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Abstract

We extend Diamond and Dybvig’s (1983)[11] model to a dynamic

context where we study how the bank’s financial stability is affected

by successive withdrawal shocks during a crisis. We model a crisis as a

series of these unanticipated events over a long period of time and not

as isolated bank runs. We highlight the importance of banks’ portfo-

lio liquidity in surviving such crisis. The paper shows that external

borrowing can smooth investment returns to guarantee that solvent

but illiquid intermediaries can survive a crisis. In the presence of

borrowing restrictions banks’ liquidity exhibits an erratic behaviour.
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1 Introduction

Bank runs are recurrent phenomena of considerable economic significance

and historically they have been of major concern in the conduct of monetary

policy. Runs can lead to bank failures, disruption of credit, and in most situ-

ations add a downward pressure to the real economy. Over the recent years,

much work has been done, both theoretical and empirical, in examining the

determinants of bank runs and institutional arrangements have been devel-

oped to avert the possibility of such events to occur. However, runs have

been modelled in the literature as static phenomena and not as frequently

recurring events. Indeed, some empirical research suggests that the banking

sector has frequently experienced multiple run episodes over a given period

of time. Caprio and Klingebiel (1996)[9] show that, from a sample of ninety

episodes since 1970s, the average length of a bank crisis was 4.5 years. In this

respect, the main contribution of this paper to the existing literature is the

formulation of a model of banking crisis where successive withdrawal shocks

take place over a long time interval. We use a three-period overlapping gen-

erations model to study the effects of a banking crisis on banks’ liquidity,

and as a consequence, on their solvency and survival. The paper shows that

access to external borrowing plays an important role in the financial stability

of the banking system. The cost of borrowing and the desired level of liquid-

ity reserve holdings during the run episodes give a rise to different transition

paths of equilibrium allocations during the course of the crisis.

The basic setup that we employ in this model is based Diamond and Dy-

bvig’s (1983)[11] framework which highlights the importance of asset trans-

formation function of intermediaries in providing liquidity insurance to de-

positors, and explains their vulnerability to runs. In particular, in their

seminal paper they focus on the liability side of the bank’s balance sheet in

a single-generation three-period model where a private preference shock is

uncorrelated across agents, and the economy’s productive technology has a

long-term maturity. In this setting, the bank by pooling deposits can diver-

sify risk so that the demand deposit contracts can provide liquidity insurance
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to depositors against their preference shock, and consequently improve on the

competitive outcome. The one-sided asymmetry of information prevents the

use of the standard Arrow-Debreu insurance contracts since the contracts

can not be conditioned on depositors’ privately observed preference shock.

Therefore, when depositors’ incentives are not distorted, the demand deposit

contract can achieve the optimal risk-sharing equilibrium as a pure strat-

egy Nash equilibrium. However, banks by providing liquidity become illiquid

themselves. Another Nash-equilibrium may arise which is Pareto-inferior and

is described as bank run. If depositors panic due to a commonly observed

exogenous factor (“sunspot”) and rush to withdraw their deposits, then the

bank will not be able to honour all its liabilities and will finally fail. Bank

runs are viewed as self-fulfilling prophecies where the public thinks that the

bank is going to fail, and by rationally running to withdraw their funds it

actually fails.

The literature pioneered by Diamond and Dybvig (1983)[11] has been

primarily focused on the determinants of bank runs, and alternative ways

to eliminate or reduce the possibility of the bank run equilibrium have been

analysed. Similarly to Diamond and Dybvig (1983)[11] many authors have

developed single-generation three-period models where they viewed bank

runs as self-fulfilling prophecies (Smith (1984)[20], Engineer (1989)[13], Cooper

and Ross (1998)[10] among others.). Others view bank runs as related to busi-

ness cycle (Jacklin and Bhattacharya (1988)[18], Alonso (1996)[4], Alen and

Gale (1998)[2] among others.). They argued that runs are triggered by de-

positors who receive information about an impending downturn in the cycle

and withdraw their funds because they anticipate that the bank’s portfolio of

assets will not yield sufficient returns to meet their legitimate demands due to

the low value of the fundamentals. An alternative approach has been intro-

duced by Jacklin (1987)[17] and extended by Haubrich and King (1990)[16].

