F − Us

LF
L − FL0Us0

L + Us
FLF

L + FL0L0Us0
F

− FL0L0P 0sF
L − FL0PsLFL − FF 0RsLFL − FL0L0RsFF

+ FF 0P 0sF
L + FL0PsFF

T = (A11 −A12J)− (B12 −A12K
F )FF

+ ((B12 −A12K
F )L− (B11 −A12K

L))FL

while the feedback rule can be determined from (50) by differentiating the
loss function with respect to UF

t :

UF
t = −(Rs + β(B012 −KF 0A012)St+1(B12 −A12K

F ))−1(Us0
F

+ β(B012 −KF 0A012)St+1(A11 −A12J))Yt

− (Rs + β(B012 −KF 0A012)St+1(B12 −A12K
F ))−1(P s0

+ β(B012 −KF 0A012)St+1(B11 −A12K
L))UL

t

= −FFYt − LUL
t

from where:

FF = (Rs + β(B012 −KF 0A012)St+1(B12 −A12K
F ))−1(Us0

F (52)

+ β(B012 −KF 0A012)St+1(A11 −A12J))

L = (Rs + β(B012 −KF 0A012)St+1(B12 −A12K
F ))−1(P s0 (53)

+ β(B012 −KF 0A012)St+1(B11 −A12K
L))

These two formulae give an update on FF and L.
These three formulae (51), (52) and (53) are an analogue of the Oudiz

and Sachs (1985) recursive procedure which can be easily programmed.
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A.4.2 The Leader’s Optimisation Problem

This part of optimisation is the standard Oudiz and Sachs (1985) procedure
for two players with the optimisation problem of where the system under
control evolves:·

Yt+1
Xt+1

¸
=

·
A11 −B12F

F A12
A21 −B22F

F A22

¸ ·
Yt
Xt

¸
+

·
B11 −B12L
B21 −B22L

¸ £
UL
t

¤
+

·
εt+1
0

¸
(54)

and the loss function is determined by:

eKL = C0KLC
where matrix C translates the vector of all variables into the vector of vari-
ables relevant for the leader’s problem:

Yt
Xt

UL
t

UF
t

 =


I 0 0
0 I 0
0 0 I
−FF 0 −L


 Yt

Xt

UL
t


and eKL is partitioned conformally with (Y 0t ,X 0

t, U
L0
t )

0. This problem can
be solved using the dynamic programming procedure explained in detail in
Söderlind (1999).

A.4.3 Iterative Procedure

We start with an initial guess of FF
(0), F

L
(0) and L(0) and solve the optimisation

problem for the follower. We also need initial approximation for N(0) and
S(0). The iteration involves computing reaction function N(1) and the value
function S(1). This improves FF

(1) and L(1) but not, of course, FL
(0). We

then compute new matrices using (54) and solve the problem for the leader
that takes into account the reaction of the follower and the evolution of the
economy. This will give us new best reaction FL

(1). Then we again solve the

problem for the follower to update FF
(2) and L(2) and so on.

A.5 Lagrange Multipliers vs. Dynamic Programming

This iterative procedure which uses Lagrange multipliers involves finding
N and FF , FL, L using (36), (38) and (47). Different from the dynamic
programming algorithm, the value function S is not computed. As this al-
gorithm involves eigenvalue decomposition such as Schur decomposition, it
is important that all approximations of policy rules deliver the saddle-path
stability of the system, otherwise there is a wrong number of stable and
unstable roots and the algorithm will stop. Clearly, it is not always possible
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to ensure. However, in our experiments the Lagrange multipliers algorithm
was converging faster than the dynamic programming algorithm in terms
of computational time. In fact, in many cases, the dynamic programming
algorithm also requires a reasonable starting values for N and S. While
S can be computed iteratively when solving Riccati equation, N still has
to be obtained using matrix inversion as in Blanchard and Kahn (1980),
using initial approximations to FF , FL and L. Therefore, the same problem
of finding a good prior which ensures saddle-path stability also remains for
the dynamic programming approach. There is an advantage of Lagrange
multipliers approach in that it conveys the underlying information struc-
ture, and allows us to interpret discretionary the equilibrium as a feedback
Stackelberg one, with a very clear treatment of the third player as the ulti-
mate follower. For most complicated problems these two approaches should
probably be used together, especially in order to check that both of them
converge to the same equilibrium. We have seen that for some problems the
dynamic programming algorithm was converging to the wrong point (not
welfare maximising). The Lagrange multipliers approach was necessary to
check the solution.

