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Abstract

This paper investigates whether monetary policy accounts for the changes in the output and

inflation process observed in the US over the last 25 years. It estimates a structural Bayesian TVC-

VAR with MCMC methods where sign restrictions are used to identify monetary policy shocks and

analyzes the transmission of two types of disturbances: those to the non-systematic and those to

the systematic component of monetary policy. Dynamic analysis is implemented using the difference

between two conditional expectations of future realizations of the vector of time series differing for

a shock in the conditioning sets. We find that there are structural variations in both the coefficients

of the model and the variance of the structural shocks but that the transmission of monetary policy

disturbances has hardly changed over the last 25 years. Changes in the systematic component of

policy have also negligible changes in the dynamic of the system. Changes in inflation persistence

have also little connection with the dynamics of monetary policy. Results are robust to a number of

alterations to the model.
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1 Introduction

There is considerable evidence suggesting that the US economy has changed fundamentally
over the last couple of decades. In particular, several authors have noted a marked decline in
the variance of real activity and inflation since the early 1980s (see e.g. Blanchard and Simon
(2000), McConnelly and Perez Quiroz (2001) and Stock and Watson (2003)). What are the
reasons for such a decline? A stream of literature attributes these changes to changes in the
mechanisms through which exogenous shocks spread through the economy and propagate
over time. Since the transmission mechanism depends on the structure of the economy, the
main implication of this point of view is that the underlying characteristics of the economy
have evolved over time. Several factors which could be behind these changes, for instance,
changes in the behavior of consumers and firms or changes in the policy rules adopted by
the government. Particular attention has been paid to monetary policy. Several studies
(see e.g. Boivin and Giannoni, (2002a), (2002b), Clarida, Gali and Gertler (2000), Cogley
and Sargent (2001) (2003)) have argued that monetary policy was ”loose” in the 1970s
but had become more aggressive against inflationary pressures since the early 1980s and
see in this change the reason for the observed reduction of inflation and output volatility.
This view, however, is far from unanimous. For example, Bernanke and Mihov (1998),
Orphanides (2001), Leeper and Zha (2003) find little evidence of significant changes in the
policy rule used over the last 25 years and in the propagation of monetary shocks to the
economy while Hanson (2001) claims that changes in the dynamics of output and inflation
are mainly due to changes occurred in the rest of the economy, thus limiting the importance
of monetary policy in accounting for these difference. Finally, Sims (2001) and Sims and
Zha (2001) find that changes in the variance of exogenous shocks (and, in particular, of
monetary policy innovations) account for a substantial portion of the observed changes in
output and inflation variance.

This debate is not new. Rational expectations econometricians (e.g. Sargent (1984)) of-
ten argued that policy changes involving regime switches dramatically altered the dynamics
of private behavior and therefore of the macroeconomic variables and search for historical
episodes supporting the arguments (see e.g. Sargent (1999)). VAR econometricians, on
the other hand, often denied the empirical relevance of the argument suggesting that the
systematic portion of monetary policy has never really switched, at least in the US, and
that policy changes were due different draws of the non-systematic part (Sims (1982)). The
debate now has been cast into the dual framework of ”bad policy” (failure to respond to
inflationary pressure) vs. ”bad luck” (policy shocks are drawn from a distribution whose
second moments vary over time) and found new vigor thanks to the development of tools
which can explicitly allow to examine time variations in the structure of the system and in
the variance of the exogenous processes and the timing of the changes. Overall, and despite
the recent contributions, the question of why the US economy has changed and the role of
monetary policy shocks in shaping these changes is still open.

This paper enters the debate and provide new evidence on these issues examining time
variations in the US economy from a structural point of view, analyzing the impact of time
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variations on the propagation mechanism of policy shocks and of shocks to the systematic
component of policy (changes in policy preferences) and assessing the robustness of the
conclusions to a number of changes in the model.

The reduced form model we employ is a time varying coefficients VAR model (TVC-
VAR) similar to the one employed by Cogley and Sargent (2001) and (2003). The model
has a useful state space representation model where the vector of endogenous variables,
which includes output, inflation, the federal funds rate and nominal balances has a VAR
representation and the time varying coefficients, treated as hidden states variables, evolve
according to a nonlinear transition equation which puts zero probability to paths whose
associated VAR roots are explosive. Cogley and Sargent (2003) add to this structure a
stochastic volatility model for the reduced form innovation. We do not follow their approach
here: an heteroskedatic representation for the forecast error of the reduced form model is
directly produced via time-variations in the coefficients. We choose this approach for two
main reasons. First, as shown in Canova (1993) such a framework can account for a variety
of non-normalities and second moment non-linearities which the literature has found to be
empirically important. Second, the framework retains a conditional linear structure which
facilitate the derivation of posterior estimates of the structural coefficients of the model
substantially cuts down computational costs of the model.

Our estimation methodology which is based on MCMC methods is similar to the one
of Cogley and Sargent but our analysis differ from their in several respects. First, we use
a structural version of the model to conduct inference. Second, we explicitly study the
variations in the propagation mechanism to monetary policy disturbances as opposed to
relating the timing of reduced form changes. Third, we analyze both short run and long
run features of the model and quantify the importance of monetary policy to the observed
changes.

The structural setup we use is particularly convenient because it allows us to directly
address one of the main questions of the debate: are changes due to changes in the systematic
component of policy, to changes in the propagation mechanism of policy or to changes in the
variance of the shocks hitting the economy. In fact, we are able to distinguish changes the
structure in the economy from changes in the variance of the shocks and, more importantly,
we can separately investigate the effect of shocks to the systematic part of monetary policy
(which affect the economy because coefficients evolve over time) and to the unsystematic
part of monetary policy (which may affect the dynamics even when the systematic part
of policy is unchanged) and to measure their importance in accounting for the observed
changes in the output and inflation process.

Structural time variations in the TVC-VAR model are obtained identifying structural
disturbances to the VAR via sign restrictions as in Faust (1998), Uhlig (1999) and Canova
and De Nicolo’ (2002). While in this paper we concentrate on monetary policy disturbances
and therefore refrain to give a name to the other disturbances, the methodology can be used
to jointly identify multiple sources of disturbances so long as theory produces robust sign
implications for the dynamics of the variables of the system in response to these shocks. It
is important to stress that we chose a sign restriction approach to identification, as opposed
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to a more standard Choleski or short run based approach, for two reasons. First, the zero
restrictions used to identify these systems are not often present in the models economists
currently use. Second, a Choleski decomposition imposes strongly restriction on the struc-
ture of time variations in the structural model. In particular, it forces changes to occur
only in the lagged structural coefficient (no changes are allowed in the contemporaneous).
In the robustness exercises we conduct, we however show that the our conclusions about
time variations in the model do not depend on the identification procedure we use.

Because the presence of time varying coefficients induces important non-linearities in
the dynamics of the model, analyses based on standard impulse responses and variance
decompositions are inappropriate. In particular, since at each point in time the coefficient
vector is hit by a specific shock, assuming that between T+1 and T+K no shocks other than
the monetary policy disturbance hits the system does not make much sense and can give
misleading conclusions. To study the evolution the economy responses to structural shocks
we therefore employ a different concept of impulse responses, which shares similarities to
the one used in Koop, Pesaran and Potter (1996), Koop (1996) and Gallant, Rossi and
Tauchen (1996), and it is more appropriate in a setup like ours where coefficients may vary
over time. In particular, impulse response functions are defined as the difference between
two conditional expectations which differ in their conditioning sets.

Our results reconcile, in part, existing views and offer important new evidence on the
issue. In particular, we find that there are some significant time variations in some of the
coefficients of the reduced form model, in particular the inflation and the money equations;
that time variations also appear in the structural representation of the system; that the
largest time variations occur up to 1986 and that the variance of the structural shocks (and
of the structural forecast errors of the model) has changed (declined) dramatically over
time.