They show that the allocations that can be achieved through direct trading

of firms’ shares with a predetermined divided policy, or by financial institu-

tions that issue tradeable securities (i.e. mutual funds), can provide the same

liquidity insurance as depository intermediaries that issue standard debt con-
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tracts, and in addition, are free of bank runs.

Diamond and Dybvig’s (1983)[11] model has also been extended to the

realm of overlapping generations. This literature has focused on examining

the respective roles of capital markets and financial intermediaries in pro-

viding liquidity insurance but little has been done in analysing bank runs.

More specifically, in comparison to the single-generation three-period mod-

els, intergenerational transfers enable banks to invest a greater proportion

of deposits in less liquid but more productive technology, and provide de-

positors with greater liquidity insurance. The intertemporal stock market

allocation is dominated by the intermediated allocation, but these alloca-

tions become identical when an interbank market is introduced to the inter-

mediated economy (Dutta and Karpur (1994)[12] and Fulghieri and Rovelli

(1998)[15]). In this case, government intervention in the stock market can

lead to second-best superior allocations (Bhattacharya and Padilla (1996)[6]).

When uncertainty on the returns of the productive technology is introduced,

an infinitely lived bank can achieve intertemporal smoothing of the returns

of the risky technology whereas the competitive market can only achieve an

intergenerational risk-sharing, and therefore is dominated (Allen and Gale

(1997)[2]). The transition towards the Golden Rule steady state allocation

can been modelled as a proposal game of generations between different finan-

cial configurations (Bhattacharya et al [7](1998)). Intermediation promotes

economic growth by facilitating greater investment in the productive tech-

nology (Bencivenga and Smith (1991) [5]), but depositors’ incentives may be

distorted in a continuous time framework (von Thadden (2002)[21]). How-

ever, the limited amount of work that has been done in this literature on

bank runs has modelled these shocks in a static way. First Bryant (1981)[8]

argues that, due to the intergenerational transfer of resources, infinitely lived

banks have a positive net worth and therefore are vulnerable to runs since

agents of a given generation can gain from its collapse. Ennis and Keister

(2003)[14] have developed an endogenous growth model where they show that

run-proof contracts can promote economic growth. Qi’s (1994)[19] findings

suggest that apart from excessive withdrawals, bank runs in an intertemporal
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model can also occur due to a lack of new deposits.

In our attempt to model a banking crisis, similarly to Diamond and Dy-

bvig (1983)[11], we view bank runs as sunspot phenomena which can not be

anticipated by banks. Due to an extrinsic uncertainty that influences depos-

itors’ beliefs about banks’ solvency but is unrelated to economics fundamen-

tals, bank runs are triggered. In analysing bank runs in a dynamic context,

we do not consider these phenomena as isolated events, but we rather analyse

a banking crisis where successive bank runs take place over a time horizon

characterised by the loss of depositors’ confidence in the banking system, and

therefore, by a turmoil in the banking sector. Starting from an intermediary

with prior assets and liabilities, we allow for a sequence of runs to take place

at regular time intervals, where the time interval between successive runs

represents a “cycle”, where cycles can be of different duration. The sequence

of the steady state equilibria that we obtain can only be sustained if an inter-

mediary relies periodically on the deposits made by the newborn generations

of agents. The basic setup that we use to compute these steady state alloca-

tions within each cycle is a generalisation of the methodology that employed

in Qi’s (1994)[19] paper. However, in our model runs can not occur due to a

lack of new deposits since newborn agents can not observe or anticipate the

occurrence of a bank run. For this reason, we consider the following order

of events in each time period, irrespectively of whether a run takes place;

new deposits and withdrawals (standard or excess withdrawals due to a run)

are made first, and then banks make their investment decisions with the re-

maining resources. In this process, we are able derive the dynamics of our

model and describe the evolution of successive cycles’ equilibrium allocations.