A.6 Discretion, Commitment and Leadership

Dixit and Lambertini (2003) discuss two leadership equilibria when one of
the players can precommit and the other acts under discretion. They find
that the solution is exactly the same as when both players act with discre-
tion. However, they consider a static game. In the dynamic game which we
consider, the equivalent equilibria cannot be calculated.

Indeed, suppose the leader can precommit for all periods. In our setup
this mean that the optimal policy for the leader will be to feed back on the
predetermined state Yt and the state of predetermined Lagrange multipliers,
say Λt. The follower observes the leader’s decisions and should react with
UF
t = −FFYt−LUL

t . Then the evolution of the system under control should
be written: Yt+1

Λt+1
Xt+1

 =
 Ã11 (B12LF

Λ −B11F
Λ) A12

S1 S2 0

Ã21 (B22LF
Λ −B21F

Λ) A22

 Yt
Λt
Xt

+
 εt+1

0
0


where Ã11 = A11 −B12(F

F − LFM)−B11F
M and Ã21 = A21 −B22(F

F −
LFM)−B21FM and the second line explains evolution of the predetermined
Lagrange multipliers. Immediately from here it is clear that if one of the
followers acts in a time-consistent way it should feed back on both sets of
predetermined variables, Xt = −N1Yt − N2Λt or UF

t = −FFYt − LUL
t =

−(FF − LFL)Yt + LFΛΛt. The welfare function (49) should depend on
(Y 0t ,Λ0t)0. Thus, any followers necessarily also react to Λt as this reflects the
leader’s behaviour.
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The importance of this is illustrated by what could sometimes described
as the difference between a levels bias and so-called stabilisation bias. In
the static game set up (for example the two ‘player’ Barro and Gordon
(1983) one) the resulting equilibrium manifests a suboptimal level solution
(in that case an inflationary bias) whereas in dynamic games there is a
different source of suboptimality, such that disturbances are rejected less
well than under the optimal plan, the stabilisation bias. But the optimal
plan is also time inconsistent and so would usually be ruled out. However,
it is completely different to the Dixit and Lambertini (2003) example. The
ability to precommit in our example would generate a completely different
optimisation problem, and the resulting equilibrium would not coincide with
the ‘all players act with discretion’ case.

B Model Parameters

The Phillips curve can be derived as :

πt = (1− χ)βπt+1 + χπt−1 + κcct + κx0xt + κx1xt−1 + εt (55)

where

χ =
ω(1 + γβ)

γ(1− ω) + ω(1 + γβ)
, κx0 =

(1− ω)(1− γβ)(1− γ)

(γ(1− ω) + ω(1 + γβ))(ψ + �)
,

κx1 =
ω(1 + γβ)(1− γ)

γ(1− ω) + ω(1 + γβ)
δ, κc =

(1− ω)(1− γβ)(1− γ)ψ

(γ(1− ω) + ω(1 + γβ))(ψ + �)σ

where γ is probability that wage contract is not renewed, ω is proportion of
rule-of thumb price-setters (Steinsson (2003)) and δ is coefficient on demand
pressure in price-setting rule for the rule of thumb price-setters. Coefficients
σ and ψ are parameters of utility terms u(Cs, ξs) and v(hs(z), ξs) corre-
spondingly (see Steinsson (2003), the notation is standard).

The one-period social loss function can be derived as:

Wt =
ψ(1− γβ)(1− γ)

�(�+ ψ)γ

µ
θ
1

σ
c2t + (1− θ)

1

σ
g2t +

1

ψ
x2t

¶
+ π2t (56)

+
ω

(1− ω)γ
(∆πt)

2 +
ω(1− γ)2δ2

γ(1− ω)
x2t−1 + 2

(1− γ)ωδ

(1− ω)γ
xt−1∆πt

where 1− θ is the size of the government sector in the economy, G/Y .
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