However, we find little correspondence in the timing of the variations observed in the
structural coefficients of the inflation and output equations and those in the monetary policy
equation, little correspondence which also carry out to measures of inflation persistence.
We also find that the propagation of monetary disturbances has not much changed over the
sample under consideration, and that changes in the systematic component of monetary
policy hardly account for the observed changes in inflation and output. Taken together,
these results indicate that the contribution of monetary policy to the observed structural
changes is probably minor, that ”bad luck” is probably responsible for a large portion of
difficulties experienced by the US economy in the 1970s and that, as in Hanson (2001),
changes in the transmission of other structural shocks may explain the pattern we found.

We argue that difference between our results and those existing in the literature primarily
to three factors (i) the use of reduced form vs. structural models; (ii) the use of subsamples
with fixed coefficients as opposed to explicit TVC models; (iii) the inappropriate use of
subsample evidence to infer the nature of the changes. The use of short vs. long run
statistics; of univariate vs. multivariate methods and of different model specifications may
also partially be responsible for the different outcomes present in the literature.

The rest of the paper is organized as follows. Section 2 presents the reduced form model,
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describes our identification scheme and the computational approach used to obtain posterior
distributions of the structural coefficients of the model Section 3 defines impulse response
functions which are valid in our TVC model and describes how to compute dynamics to
shocks in the non-systematic and the systematic component of the model. Section 4 presents
the results and Section 5 concludes. A series of appendices describes the technical details
involved in the computation of posterior distributions and of impulse responses.

2 The Model

Let yt be a 4× 1 vector of time series including (linearly) detrended real output, inflation,
the federal funds rate and nominal balances with the representation

yt = A0,t +A1,tyt−1 +A2,tyt−2 + ...+Ap,tyt−p + εt (1)

where A0,t is a n × 1 vector, Ai,t, for i = 1, ..., p are n × n matrices of coefficients and
εt is a n × 1 Gaussian white noise process with zero mean and covariance Σt. Let At =
[A0,t, A1,t...Ap,t], x0t = [1n, y0t−1...y

0
t−p], where 1n is a row vector of ones of length n, let vec(·)

denote the stacking column operator and let θt = vec(A0t). Then yt can be written as

yt = X
0
tθt + εt (2)

where X 0
t = (In

N
x0t) is a n× (np + 1)n matrix, In is a n× n identity matrix, and θt is a

(np + 1)n × 1 vector. If we treat θt as a hidden state vector, equation (2) represents the
observation equation of a state space model. We assume that θt evolves according to the
following nonlinear transition equation

p(θt+1|θt,Ωt) ∝ I(θt+1)f(θt+1|θt,Ωt) (3)

where f(θt+1|θt, Vt) = N(θt,Ωt) and I(θt+1) is an indicator function discarding explosive
paths for yt. Such an indicator is necessary to make dynamic analysis sensible and, as we
will see below, it is easy to implement numerically.

We represent f(θt+1|θt,Ωt) as

θt+1 = θt + ut+1 (4)

where ut is a (np + 1)n × 1 Gaussian white noise process with zero mean and covariance
Ωt. We select this specification because more general AR and mean reverting structures
produced very similar results.

We make three assumptions. First, we set Σt = Σ ∀t; second we assume corr(ut, εt) = 0,
third we specify Ωt to be diagonal. These assumptions may, at first sight, appear to be re-
strictive but they are not. For example, the first assumption does not imply that the
forecast errors of the model are homoskedastic. In fact, substituting 4 into we have that
yt = X

0
tθt−1+et where et = εt+X 0

tut. Hence, an heteroskedastic structure appears without
assuming that Σt or Ωt vary over time. Note that the assumed heteroskedastic structure
is appealing since variations in the variance of the forecast errors are due to changes in
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the variance of the regressors. Since we are analyzing a system where the variance of in-
flation and output are potentially varying and since output and inflation are regressors
of the model, this seems a reasonable starting point for the analysis (see Sims and Zha
(2002) or Cogley and Sargent (2003) for alternative specifications). The second assump-
tion is somewhat stronger and implies that the dynamics of the model are conditionally
linear. 1. Sargent and Hansen (1998) showed how to relax this assumption by letting the
innovations of the measurement equation to be serially correlated. Since in our setup ε
is by construction a white noise, the loss of information caused by imposing uncorrelation
between the shocks is likely to be small. The third assumption implies that each element
of θt evolves independently. This assumption dramatically simplifies the computations and
it is irrelevant for the outcomes of the estimation process since, as shown below, structural
coefficients evolve in a correlated manner.

Let S be the square root of Σ, i.e., Σ = SS0. Since Σ is time invariant, then S is
time invariant. Let Ht be an orthonormal matrix such that HtH 0

t = I and let K−1
t =

H 0
tS
−1. Kt is a particular decomposition of Σ which transforms 2 in two ways: it produced

uncorrelated innovations; it gives a structural interpretation to the system of equation (2)
2. Premultiplying yt by K−1

t we obtain

K−1
t yt = K

−1
t A0,t +

X
j

K−1
t Aj,tyt−j + et (5)

where et = K−1
t εt satisfies E(et) = 0, E(ete0t) = In. Equation (5) represents the class of

”structural” representations of yt we are interested in: a standard Choleski representation
can be obtained setting S to be lower triangular and Ht = In. Here Ht is a rotation matrix
which implement particular economic restrictions.

Letting Ct = [K−1
t A1t...K

−1
t Apt], and γt = vec(C

0
t), (5) becomes

K−1
t yt = X

0
tγt + et (6)

As in standard fixed coefficient VARs there is a one-to-one relation between γt and θt since
γt = (K

−1
t

N
Inp)θt where Inp is a (np+1)×(np+1) identity matrix. Whenever I(θt+1) = 1,

we also have
γt+1 = γt + ηt+1 (7)

where ηt = (K
−1
t

N
Inp)ut, the vector of shocks to structural parameters, satisfies E(ηt) = 0,

E(ηtη
0
t) = E((Kt

N
Inp)utu

0
t(Kt

N
Inp)

0).
Hence, the vector of structural shocks ξ0t = [e0t, η0t]0 is a white noise process with zero

mean and covariance matrix Eξtξ
0
t = Ξ =

"
In 0

0 E((Kt
N
Inp)utu

0
t(Kt

N
Inp)

0)

#
. Hence,

shocks to structural parameters are no longer independent (each element of γt depends on

1This means, for instance, that we can not study whether shocks of different sign or of
different magnitude have different dyanmic effects on the system.

2Ht is time dependent since it can be a stochastic function. In this case we assume that
is independent of εt
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several uit via Kt). In particular, it can be shown that when a shock in some coefficients
occurs, all the coefficients of the same variable at the same lag in all the equations move.

It is important to stress that the model (6)-(7) contains two types of structural shocks:
disturbances to the observations equations, et, and disturbances to structural parameters,
ηt. While the former have the same interpretation as those in a fixed coefficients VARs, the
second are different and new. To understand their meaning, suppose that the n−th equation
of (6) is the monetary policy equation and split it into a systematic component, which
is characterized by γ̃t = [γ(n−1)(np+1),t, ..., γn(np+1),t]

0 and which describes how monetary
policy rule responds to the economy, and the non-systematic component, which consist of
the policy shock en,t. Then, innovations in the coefficients of the systematic part of the
monetary rule can be interpreted as changes in the preferences of the monetary authorities
or generic variations in the reaction of monetary authorities to developments in the rest of
the economy.

Identifying structural shocks is equivalent to choosing a Ht. Here as in Faust (1998),
Canova and De Nicoló (2002) and Uhlig (2001), we select Ht so that the sign of the impulse
response functions at t + j, j = 1, 2, . . . , J matches some theoretical restriction. We have
experimented with two types of restrictions: a monetary policy shock must generate (i)
non-positive effects on output and inflation and a non-negative effect on the interest rate
for the first J quarters after the shock; (ii) a liquidity effect (a positive effect on the interest
rate and a fall in nominal money) for at least J quarters. Since main trust of the results is
independent of which identification we use we only report the last one.