This myopic behaviour of newborn generations of agents implies that

banks can survive a run when excess withdrawals can be financed by new

deposits, and therefore, a withdrawal shock is not directly associated with a

bank failure, as in the three-period models. We start our analysis with the

condition that banks’ financial stability is not severely damaged after experi-

encing the first run, so that intermediaries are still solvent but they become
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illiquid in order to remain competitive with respect to the new entrants in

the market. In order to simplify the analysis of the transitional dynamics

we consider that all the agents of a particular cycle are treated equally by

the banks. In this way, a “short-term” steady-state within each cycle can be

derived. Of course, when we consider the whole crisis, successive cycles over-

lap in the time period when a bank run is triggered. In accordance with the

unanticipated nature of runs, agents that were born at this time period are

treated as agents of the previous cycle. In the above setting, we analyse the

transition of banks’ liquidity over different cycles and we examine whether

intermediaries can survive the crisis by converging to a feasible allocation.

Our results show that the system converges to a feasible “long-term”

steady state when banks can smooth their portfolios’ liquidity through ex-

ternal borrowing. The cost and the amount of borrowing determine the tran-

sition path towards these long-term allocations. We show that oscillations

and monotonic transitions, or even constant periodic movements between

successive equilibria, may arise. However, in the absence of such borrowing,

banks’ liquidity position becomes unpredictable.

The structure of this paper is as follows. The next section describes the

model. In the third section we develop the planning problem of an inter-

generational bank. In the fourth and fifth sections we analyse the dynamics

of the model in the case where banks can obtain external borrowing from

a Central Bank, and in the presence of borrowing restrictions, respectively.

Finally, we conclude and discuss possible future extensions of our model in

section six.

2 The Model

We consider an infinite-horizon version of Diamond and Dybvig (1983) [11]

model. A new generation of agents, whose size is normalised to 1, is born in

each period and live for three periods. Each newborn agent is endowed with

1 unit of the economy’s single homogeneous good and receive no endowment
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in the remaining two periods. Agents of each generation are identical ex-ante

at the time period they are born, and at the beginning of the middle period

of their life they “privately” observe a preference shock which is assumed

to be independently and identically distributed across agents. The shock

is such as agents may become impatient consumers with probability π, or

patient with probability 1− π. On aggregate, however, from the law of large

numbers the uncertainty is washed out and therefore the total number of

impatient and patient depositors is ex ante known, and it is π and 1 − π,

respectively. As in Diamond and Dybvig (1983) [11] we assume that impa-

tient agents derive utility of consumption only in the middle period of their

life, while patient depositors derive utility of consumption only in the last

period of their life. The assumption of corner preferences implies that agents

can consume only once in their lifetime, where U(Ct) denotes the utility de-

rived from the consumption of the commodity at period t (t = 1, 2). The

utility function is assumed twice continuously differentiable, increasing and

strictly concave and to satisfy the Inada conditions: limCt→0 U ′(Ct) = ∞ and

limCt→∞ U ′(Ct) = 0.

There are two investment technologies available in this economy. There

is a short-term technology which transforms one unit of the good invested at

period t into one unit at period t + 1 and is referred to as the storage tech-

nology. There is also a long-term investment technology which transforms

one unit of the good invested at period t to R > 1 units at period t + 2. If

it is interrupted at t + 1, it yields a positive return of r ≤ 1.

The banking system consists of a large number of identical banks which

are perfectly competing on the terms of their deposit contract and are subject

to withdrawal shocks. Because banks and depositors are identical, all banks

will choose the same contract. In addition, following Ennis and Keister (2003)

[14], all depositors hold the same beliefs which are influenced by the same

extrinsic factors that trigger the runs, and therefore either all banks will

experience a run or none will. Hence, without loss of generality, we consider

a representative intergenerational bank in this economy that has access to all
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the available technologies and maximises the expected welfare of depositors.

At any time period t, the bank accepts newborn agents’ endowment and

offers in return a deposit contract that specifies a payment depending on the

realisation of their consumption preferences at t+1; after they have received

a preference shock at the beginning of the middle period of their life. The

deposit contract has the form of (D1, D2), where D1 is the payment designed

for depositors who turn out to be impatient and D2 the payment for those

who turn out to be patient. The bank is subject to a sequential service

constraint1 so that depositors are served on a first-come, first-served order.

Depositors are assumed to be myopic in the sense that they can not observe

how many depositors are in front or behind them in the line, and following a

sequential service constraint, the bank can not distinguish the individual type

of each depositor once they approach the counter to receive their payment.

Bank runs are exogenous and are modelled as unanticipated withdrawals

where all depositors exercise their right to withdraw their funds at any time

period, irrespectively of their consumption preference. A bank run occurs

when due to a totally extraneous factor, unrelated to any fundamentals, each

depositor believes that other depositors will rush do withdraw their funds.

In addition, in order to analyse the dynamics in an environment where we

allow the possibility of runs, we impose that the bank survives the first run.

In contrast with the vast majority of the literature which associates runs

directly with banks’ failure, we take a more general approach concerning

banks’ financial stability. In a dynamic framework, we consider that a bank

that experiences an excess demand for withdrawals can find itself in one of

the following three conditions2:

(i) Firstly, a bank is considered to be “bankrupt” when it fails to meet its

promised payments even after utilising all its available assets.

(ii) Secondly, a bank is said to “go out of business” when it serves all the

1The notion of a sequential service constraint has been introduced by Diamond and
Dybvig (1983)[11] and analysed by Wallace (1988)[22].

2Allen and Gale (2000)[3] have used a similar characterisation of the banks’ financial
stability in order to explain the financial contagion in the banking system through an
interbank market.
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excess withdrawals but, by doing so, is left with less resources than the

total endowment of a newborn generation.

(iii) Thirdly, a bank is said to “survive” the run when it serves the excess

withdrawals and is left with more resources than the total endowment

of the new generation.

In the first two scenarios, the newborn agents will prefer to form a new

bank since they can attain superior allocations and a higher level of social

welfare. In the last scenario, the surviving bank is “staying in business” since

newborn agents can achieve a higher level of expected utility by depositing

their endowments to the surviving bank than forming a new bank. Of course,

in equilibrium, where the returns of the assets match the bank’s standard

liabilities, the bank is considered to be solvent.

In an infinitely repeated version of Diamond and Dybvig’s (1983)[11]

model with bank runs, let m ∈ Z+ (where Z+ is the set of nonnegative

integers), represent the number of runs that have already taken place in this

economy, where the time interval between any two successive runs represents

a cycle. Within a cycle, time is indexed by t ∈ {0, ..., tm}, where tm ≥ 3.

Time is reset to zero when a run takes place and cycles are allowed to have

different duration; where tm can be different for every m. Our analysis shows

that within each cycle, similarly to the discussion in Qi (1994)[19] about

the stability of the intergenerational bank, if an intermediary survives the

first run, the bank has to rely periodically on the new deposits made by the

newborn agents of the current generation in order for the steady-state to be

reached. However, in contrast to Qi (1994)[19], we assume that the myopic

newborn agents can not anticipate a run. Therefore, we consider the fol-

lowing sequence of events in each time period; firstly, newborn agents of the

current generation deposit their endowment to the bank3 and all the with-

drawal decisions are made by agents of the past generations who have realised

3Participation in the deposit contract is guaranteed since, similarly to the intragen-
erational bank, it offers liquidity insurance to depositors and therefore dominates the
competitive outcome as it is shown in Fulghieri and Rovelli (1998)[15], among others.
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their type (standard withdrawals or excess withdrawals due to a run), and

then the bank makes its investment portfolio decisions with the resources

available. In this respect, let It, m be the the proportion of the good that

the bank invests in the long-term technology and St, m the proportion that

it invests in the storage technology, for a given period t during cycle m.