We choose sign restrictions to identify shocks to the observation equation, since more
standard identification schemes have an undesirable property. Take, for example, a Choleski
decomposition. Since Σ is time invariant, also its Choleski factor S is time invariant. Hence,
since Ht = I, the contemporaneous effects of a monetary policy shock are time-invariant.
That is , the impulse response functions will display constant contemporaneous effects no
matter what point in time we choose to compute it. With this setup, time variations in
impulse responses can appear only if there are variations in the lagged coefficients of the
reduced form model.

Our identification approach does allow for time variations in the contemporaneous ef-
fects. In fact, by restricting the sign of the impulse for at least two period we make Ht
depend on the conditional distribution of the states one period ahead 3. For sensitivity
analysis we report, in the last section, responses obtained letting policy shocks to be the
third element of a Choleski system, i.e. we let monetary policy reacts to output and inflation
movements but assume that it has no contemporaneous effects on these variables.

Since we focus on the identification of one shock only, we diagonalize the remaining
disturbances without giving them any structural interpretation (see Canova and De Nicoló
(2002) for the identification of more than one shock via sign restrictions). Appendix A
describes the details of the implementation of sign restrictions in our TVC-VAR model.

3If the parameters are time-varying, the conditional means of the coefficients will also be
time-varying and therefore Ht must vary over time therefore making the contemporaneous
effects Kt vary over time
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3 Impulse Responses

Our study of the effects of monetary policy is largely based on impulse response analysis.
In a fixed coefficient model, impulse response functions measure the effects of a shock on
future values of a variable yi relative to some benchmark. The most common type of
impulse responses involves the difference between two realizations of yi,t+τ , τ = 1, 2, ldots:
these realizations are identical up to time t but one assumes that between t+1 and t+ τ a
shock in ejhas occurred at time t+ 1 and the other that no shocks have occurred between
t+ 1 and t+ τ .

In TVC-VAR impulse responses computed this way are inappropriate since they disre-
gard the fact that between t + 1 and t + τ the coefficients of the system can also change.
Therefore, we need impulse response functions designed measure the effects on yit+τ of a
shock in ej,t+1, given an history and the parameters, which allow ηt+τ , k = 1, . . . to be non-
zero. Here impulse response functions are the difference of two conditional expectations
of yt+τ one conditional to a particular history, the states, the structural parameters of the
transition equation and a shock; the second conditional only a particular history, the states
and the structural parameters.

Formally speaking, let yt = [y01, ...y0t]0 be a history for yt+1; θt = [θ01, ...θ
0
t]
0 be a trajectory

of states up to t. Also, let yt+τt+1 = [y
0
t+1, ...y

0
t+τ ]

0 denote a collection of future observations
and θt+τt+1 = [θ

0
t+1, ...θ

0
t+τ ]

0 a future trajectory of states from t + 1 up to time t + τ . Then,
letting V = (Σ,Ω), an impulse response function to a shock ξi,t+1, i = 1, . . . , n for each
τ = 1, . . . , T is defined by:

IRy(τ , y
t, θt, V,Kt, ξi,t+1) = E(yt+τ |yt, θt, V,Kt, ξi,t+1)−E(yt+τ |yt, θt, V,Kt) (8)

Our impulse response function resembles the one used by Gallant et al. (1996), Koop et
al. (1996) and Koop (1996). Two important differences need to be noted. First, rather than
treating histories as random variables, we condition on a particular realization. Since the
scope of the study is to analyze how responses vary over time, we want impulse responses to
be history dependent (we do not care if responses at t are representative or not of the typical
responses over the sample). Second, our impulse response measures are independent of the
sign and the size of the shocks (as it is in the standard case). This is due to our assumption
which make shocks to the observation and the transition equations uncorrelated. We could
in principle relax such an assumption. However, in our context allowing for asymmetry and
size dependence make computations demanding and since we are interested in comparing
responses over time, normalization of the size of the shock at each t is not particularly
restrictive.

Some features of our impulse responses are worth some discussion. First, in (8) history
and the shocks are fixed, but parameters are treated as random variables. That is, IRy
is a random variable since different draws of θt, Ht and V produce different realizations of
IRy. Second, IRy is history dependent and can be make state dependent, for example,
conditioning on a particular stretch of a history (a boom or a recession). Third, in (8)
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we make no explicit assumptions about future. Since conditional expectations average
out future shocks, the IRy we compute is an average of what might happened, given the
present and the past. Finally, note that when coefficients are constant, (8) coincides with
the standard impulse response definition.

Since there are two types of shocks in our system, we describe how to trace out the
effects of shocks of the two types of shock separately.

Let ξi,t+1 = ei,t+1. Then, as shown in Appendix B, IRy are

IRy(τ , y
t, θt, V, ei,t+1,Kt) = E(Ψit+τ ,τ−1|yT , θt, V,Kt)ei,t+1 (9)

for τ = 1, ...T.

whereΨt+τ ,τ is a nonlinear combination of the structural parameters of the model ( precisely
defined in Appendix B) and Ψit+τ ,τ is ith column corresponding to the ith shock. Note that
(10) collapses to IRy(τ , yt, θt, V, et) = Ψiτ when coefficients are constant, where Ψτ is the
coefficient of et−τ in the MA representation of the constant coefficient VAR. Clearly IRy
depends on the identifying matrix Kt. Furthermore, since Ψt+τ ,τ is the product of matrices
whose eigenvalues are non-explosive, IRy are non-explosive.

Let ξi,t+1 = ηj,t+1 for j = (n− 1)(np + 1), ..., n(np+ 1). In Appendix A we show that
for τ = 1 IRy is

IRy(1, y
t, θt, V, ηj,t+1,Kt) = E(At+1,1|yt, θt, V, ηj,t+1)yt −E(At+1,1|yt, θt, V )yt (10)

and for τ = 2, ..., T IRy is

IRy(τ , y
t, θt, V, ηj,t+1,Kt) = E(Φ̃t+τ ,τ |yt, θt, V, ηj,t+1)yt −E(Φ̃t+τ ,τ |yt, θt, V )yt

+ E

Ã
kX
i=1

Φt+τ ,jA0,t+τ−i|yt, θt, V, ηj,t+1

!

− E

Ã
kX
i=1

Φt+τ ,jA0,t+τ−i|yt, θt, V
!

(11)

where A is the companion matrix of the VAR and Φ is defined in the appendix.
When a shock hit the systematic component of policy, IRy depend on Kt because

ut = (K
−1
t

N
Inp)

−1ηt). Also in this case, IRy are non explosive.

4 Estimation

The model is estimated using Bayesian methods. That is, we specify prior distributions for
θt, V and Ht and use the data up to t to compute posterior estimates of the structural
parameters of the model. Since our sample covers data from 1960 to 2002, we initially
estimate the model for the sample 1960:1-1978:3 and then reestimate it moving the terminal
date by one quarter from 1978:4 to 2002:4

Posterior distributions for the parameters are not available in a closed form. Therefore,
Markov Chain Monte Carlo methods are used to simulate sequences of parameters from
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the posterior distributions which consistent with the information up to time t. Estimation
of reduced form TVC-VAR models with or without time variations in the variance of the
shocks to the transition equation is now standard (see e.g. Cogley and Sargent (2001) or
Canova (2004)): it simply requires treating the time varying parameters as a block in the
Gibbs sampling algorithm. Therefore, in each cycle of the Gibbs sampler, one would run
the Kalman filter and the Kalman smoother, conditional on the draw of the other time
invariant parameters. In our setup the calculations are complicated by the fact that at each
cycle, we need to obtain structural estimates of the time varying features of the model.
This means that we need to apply at each step the identification scheme, discarding paths
which are explosive and paths which do not satisfy the restrictions we impose. While this
complicates the Gibbs sampler loop, and dramatically reduces the number of draws available
for inference, it is relatively straightforward to implement and not very time consuming.

Because of the heavy notation and the technicalities involved, we present the details of
the estimation in appendix C.

5 The Results

All the data we use is taken from the FREDII data base of the Federal Reserve Bank of
San Louis. In our four variable system we use: the log of detrended (linear) real GDP, the
log of first difference of GDP deflator, the federal funds rate and M1. We present impulse
responses for seven specific dates, 1978:III, 1981:III, 1983:III, 1987:III, 1992:III, 1996:III and
2002:IV, which could represent turning points in the way monetary policy was conducted.
The first two dates should account for the Volker monetary targets experiments and the
third for the transition period from high to low inflation; 1987 corresponds to the first stock
market crash after Greenspan took office; 1992 is the year of Clinton election and 1996
represents the time the substained productivity growth experienced by the US economy
became evident.

While the data we used represents revisions as of 2003:2, there is a sense in which the
analysis we conduct is in real time. In fact, when we compute the effects of a contractionary
policy shock we do so with the data available at that time. In other words, we are not
computing responses at intermediate dates in the sample using end-of-the-sample estimates,
but at each t, use recursive estimates obtained with information up to that point in time.

We divide the presentation of the results around four general themes: (i) Are there
changes in the structural coefficients of the model? When do they occur? Is there a
synchronization in the changes of the coefficients of inflation and output with monetary
policy? Are there changes in the variances of the structural shocks? When do they occur?
(ii) Are there changes in the propagation of disturbances to the monetary policy equations?
(iii) Are there changes in the systematic component of policy? Do disturbances to the
systematic component of policy account for the observed changes in output and inflation
equations? (iv) Are results robust to (a) the horizon we consider, (b) the variables included
in the system, (c) the identification restrictions used?

10



5.1 Are there time variations in the structural model?

The upper panel of figure 1 presents the evolution of the structural coefficients of each
equation of the model and in the bottom panel the change in the coefficients at each date
in the sample. The first date corresponds to estimates obtained with the information up
to time 1978:3, the last one to estimates obtained with the information up to time 2002:4.
We report the conditional mean of the posterior distribution of the structural coefficients
obtained with the Gibbs sampler and our basic identification scheme (monetary policy
shocks are identified as those producing a liquidity effect for at least 2 quarters).

Three features of the picture needs to be emphasized. First, the coefficients of all four
equations evolve over time, but the size of the changes differ across equations. For example,
the variations observed in the coefficients of the output equation are up to six times larger
than the variations observed in the coefficients of the inflation equation and cumulatively
variations in the coefficients of output and money equations are of an order of magnitude
larger than in the other two equations. Time variations in the point estimates are at times
large and both statistically and economically significant, confirming the inherent instability
of the structural relationships in the US economy over the 25 years under consideration. Sec-
ond, although most the variations are concentrated in the first part of the sample (between
1978 and 1986), changes are not synchronized across equations and the largest changes typ-
ically occur at different dates, and overall, the pattern of time variations is different. For
example, the inflation equation experienced the largest coefficient changes at the beginning
of the 1980’s; coefficient variations is reduced since 1984 and shows a substantially stable
pattern thereafter while the coefficients of the interest rate equation changes through the
sample and the maximum changes occur in 1981 and 1996. The output equation, on the
other hand, displays two regimes of coefficient variations (high up to 1986 and low there-
after), but within the high volatility regime, the largest coefficient variations occur in 1986.
Finally, the money equation (our monetary policy equation) display large changes up to
1986 and a more stable pattern thereafter. Third, and related to the above, the variations
in the structural coefficients of the output and inflation equations are asynchronous and do
not match those observed in the interest rate equation.

Figure 2 zooms in on few coefficients of the monetary policy equation and highlight the
variations in the lagged inflation coefficients. Clearly, from 1979 to 1982 there was a six
fold-increase in the first lagged coefficient of inflation, confirming that during this period the
systematic component of monetary policy did become more aggressive. However, from figure
1, it is clear that there instability is pervasive not simply related to inflation coefficients.
For example, the increase first lagged output coefficient is even larger (red line in figure 1).
We will return on this issue later when we examine whether it would have made a difference
if the 1982 policy would have been applied to 1978.

Figure 3 presents the evolution of the variance of the forecast errors of the structural
model over time and the variations produced by the heteroskedastic component of the error,
i.e the product of the estimated innovations in the coefficient times the regressors. Four
features stand out: first, forecast error variances are generally humped shaped, with a
significant increase from 1978 to 1981 and there is a smooth decline thereafter in three of
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the four equations (the interest rate equation being the exception). Second, changes in the
variances of the output and the inflation equation appear to be sufficiently well synchronized
with the changes in the forecast error variance of our estimated monetary policy equation.
Third, the variations in the forecast error variance due to changes in the coefficients of the
monetary policy equation have a pattern that differ from those observed in the output and
inflation equations and seem to match reasonably well the changes observed in the interest
rate equation. Finally, the contribution of et to the variance of the forecast error is roughly
twice as large as the contribution of ηtxt except at the beginning of the sample and primarily
for the output equation. Furthermore, as expected the contribution of the latter component
is smoothly declining over the sample.

To summarize, instabilities in the system appear to be pervasive. Both the coefficients
of the structural model and the variance of the forecast error in different equations appear
to be changing. A typical humped shaped pattern occur where variances and most of
the coefficients increase from 1978 to 1981 and decline thereafter. In general, most of
the variations appear to take place between 1978 to 1986: changes in the coefficients of
the inflation and output show little synchronicity with the changes in the coefficients of
the monetary policy equation. In particular, variations in the coefficients of the output
and money equations are considerably larger than those in the coefficients of the other two
equations and occur at different dates from those in the inflation equation. We find that the
coefficient on lagged inflation in the monetary policy equation display a dramatic increase
from 1978 to 1981 but this change is part of a more general change occurring in all the
coefficients of the equation. There is more synchronization in the changes in the variances
of the forecast errors of the model and it appears that the humped shape of the estimated
variances is only partially due to coefficient variation. Finally, changes in the variances of
shocks to the structural observation equation dominate the pattern of time variations.

Sargent and Cogley (2001) and (2003) look at measures of core inflation to establish
their claim that monetary policy is responsible for the observed changes in the structure.
Since our analysis so far has been based on short run dynamic analysis it may therefore
miss the more longer run type of relationships. In particular, they show that inflation
persistence substantially declined over time and that there is some synchronicity in the
changes in persistence and in the presumed changes in monetary policy. Pivetta and Reis
(2004), using univariate conventional classical methods, claim that differences in persistence
over time are statistically insignificant.

The analysis of Cogley and Sargent differs from our in two respects: first, unemployment
is used in place of output; second, persistence is measured using reduced form coefficients.
What our structural model has to say about the evolution of persistence over time and on
its relationship with changes in the monetary policy coefficients?

Since it is not clear what persistence means, the literature has used different way to
measure the persistence of a process. Here we report two: the first is the value at frequency
zero of the spectral density of inflation, that is, the sum of all autocovariances of estimated
inflation process. The second is the half life of inflation responses to monetary shocks,
measured here by the time it takes to inflation responses to reach half of the impact effect.
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Figure 4 shows the spectrum of inflation computed at each date of the sample, using
estimated structural model. To be precise, we report the estimated average spectral density
(where average is taken over simulations) computed from the companion form representation
of the VAR, conditioning on the information available at various dates in the sample. On
the vertical axis we report the size of the spectral density, and on the two horizontal axis
the frequency (on the side) and the date (in front). Overall, smooth time variations are
pervasive and the peak at the zero frequency has declined over time. In fact, from 1978 to
1996 the mean value at the zero frequency dropped from 0.04 to 0.01; the decline is roughly
monotonic and at a constant rate. Also in this case the pattern of changes is not very well
synchronized with the changes in the coefficients of the monetary policy equation.

There is also clear evidence that the point estimates of the half life of inflation responses
(as measured by the posterior mean) have changes over time. For example, the half life
in 1978 is two while in 1992 is about 10. However standard errors are large. In fact, we
find the 68% band for the location of the half life in the two cases overlap to a large extent
(they are equal to [xxx,xxx], in the first case and [yyy,yyy] in the second). Hence the visual
differences in the point estimates turn out to be statistically insignificant.

Hence, no matter what statistic we use we find that the timing of the changes in the
monetary policy equation do not definitively match the changes in the coefficients of the
inflation process and have hard time to account for the changes in the coefficients of output
process.