Because r < 1 < R holds, an intermediary will never choose to finance

excess withdrawals by liquidating its investment in the productive technol-

ogy when liquid assets are available. Hence, for any given m, denote xm the

amount of resources that remain available for investment at the initial period

t = 0, and ym the resources that are invested in the long-term technology

during the previous cycle and comes to maturity at t = 1 after the run m has

been occurred. We require {xm, ym} ≥ 0 and as it arises from our analysis

the values of xm and ym depend on the timing of runs within the crisis.

Within each cycle, we follow an analysis similar to Qi (1994) [19] to derive

the steady-state equilibrium deposit contract payoff which we will refer to

as “short-term” steady-sate equilibrium payoff. We assume that all relevant

agents to the representative bank’s planning problem are treated equally,

regardless of their generation. Given that runs are unanticipated, it follows

that all current and future depositors are offered a deposit contract that spec-

ifies a “short-term” steady-state payoff (D1,m, D2,m) which maximises their

expected utility and is, therefore, ex-ante identical for a given m. We show

that within any cycle, a feasible and stationary transition path of investment

in both available technologies to a “short-term” steady-sate exists, along

which the expected utility of all the members of all generations is constant.

However, in order to generalise the bank’s planning problem for any cycle

during the crisis, we need to address two important issues. The first concerns

the treatment of the newborn agents at the time period when a run takes

place, given the assumed sequence of events within each time period t and

the assumption of equal treatment of all relevant agents. More specifically,

for any given time period t within the cycle m, the deposit contract that the

bank offers to newborn agents in exchange for their endowment is identical
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to the one offered to the newborn agents of the previous generation since

the bank can not anticipate a sunspot run. If a run occurs at the same

time period, then the current period of cycle m (t = tm) is also the first

period (t = 0) of the next cycle m+1 for the surviving bank. In other words,

successive cycles overlap in the time period when a run takes place. Provided

that runs are unanticipated, we treat these newborn agents as agents of the

previous cycle so that the bank does not renege on the initial agreement and

honour its promised payoffs4.

The second point refers to the relationship between the payments of the

two different types of depositors within a cycle. We assume that the coef-

ficient of depositors’ relative risk aversion is sufficiently high such that the

incentive compatibility constraint that arises in our analysis in order to pre-

vent depositors’ misrepresentation of their type, binds for a newly formed

bank. This is in accordance with Bencivenga and Smith (1991)[5] who pro-

vide a necessary condition that financial intermediation can be justified for

a high level of depositors’ risk aversion, and with von Thadden (2002)[21]

where a non-arbitrage incentive compatibility constraint is more likely to

bind at all times. In our model, this assumption provides a necessary con-

dition which ensures that the relationship between the payments, offered to

both types of depositors within the same cycle, is the same for any surviving

bank during the crisis. It also determines whether the resulting difference

equation of successive “short-term” equilibrium payoffs takes a linear or non-

linear form.

3 Bank’s Planning Problem

We commence the analysis of financial intermediation by considering a repre-

sentative bank’s planning problem at time t = 0 for a given cycle m. At any

particular point of time, the bank in question accepts deposits and makes

4The case where agents born in the time period when a run takes place are treated as
agents of the next cycle, so that the bank renege on the initial contract, has been analysed
in my PhD thesis where i have shown that similar results can be obtained.
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investment in the available technologies. As any other bank within the com-

petitive market, it is modelled as an infinitely lived financial intermediary

since bank runs are assumed to be “sunspot” phenomena that are unantic-

ipated by the bank. Provided that all the agents participate in the bank’s

deposit contract and deposit their endowment, the relevant agents to this

planning problem are agents who are born at and after time t = 0. Since the

bank does not renege on the initial contract, following the assumed sequence

of events within each period, the agents who deposit their funds at t = 0

and have been offered a contract similar to that offered to the agents born

in the previous cycle, they receive the full proceeds of their contract, as they

are specified by the contract’s terms. For the bank to be able to honour the

promised payoffs to depositors, the following sequential budget constraints

must be satisfied which specify that in each period bank’s liabilities (LHS)

should be equal to its assets (RHS) due to the assumed intense competition

in the banking system.