Therefore, our investigation so far suggest that all the camps have a point. There
are structural instabilities in the output and inflation equation, there are instabilities in the
monetary policy equation and there are also changes in the variances of the structural shocks
hitting the economy. However, based on simple synchronization accounting, it appears
that the ”luck” component dominates the ”bad policy” component as explanation for the
observed changes.

Since a synchronicity test however is a somewhat weak tool to examine a causality
proposition we next proceed to analyze (i) whether the observed changes in output and
inflation can be attributed to changes in the propagation mechanism of monetary policy
shocks (ii) whether changes in the systematic component of monetary policy account and
to what extent for the observed changes in output and inflation process.

5.2 Are there changes in the propagation of monetary policy shocks?

Figure 5 presents the responses of output and inflation to identified monetary shocks at
selected dates. To make pictures legible we present only the mean of the posterior distri-
bution of the responses for horizons from 0 to 20 quarters. Figure 6 presents the posterior
68% band for the difference between the two most extreme responses in each picture (i.e.
1978-1996 for the case of inflation, 1983-1996 in the case of output). We have omitted the
responses of interest rates because they are similar across periods and quite standard: the
initial increase dissipates quite quickly so that responses become insignificantly different
from zero after the 4th quarter for each of the dates we selected.

Several interesting features of the two figures deserve some comment. First, while there
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quantitative differences in the responses obtained conditioning on the information available
at different dates, the shapes of the responses is unchanged. In particular, a contractionary
monetary policy shock which produces a liquidity effect significantly reduces output and
inflation for about 5-6 quarters, regardless of the time when the responses are computed
4. Therefore, the changes we have observed in the structural coefficients roughly wash out
when the moving average representation is computed. Second, the largest absolute inflation
response and the second largest absolute output response occur in 1978 and, as time goes
by, the effect of monetary shocks on these two variables declines over the 6 periods where
significant responses are recorded. Therefore, it appears that monetary policy shocks were
much more effective in displacing output and inflation from their path 20-25 years ago than
they are now. Third, differences in impulse responses at all horizons are both statistically
and economically very small. In fact, as shown in figure 4, the simulated posterior distri-
butions of the largest discrepancies include zero at all horizons. Furthermore, the largest
absolute cumulative difference over 20 horizons in, say, the mean of the conditional dis-
tribution of output responses is only 0.96. That is, in the two most extreme cases a one
standard error shock in interest rates, would have changed yearly output growth by at most
0.18 percentage points.

The main message one should retain from these figure is that changes in the structural
coefficients of the output and inflation equation can not be attributed to changes in the
propagation mechanism of monetary policy shocks over time. This agrees with the analyses
of Sims and Zha (2001) and Hanson (2001) and stands in sharp contrast with those of
Boivin and Giannoni (2002a,b).

5.3 Are there changes in the systematic component of policy?

(Later)

5.4 Are results sensitive to the choices made?

There are a number of choices we have made which may be responsible for the results
and for the differences between our conclusions and those present in the literature. In
the subsection we therefore analyze the sensitivity of the outcomes to two choices: the
identifying restrictions and the variables included in the VAR

We start first from the identification restrictions. So far, monetary shocks have been
identified through a liquidity effect. Would result change if we would alternatively use the
restriction that contractionary monetary shocks should produce non-positive output and
inflation responses or that monetary shocks are identified via a Choleski decomposition? The
pattern of impulse responses do change with identification scheme. However, the conclusion
that the propagation of monetary shocks has not dramatically changed over time is still
valid. To illustrate the point, we plot in figure 7, the responses of output and inflation
to contractionary monetary policy shocks identified with a Choleski system. The figure
indicates that an inflation puzzle is generated with this identification scheme (inflation

4At all the selected dates, standard error bands do not include zero up to 5 or 6 quarters.
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increases following a increase in the interest rate) and the output responses are much more
muted and die out quicker. However, the conclusion that magnitude differences are relatively
small over time still remain. For example, the maximum difference in output responses
occurs at lag 3 when we condition on 1983 and 1978 information and it is only 0.1 in
absolute value, while the maximum difference in inflation responses occur at lag 2 when
we condition on 1978 and 2003 information and the magnitude of the difference is 0.18.
For reason of space we only report responses to shocks in the non-systematic component of
policy, but it should be clear that the other conclusions we have reached stand unchanged.
That is, (i) structural inflation and output coefficients do vary over time and the variance
of the forecast errors are time varying; (ii) there is little coincidence in the timing of the
changes in the coefficient of the policy and non-policy equations; (iii) there are structural
variations in the coefficients of the policy rule but unexpected variations on the preferences
of policymakers do not account for the pattern of changes in the process for inflation and
output.

Second, we have examined the sensitivity of our conclusions to changes in the variables
of the VAR. It is well known that small scale VAR models are appropriate only to the extent
that omitted variables exert no influence on the dynamics of the included ones. However,
a-priori there is no way to check that our system effectively marginalized the influence of
these variables. For this reason we repeated our exercise substituting unemployment rate
to detrended output and non-borrowed reserves to money.

(Also later).

6 Comparison with the literature and Conclusions

(Later, later)
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Appendix

A. Imposing sing restrictions

We implement our sign restriction approach as follow. Let ht be the first column of Ht.
Assume that ht is stochastic distributed independently of εt on a unit sphere Sn LetMt,j

be the set of impulse response functions satisfying the restriction for period j. Since this set
is dense, there exists several ht over the unit sphere generating impulse response functions
satisfying the restrictions. Call this set of points Ht All the ht belonging to Ht generate
representations which are consistent with the definition of monetary policy shock - there
may be more than one since nothing insures that Ht is a singleton.

(TO BE FIXED)

B. Impulse Response Functions

Substituting recursively into the system for ks we obtain

yt+k = A0,t+k+
k−1X
j=1

j−1Y
i=0

At+k−j

A0,t+k−j+
k−1Y
j=0

At+k−jyt+
k−1X
j=1

j−1Y
i=0

At+k−i

 ²t+k−j+²t+k

Rewrite the above representation as

yt+k = A0,t+k +
k−1X
j=1

Φt+k,jA0,t+k−j +Φt+k,k−1yt +
k−1X
j=0

Φt+k,j²t+k−j

where Φt+k,j =
Qj−1
i=0 At+k−j for j = 1, 2, ..., Φt+k,0 = I. Let ext(h,k)(X) be an ex-

tractor, a function which extract the h-rows and the k-columns of the matrix X. Since
yt = ext(n,1)(yt) we have

yt+k = Ã0,t+k + Φ̃t+k,k−1yt +
k−1X
j=0

Φt+k,jSHt+k−jet+k−j

where Ã0,t+k = A0,t+k +
Pk−1
j=1 Φt+k,jA0,t+k−j for k > 1 and Ã0,t+1 = A0,t+1, Φ̃t+k,k−1 =

ext(n,n2p)(Φt+k,k−1) and Φt+k,j = ext(n,n)(Φt+k,j). Thus

yt+k = Ã0,t+k + Φ̃t+k,k−1yt +
k−1X
j=0

Ψt+k,jet+k−j (12)

where Ψt+k,j = Φt+k,jSHt+k−j Ψt+k,0 = Φt+k,0SHt = SHt and . Let us now consider a
partitioned version of equation (). Let et = (ei,t|e−i,t) where ei,t is an element of et and
e−i,t is the vector containing the other n − 1 elements of et. Let Ht = (ht|h−it ), where ht
is a column of Ht corresponding to ei,t and h−it is the matrix formed by remaining n − 1
columns of Ht. Then we can rewrite equation (13) as

yt+k = Ã0,t+k + Φ̃t+k,k−1yt +
k−1X
j=0

Φt+k,jShtei,t+k−j +
k−1X
j=0

Φt+k,jSh
−1
t e−i,t+k−j
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or

yt+k = Ã0,t+k + Φ̃t+k,k−1yt +
k−1X
j=0

Ψit+k,jei,t+k−j +
k−1X
j=0

Ψ−it+k,je−i,t+k−j (13)

where Ψit+k,j = Φt+k,jSht and Ψ
−i
t+k,j = Φt+k,jSh

−i
t .