0 = xm − (S0, m + I0, m) for t = 0

πD1, 0, m−1 = 1 + ymR + S0, m − (S1, m + I1, m) for t = 1

πD1, 1, m + (1− π)D2, 0, m−1 = 1 + RI0, m + S1, m − (S2, m + I2, m) for t = 2

πD1, t−1, m + (1− π)D2, t−2, m = 1 + RIt−2, m + St−1, m − (St, m + It, m) for t ≥ 3

(3.1)

For any cycle m, let {St, m} and {It, m} denote sequences {S0, m, S1, m, S2, m, ...}
and {I0, m, I1, m, I2, m, ...}, respectively. In the same way, let D1, t, m and D2, t, m

denote the payments offered to newborn agents who deposit their endow-

ments at period t, if they withdraw their deposits at t + 1 or t + 2, respec-

tively. The highly competitive environment in the banking system compels

the representative bank to choose its investment portfolio such as to maximise

the expected utility of the newborn agents within each time period in order

to attract new deposits, subject to the above sequential budget constraints,

which therefore should hold with equality. Bank’s liabilities incorporate the
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payments to depositors who are eligible to withdraw (i.e. without regard to

runs) and become stationary at t ≥ 3 after all the impatient and patient de-

positors born at t = 0 have been served at t = 1 and t = 2, respectively. On

the other hand, for any time period within a cycle, the bank’s assets consist

of the deposits made by the current newborn generation, and the returns of

the investment made in the productive and storage technology (two-periods

and one-period ago, respectively) and comes to maturity at the current pe-

riod. After all legitimate liabilities have been met, the rest of the available

resources are allocated in the two available investment technologies. In order

to generalise our analysis, we have denoted as xm the resources available for

investment at t = 0 which are allowed to be different from new deposits, and

ym the resources that are invested in the long-term technology during the

previous cycle, where {xm, ym} ≥ 0.

From the above formation of the bank’s planning problem we can observe

that one solution would be for the bank to offer a high payoff to newborn

agents at t = 1 and without regard to future generations, subject to the above

sequential budget constraints and the incentive compatibility constraint that

arises in our model, in order to drive its competitors out of the market and

enjoy monopoly profits in future periods. However, due to major concep-

tual and technical difficulties in forming the set of all possible strategies, we

assume that all relevant agents, regardless of their generation, are treated

equally. Hence, our analysis is limited to steady-state payoffs that offer all

current and future depositors an identical ex ante payoff under incentive com-

patibility. Thus, let (D1, m, D2, m) denote the ex ante steady-state payoff. Of

course, the problem of determining the optimal payoffs is the same in any

time period and therefore we consider that the bank solves the expected util-

ity maximisation problem at t = 0. In addition, the resulting allocation in

this economy is different from that of the social planner. The social planner

does not face any competitive pressures and its only objective is to max-

imise the expected utility of the depositors across the whole time horizon of

a cycle according to some aggregate welfare function (as in Allan and Gale

(1997)[1]).
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Since the deposit contract terms are time independent, the sequential

budget constraints can be written as:

0 = xm − (S0, m + I0, m) for t = 0

πD1, m−1 = 1 + ymR + S0, m − (S1, m + I1, m) for t = 1

πD1, m + (1− π)D2, m−1 = 1 + RI0, m + S1, m − (S2, m + I2, m) for t = 2

πD1, m + (1− π)D2, m = 1 + RIt−2, m + St−1, m − (St, m + It, m) for t ≥ 3

(3.2)

Provided that all relevant agents receive the same payoff independently

of their generation, a budget-feasible steady-state payoff (D1, m, D2, m) is de-

fined.