Time-Varying Coefficients VAR: Non-Systematic Component

Let us consider equation (34). Fix ei,T+1 to be a monetary policy shock to the non-
systematic component occurring at time T + 1. Taking conditional expectations

E
³
yT+k|yT , θT , V, ei,T+1

´
= E(Ã0,T+k|yT , θT , V, ei,T+1) +E

³
Φ̃T+k,kyT |yT , θT , V, ei,T+1

´
+

+E

k−1X
j=0

ΨiT+k,jei,T+k−j |yT , θT , V, ei,T+1


+E

k−1X
j=0

Ψ−iT+k,je−i,T+k−j |yT , θT , V, ei,T+1

 (14)

First notice that

E

k−1X
j=0

Ψ−iT+k,je−i,T+k−j |yT , θT , V, ei,T+1

 =
k−1X
j=0

E
³
Ψ−iT+k,j|yT , θT , V, ei,T+1

´
×

×E
³
e−i,T+k−j|yT , θT , V, ei,T+1

´
=

k−1X
j=0

E
³
Ψ−iT+k,j|yT , θT , V

´
×

×E
³
e−i,T+k−j|yT , θT , V

´
= 0 (15)

where the first line derive from the assumptionE(utε0t) = 0, the second line fromE(ei,te−i,t) =
0 and the third line from E(et) = 0. Thus we have

E
³
yT+k|yT , θT , V, ei,T+1

´
= E(Ã0,T+k|yT , θT , V, ei,T+1) +E

³
Φ̃T+k,kyT |yT , θT , V, ei,T+1

´
+

+E

k−1X
j=0

ΨiT+k,jei,T+k−j |yT , θT , V, ei,T+1


= E(Ã0,T+k|yT , θT , V, ei,T+1) +E

³
Φ̃T+k,kyT |yT , θT , V, ei,T+1

´
+

+E

k−2X
j=0

ΨiT+k,jei,T+k−j |yT , θT , V, ei,T +1

+
+E

³
ΨiT+k,k−1ei,T+1|yT , θT , V, ei,T+1

´
(16)

Notice that E(Ã0,T+k|yT , θT , V, ei,T+1) = E(Ã0,T+k|yT , θT , V ), E
³
ΦT+k,kyT |yT , θT , V, ei,T+1

´
=

E
³
ΦT+k,kyT |yT , θT , V

´
since ΦT+k,k and Ã0,T+k are functions of the sequence u

T+k
T and
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EeTu
0
T+k = 0 for k = 0, 1, ....

For j 6= k we have E
³
ΨT+k,jeT+k−j |yT , θT+1, V, ei,T+1

´
=E

³
ΨT+k,jeT+k−j|yT , θT , V

´
be-

cause Eei,T e0i,T+k = 0 for k 6= 0.
Moreover E

³
ΨT+k,jeT+k−j|yT , θT , V

´
= E

³
ΨT+k,j |yT , θT , V

´
E
³
eT+k−j|yT , θT , V

´
= 0.

Therefore

E
³
yT+k|yT , θT , V, ei,T+1

´
= E(Ã0,T+k|yT , θT , V ) +E

³
Φ̃T+k,kyT |yT , θT , V

´
+

+E
³
ΨiT+k,k−1ei,T+1|yT , θT , V, ei,T+1

´
(17)

Now let us consider the other realization of yT+k.

E
³
yT+k|yT , θT , V

´
= E(Ã0,T+k|yT , θT , V ) +E

³
Φ̃T+k,kyT |yT , θT , V

´
+

+E

k−1X
j=0

ΨiT+k,jei,T+k−j |yT , θT , V


+E

k−1X
j=0

Ψ−iT+k,je−i,T+k−j|yT , θT , V
 (18)

The third and the fourth term of (39) are equal to zero because of the independence of VAR
and coefficients innovations. Thus

E
³
yT+k|yT , θT , V

´
= E(Ã0,T+k|yT , θT , V ) +E

³
Φ̃T+k,kyT |yT , θT , V

´
(19)

Now taking the difference between (37) and (40) we obtain

E
³
yT+k|yT , θT , V, ei,T+1

´
−E

³
yT+k|yT , θT , V

´
= E

³
ΨiT+k,k−1|yT , θT , V

´
ei,T+1(20)

Time-Varying Coefficients VAR: Systematic Component

Let ηi,T+1 for i = 15, ..., 21 be shock in the systematic component of the monetary policy.
Taking conditional expectation we have

E
³
yT+k|yT , θT , V, ηi,T+1

´
= E(Ã0,T+k|yT , θT , V, ηi,T+1) +E

³
Φ̃T+k,kyT |yT , θT , V, ηi,T+1

´
+

+E

k−1X
j=0

ΨT+k,jeT+k−j|yT , θT , V, ηi,T+1

 (21)

The third term is equal to zero because the independence assumption between et and ηt.
Consider the case k > 1. Substituting the definition of Ã0,T+k we obtain

E
³
yT+k|yT , θT , V, ηi,T+1

´
= E(A0,t+k|yT , θT , V, ηi,T+1) +

+E

k−1X
j=1

Φt+k,jA0,t+k−j |yT , θT , V, ηi,T+1


+E

³
Φ̃T+k,kyT |yT , θT , V, ηi,T+1

´
(22)
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Notice that since the coefficients in A0,t+k are independent from the coefficients of lagged
variable in the monetary policy equation, E(A0,t+k|yT , θT , V, ηi,T+1) = E(A0,t+k|yT , θT , V ).
Thus

E
³
yT+k|yT , θT , V, ηi,T+1

´
= E(A0,t+k|yT , θT , V ) +E

k−1X
j=1

Φt+k,jA0,t+k−j |yT , θT , V, ηi,T+1


+E

³
Φ̃T+k,k|yT , θT , V, ηi,T+1

´
yT (23)

Now consider k = 1. We have

E
³
yT+1|yT , θT , V, ηi,T+1

´
= E(A0,T+1|yT , θT , V ) +E

³
AT+1|yT , θT , V, ηi,T+1

´
yT

Now consider the other realization of yT+k

E
³
yT+k|yT , θT , V

´
= E(Ã0,T+k|yT , θT , V ) +E

³
Φ̃T+k,kyT |yT , θT , V,

´
+

+E

k−1X
j=0

ΨT+k,jeT+k−j|yT , θT , V
 (24)

Again the last term is equal to zero. Considering the case k > 1 and substituting the
definition of Ã0,T+k we obtain

E
³
yT+k|yT , θT , V

´
= E(A0,t+k|yT , θT , V ) +E

k−1X
j=1

Φt+k,jA0,t+k−j |yT , θT , V


+E
³
Φ̃T+k,k|yT , θT , V

´
yT (25)

For k = 1 we have

E
³
yT+1|yT , θT , V

´
= E(A0,T+1|yT , θT , V ) +E

³
AT+1|yT , θT , V

´
yT (26)

Taking the difference for the two realization for k > 1 we obtain

E
³
yT+k|yT , θT , V, ηi,T+1

´
−E

³
yT+k|yT , θT , V

´
= E

k−1X
j=1

Φt+k,jA0,t+k−j |yT , θT , V, ηi,T+1


+E

³
Φ̃T+k,k|yT , θT , V, ηi,T+1

´
yT −

−E
k−1X
j=1

Φt+k,jA0,t+k−j|yT , θT , V
−

−E
³
Φ̃T+k,k|yT , θT , V

´
yT (27)

while for k = 1 we obtain

E
³
yT+1|yT , θT , V, ηi,T+1

´
−E

³
yT+1|yT , θT , V

´
= E

³
AT+1|yT , θT , V, ηi,T+1

´
yT −

E
³
AT+1|yT , θT , V

´
yT (28)
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Fixed Coefficients VAR

Consider equation (?) and assume that the coefficients are constant. Thus the time varying
coefficients become Φt+k,k = Φk = Ak and Ψk = AkSH for all k which correspond to
traditional impulse response function for structural shocks in fixed coefficients VARs. Thus
IR for shock i will be Ψik.

C. Estimation

Priors

Let T be the end of the estimation sample. We choose prior specifications for the unknowns
which gives us analytic expressions for the conditional posteriors of subvectors of the un-
knowns. Let F (Mt) be an indicator function which assumes value one if the identifying
restrictions are satisfied, that is it is one if (Ψit+1,1, ...,Ψ

i
t+K,K) ∈Mt and zero otherwise.

Let F (MT ) =
QT
t=1 F (Mt). Let the joint prior for θT , V and hT be proportional to the

joint prior of θT and V whenever the identifying restrictions are satisfied, that is

p(θT , V, hT ) = p(θT , V )F (MT )p(hT ) (29)

where the first term, the joint prior for states and variances, can be factored as p(θT , V ) =
p(θT |V )p(V ). Here p(θT |V ) is the conditional density of θT which is given by p(θT |V ) ∝
I(θT )f(θT |V ) where f(θT |V ) = f(θ0|V )QT−1

t=0 f(θt+1|θt, V ) and I(θT ) =QT
t=0 I(θt). Hence,

the conditional density of θT is normal times the indicator function.
We assume that the covariance matrices Σ and Ω are inverse-Wishart distributed with

scale matrix Σ−1
0 , Ω−1

0 and degree of freedom T01 and T02. We also assume that the prior
for the initial state is a Gaussian truncated random variable independent of Σ and Ω, i.e.
p(θ0) ∝ I(θ0)N(θ̄, P̄ ). Finally, we assume that the ht are independent across time so that
p(hT ) =

QT
t=0 p(ht) and each ht is uniformly distributed over the unit sphere Sn = {ht ∈

<n : khtk = 1}. Such a prior specification is similar to the one used by Uhlig (2001) in a
fixed coefficients VAR. The uniform prior is justified by the fact that all the trajectories
satisfying the restrictions are a-priori equally likely.

Collecting the pieces the joint prior is:

p(θT , V, hT ) ∝ I(θT )F (MT )f(θ0)
T−1Y
t=0

f(θt+1|θt, V )p(Σ)p(Ω) (30)

Note that for a Choleski scheme Ht = In, and the priors for θT , V remain unchanged. Thus,
the prior reduces to

p(θT , V, hT ) = I(θT )f(θ0)
T−1Y
t=0

f(θt+1|θt, V )p(Σ)p(Ω) (31)

We calibrate the prior by estimating a fixed coefficients VAR using data from 1960:I up
to 1969:I. We set θ̄ equal to the point estimates of the coefficients and P̄ to the estimated
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covariance matrix. We set Σ0 equal to the VAR innovations covariance matrix and Ω0 = %P̄ .
The parameter % measure how much the time variation is allowed in coefficients. Although
as t grows likelihood tends to dominate the prior, results are somewhat sensitive to the choice
of %. In particular, specifying a small % we restrict the time variation in the coefficients
while specifying a large % reduces the probability of finding draws which generate non-
explosive paths. We end up choosing % on the basis of the sample size i.e. for the sample
1969:I-1983:III % = 0.0025, 1969:I-1981:III % = 0.003, 1969:I-1983:III % = 0.0035, for 1969:I-
1987:III % = 0.004, 1969:I-1992:III % = 0.007, 1969:I-1996:I % = 0.008, 1969:I-2002:IV
% = 0.01. The range of values of % implies a quiet conservative prior coefficient variations:
in fact, time variation accounts from a 0.35 and a 1 percent of the total coefficients standard
deviation.

Our primary goal is to compute impulse response functions, which depend on Φt+k,k’s,
the square factor S and the matrix Ht. Therefore, we characterize first the posterior distri-
butions of these parameters and then describe a sampling approach from these posteriors
to construct a draw for the impulse responses. Note that in the sign restriction case Ht is a
random variable (while under the Choleski identification scheme Ht is a matrix of constants)
Thus in the second case, need only to characterize the posterior distribution of θT+K and
V (no need to worry about hT+k.

Posteriors

To draw the relevant quantities we need to obtain p(hT+K
T+1 , h

T , θT+K
T+1 , θ

T , V |yT ), which is
analytically intractable. However, it is can be decomposed into simpler components. First,
note that such a distribution is proportional to the unrestricted posterior predictive distri-
bution times the two indicator variables. In fact

p(hT+K
T+1 , h

T , θT+K
T+1 , θ

T , V |yT ) = p(hT+K , θT+K , V |yT )
∝ p(yT |hT+K , θT+K , V )p(hT+K , θT+K , V ) (32)

the first term of the right hand side in the second line is the likelihood and is invariant for
any orthogonal rotation thus p(yT |hT+K , θT+K , V ) = p(yT |θT+K , V ). The second term is
the joint prior p(hT+K , θT+K , V ) = p(θT+K , V )F (MT+K)p(hT+K). Thus we have

p(hT+K , θT+K , V |yT ) ∝ p(θT+K , V |yT )F (MT+K)p(hT+K) (33)

where p(θT+K , V |yT ) ∝ p(yT |θT+K , V )p(θT+K , V ) is the posterior distribution for θT+K

and V (i.e. the posterior for reduced form parameters). Such a posterior can be factored as

p(θT+K , V |yT ) = p(θT+K
T+1 , θ

T , V |yT )
= p(θT+K

T+1 |yT , θT , V )p(θT , V |yT ) (34)

where the first term of the right hand side represents beliefs about the future and the
second term represents the posterior density for states and hyperparameters. First notice
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that p(θT+K
T+1 |yT , θT , V ) = p(θT+K

T+1 |θT , V ) and because of the Markov assumptions future
states can be factored as

p(θT+K
T+1 |θT , V ) =

KY
k=1

p(θT+k|θT+k−1, V ) (35)

and θT+k is conditionally normal with mean θT+k−1 and variance Ω times the indicator
variable. Therefore we can write

p(θT+K
T+1 |θT , V ) = I(θT+K

T+1 )
KY
k=1

f(θT+k|θT+k−1, V )

= I(θT+K
T+1 )f(θ

T+K
T+1 |θT , V ) (36)

The posterior density for the hyperparameters and the states can be factored as

p(θT , V |yT ) ∝ p(yT |θT , V )p(θT , V ) (37)

The first term is the likelihood function which, given the states, has Gaussian innovations
and then p(yT |θT , V ) = f(yT |θT , V ). The second term is the joint prior for states and
hyperparameters. This second term can be factored into a conditional for the states and a
marginal for the hyperparameters

p(θT , V |yT ) ∝ f(yT |θT , V )p(θT |V )p(V ) (38)

The conditional density for the states can be written as p(θT |V ) ∝ I(θT )f(θT |V ) where
f(θT |V ) = f(θ0|V )QT

t=1 f(θt|θt−1, V ) and I(θT ) =
QT
t=0 I(θt), thus we obtain

p(θT , V |yT ) ∝ I(θT )f(yT |θT , V )f(θT |V )p(V ) (39)

But f(yT |θT , V )f(θT |V )p(V ) is the posterior density resulting if no restrictions were im-
posed, pu(θT , V |yT ). Thus we have

p(θT , V |yT ) ∝ I(θT )pu(θT , V |yT ) (40)

and

I(θT ) =
TY
t=0

I(θt) (41)

Collecting the pieces the posterior predictive distribution is

p(hT+K
T+1 , h

T , θT+K
T+1 , θ

T , V |yT ) ∝ F (MT+K)
h
I(θT+K)f(θT+K

T+1 |θT , V )pu(θT , V |yT )
i

p(hT+K) (42)

Note that for a Choleski identification

p(θT+K
T+1 , θ

T , V |yT ) = I(θT+K)f(θT+K
T+1 |θT , V )pu(θT , V |yT ) (43)
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Drawing from the Posterior of structural parameters

To draw θT+K and V from the posterior density we proceed as follows.