Definition 3.1 A steady-state payoff (D1, m, D2, m) is budget feasible if there

exist some nonnegative {It, m} and {St, m} such that the conditions described

by 3.2 hold.

To simplify the notation, denote am = πD1, m + (1 − π)D2, m the bank’s

standard liabilities for each time period t ≥ 3. Given the above definition of

the steady state, we derive the steady-state feasibility conditions and the con-

ditions on {It, m, St, m} which satisfy the feasibility condition and determine

the transition path of the investment technologies towards this steady-state

allocation.

Proposition 3.2 A necessary condition for a steady-state payoff (D1, m, D2, m)

to be budget feasible is that D1,m and D2,m satisfy

Bm(D1, m, D1, m−1, R) :
2 (1− am)

R− 1
+ 2− πD1, m + R (xm + ym)− am−1 = 0

(3.3)

In particular, the sequential budget constraints are satisfied by the follow-

ing nonnegative {It, m, St, m} when ymR− πD1, m−1 > 0 :5

5The alternative set of conditions on {It, m, St, m}, when ymR − πD1, m−1 < 0 that
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St, m =





0 for t = 0 and t = 2λ, λ ∈ Z++

ymR− πD1, m−1 for t = 1

R− am for t = 2λ + 1, λ ∈ Z++

It, m =





xm for t = 0
2(am−1)

R−1
− 1 for t = 2λ, λ ∈ Z++

1 for t = 2λ + 1, λ ∈ Z+

where Z+ and Z++ denote the set of nonnegative and positive integers,

respectively.

(Proof: see appendix)

Despite the fact that there is no aggregate uncertainty about the with-

drawal demand in our model, so that the bank’s deposit contract can offer

the optimal payoffs to both types of depositors, when depositors are served

sequentially on a first-come first-served order, the bank cannot distinguish

their individual type. Due to this informational disadvantage of the bank,

patient depositors in the middle period of their life, instead of waiting to

withdraw D2, m that is designed for their type may find optimal to misrepre-

sent themselves initially as impatient by withdrawing D1, m, and then emulate

the newborn agents of the current generation by redepositing their funds. In

this way, they will receive a payment of D2
1, m at the last period of their life

in which they derive utility from consumption. An incentive compatibility

constraint should be introduced to ensure that the utility from consumption

they derive in the final period of their life by misrepresenting themselves as

impatient and redepositing their funds is at least less than the utility from

consumption that they could derive by waiting to withdraw and consume

the payment designed for their type6. Simplifying for the utility function,

satisfy the sequential budget constraints with equality violate the nonnegativity condition
and, therefore, is ignored.

6According to Fulghieri and Rovelli (1998)[15] this informational asymmetry is re-
moved if the bank could introduce age-dependant restrictions on the deposit contract.
Under these circumstances, from the bank’s maximisation problem it follows that the
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the incentive compatibility constraint can be expressed in terms of payments.

The problem that the representative intergenerational bank has to solve

within any cycle in order to determine the optimal deposit contract’s payoffs

is;

Problem 3.3 The intergenerational bank maximises depositors’ expected util-

ity

max
D1, m D2, m

{π U (D1, m) + (1 − π) U (D2, m)} (3.4)

subject to:

the feasibility constraint as described in Proposition 3.2

Bm(D1, m, D1, m−1, R) :
2 (1− am)

R− 1
+ 2− πD1, m + R (xm + ym)− am−1 = 0

and an incentive compatibility constraint

D2, m ≥ D2
1, m (3.5)

where, the bank’s investment decisions between the two alternative in-

vestment technologies are chosen according to Proposition 3.2. To simplify

notation, denote wm(D1, m−1, R) = R (xm + ym)− am−1 and vm(D1, m, R) =

Bm−wm, where wm captures the net resources available for investment after

all the bank’s commitments with respect to the previous cycle have been

met so that it depends on the previous cycle’s equilibrium payoff, and vm

represents the assets and liabilities of the current cycle so that the budget

constraint holds with equality.