1. Draw from the unrestricted posterior, pu(·), computed with the Gibbs sampler (see
below), a vector of θT .

2. Apply the filter I(θT ): discard explosive paths.

3. Draw a sequence of future states θT+K
T+1 , i.e. obtain K draws of ut from N(0,Ω) and

iterate in θT+i = θT+i−1 + uT+i K times (θT+i is conditionally normal with mean
θT+i−1 and variance Q (???) ). Discard explosive paths.

4. Draw hT+K drawing independently T+K times ht from a uniform distribution over the
unit sphere. To draw ht we draw 4 independent random variables h̄i,t, for i = 1, ..., 4,
from N(0, 1), then compute the vector ht = 1

||h̄t|| [h̄1,t h̄2,t h̄3,t h̄4,t]
0. (see Marsiglia)

5. Apply the filter F (MT ): discard draws if identifying restrictions are violated.

Computing Posteriors of reduced form parameters: the Gibbs Sampler

The Gibbs Sampler we use iterate on two steps. The implementation we use is identical to
Cogley and Sargent (2001)

• Step 1: States given hyperparameters
Conditional on hyperparameters and the data, the unrestricted posterior of the states is

normal and pu(θT |yT , V ) = f(θT |yT , V )QT−1
t=1 f(θt|θt+1, y

t, V ) All the density in the right
end side are Gaussian they their conditional means and variances can be computed using
the backward recursion of the Kalman filter. Define

θt|t ≡ E(θt|yt, V )
Pt|t−1 ≡ V ar(θt|yt−1, V )

Pt|t ≡ V ar(θt|yt, V )

Given some initial P0|0, θ0|0, Ω and Σ, we compute forward Kalman filter recursions

Pt|t−1 = Pt−1|t−1 +Σ

K = (Pt|t−1Xt)(X
0
tPt|t−1Xt +Ω)

−1

θt|t = θt−1|t−1 +Kt(yt −X 0
tθt−1|t−1)

Pt|t = Pt|t−1 −Kt(X 0
tPt|t−1)

The last time iteration gives θT |T and PT |T which are the conditional means and variance
of f(θt|yT , V ). Hence f(θT |yT , V ) = N(θT |T , PT |T ). The other T − 1 densities can be
computed using the backward Kalman filter recursions, i.e
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θt|t+1 = θt|t + Pt|tP−1
t|t+1(θt+1 − θt|t−1) (44)

Pt|t+1 = Pt|t − Pt|tP−1
t+1|tPt|t (45)

where θt|t+1 ≡ E(θt|θt+1, y
t, V ) and Pt|t+1 ≡ V ar(θt|θt+1, y

t, V ) are the conditional means
and variances of the remaining terms in pu(θT |yT , V ). Thus f(θt|θt+1, y

t, V ) = N(θt|t+1, Pt|t+1)

Therefore, to sample θT from the conditional posterior we proceed backward, sampling θT

from N(θT |T , PT |T ) and θt from N(θt|t+1, Pt|t+1) for all t < T .
• Step 2: Hyperparameters given states
To sample V , notice that we can sample separately Σ and Ω because of the independence

assumption. Conditional on the states and the data εt and ut are observable and Gaussian.
Combining a Gaussian likelihood with an inverse-Wishart prior results is an inverse-Wishart
posterior, so that

p(Σ|θT , yT ) = IW (Σ−1
1 , T11)

p(Ω|θT , yT ) = IW (Ω−1
1 , T12) (46)

where Σ1 = Σ0 +ΣT , Ω1 = Ω0 +ΩT and T11 = T01 + T T12 = T02 + T and ΣT and ΩT are
proportional to the covariance estimator

1

T
ΣT =

1

T

TX
t=1

εtε
0
t

1

T
ΩT =

1

T

TX
t=1

utu
0
t

To draw sample from inverse-Wishart distributions, we draw T n-dimensional vectors ε̃t from
N(0,Σ1) and construct, e.g., Σ−1 =

PT
t=1 ε̃tε̃

0
t. Σ

−1 is Wishart distributed and therefore Σ
is inverse-Wishart.

Under some regularity conditions (see Tierney (1994)) and after a burn-in period, iter-
ations on these two steps produce draw from pu(θ

T , V |yT ).
For each date we are interested in computing impulse responses, 10000 iteration of the

Gibbs sampler are made. We have constructed CUMSUM graphs to check for convergence
and found that the chain had converged roughly after 2000 draws for each date in the sample.
The densities for the parameters obtained with the remaining draws are always well behaved
and none is multimodal. We keeping one every two of the remaining draws and discard all
the draws generating explosive paths. The autocorrelation function of draws which are
left is somewhat persistent and autocorrelations twenty draws apart are still significantly
different from zero. This is somewhat of a problem. We could reduce the autocorrelation
taking draws more largely spaced (say, one every 5) but this come at the price of reducing
the number of draws which satisfy the identification restrictions and therefore substantially
reduce the precision of the exercise. With our approach we ended up having approximately
300 draws for each date to conduct structural inference. All these properties are very similar
at each date in the sample. we consider.
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Computation of IR

• Shocks to the Non-Systematic Component
In order to compute (11) we proceed as follows

1. Draw θT+K,`
T+1 , V following steps 1-4 described in section 6.2.

2. Compute the Choleski factor S` of Σ`. For Choleski identification scheme compute
Ψ`T+k,k and stop, go to step 5. For the second identifying approach go to step 3.

3. Exploiting independence across time of h`T , draw h`T from a uniform distribution
over the unit sphere. To draw h`t we draw 4 independent random variables h̄t, for
i = 1, ..., 4, from N(0, 1), then compute the vector h`t =

1
||h̄t|| [h̄1,t h̄1,t h̄3,t]

0 (see
Marsiglia, 19).

4. Compute (Ψi,`T+1,1, ...,Ψ
i,`
T+K,K) and F (MT )

`. If the draw satisfies identification re-
strictions keep the draw otherwise discard it and repeat 1-4.

5. Repeat 1-4 L times.

6. Compute posterior mode and the 68% confidence band.

• Shocks to the Systematic Component
IR in this case can be computed only for the first identification scheme. In order to

compute (13)-(14) we have to compute the two realizations of yT+k. We proceed as follows

1. Draw θT+K,`
T+1 and V using passages 1-4 described in section 6.2 and compute a draw

for Φ`T+k,i, and
Pk
i=1Φ

`
T+k,jA

`
0,T+k−i for k = 1, ...,K and i = 1, ...K − 1.

2. Collect the draw of uT+K,`
T+1 .

3. Compute η`t = (S
`−1N Inp+1)u

`
t. Fix a shock ηj,T+1 = δ. From section 2 we know that

such a shock will have non zero correlation with two other shocks. Sample these two
other shocks from the conditional normal distribution given ηj,T+1 = δ. Substitute
ηj,T+1 = δ and the other two new shocks in the vector η

`
T+1 and call this vector η̃

`
T+1.

Compute ũ`T+1 = (S`−1N Inp+1)−1η̃`T+1. Substitute u
`
T+1 with ũ

`
T+1 and call the

new vector ũT+K,`
T+1 ; compute θ̃

T+K,`
T+1 using ũT+K,`

T+1 . Using θ̃
T+K,`
T+1 compute Φ̃`T+k,i andPk

i=1 Φ̃
`
T+k,jÃ

`
0,T+k−i for k = 1, ...,K and i = 1, ...K − 1.

4. Repeat 1-5 of the non-systematic component IR procedure previously described using
the new vector ũT+K,`

T+1 .

5. The draw in step 1 is a draw for

E(ΦT+k,k|yT , θT , V ), E
Ã

kX
i=1

ΦT+k,jA0,T+k−i|yT , θT , V
!
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while the draw in step 2 is a draw for

E(ΦT+k,k|yT , θT , V, ηj,T+1), E

Ã
kX
i=1

ΦT+k,jA0,T+k−i|yT , θT , V, ηj,T+1

!

Take the difference of the two realizations.

6. Repeat 1-5 L times (` = 1, ..., L).

7. Compute the posterior mode and the 68% confidence band.

the Choleski factor of to 1. otherwise keep the draw in 1.
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