In our analysis about the transition towards the “long-term” steady-state

equilibrium, we must ensure that the steady-state allocation the surviving

bank can attain in any cycle is superior to the steady-state allocation that

“Golden Rule” levels of investment and consumption smoothing could be achieved. How-
ever, the anonymity of the deposit contract implies that this information asymmetry always
exists.
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newborn agents of the next generation can obtain if they form a new bank.

This requirement imposes a lower boundary on the resources available for

investment after a run has taken place. In other words, the intermediary will

“stay in business” if after any given run, it has been left with more resources

than the aggregate endowment of the next generation of agents.

Hence, when newborn agents of a particular generation decide to form a

new bank (we use the subscript N) at any period, then the current available

resources of the newly formed intermediary are equal to the endowments

of the newborn agents, and no prior investment comes to maturity in the

following period.

xN = 1

yN = 0 (3.6)

However, in this setting there is no previous cycle, and therefore, no out-

standing liabilities that depend on the previous cycle’s equilibrium payoff.

As a consequence, the sequential budget constraints of the bank’s planning

problem can not be described by (3.2)7. In order to check whether a potential

“long-term” steady-state equilibrium payoff is sufficiently high so that new

generations do not have incentives to form a new bank, we need to derive a

condition such as the budget constraint 3.3 becomes identical to the budget

constraint of a newly formed bank. This is when R (xN + yN) − aN−1 = 0,

or alternatively, wN = 0. Consequently, when a run takes place, the inter-

generational bank survives the run when wm ≥ 0.

In order to simplify the transitional dynamics towards a “long-term”

steady-state equilibrium payoff when we allow for successive runs to occur,

we have assumed that the incentive compatibility constraint binds for a newly

formed bank, which is a necessary assumption to ensure that the constraint

also binds for any surviving bank, and is also consistent with our model. This

7The sequential budget constraints, as well as the general budget constraint, are dis-
cussed in Proposition 5 by Qi (1994)[19], p. 401.
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is more likely to be the case when the agents’ degree of relative risk aversion

is sufficiently high 8. The necessity of this assumption derives from the bank’s

maximisation problem where we can observe that if the constraint binds for

a newly formed bank, which has the lowest available resources for investment

and therefore offers the lower equilibrium payoff, it also binds for any other

allocation that a surviving bank can offer. In terms of consistency, we start

with a bank that prior to any run could achieve the “Golden Rule” level of

consumption smoothing but due to the asymmetry of information the about

depositors’ age, the incentive compatibility constraint binds. Therefore, is

consistent in our analysis to consider that the relationship between the pay-

ments of both types of depositors for any cycle is described by this constraint

so that it binds at all times. Hence, welfare comparison between “short-term”

steady-states can be simplified to a simple comparison of a payment designed

for either type of depositor or to a comparison of the net resources that re-

main available for investment (provided that {It, m, St, m} are nonnegative),

which in turn determines the relationship between bank’s liabilities across

different “short-term” steady-states. Hence, when wm = wN the incentive

compatibility constraint 3.5 binds. It also indicates that payments designed

for the two types of depositors are related in a nonlinear manner, so that the

relationship between successive equilibria is also nonlinear. This gives rise to

a nonlinear system of first-order difference equations.

Commencing the analysis on the effects of a sequence of bank runs to

the bank’s financial stability, suppose that, initially (m = 0) an infinitely-

lived bank is in place. Following the standard approach in the literature

in determining the planning problem of an infinitely lived intermediary at

t = 0, the relevant agents, apart from the agents who are born at and after

8More specifically, assuming a utility of consumption function of the form U(C) =
C1−γ

1−γ , where γ the coefficient of relative risk aversion, the first order condition of the

maximisation problem 3.3 will be D2, m =
(

R+1
2

) 1
γ D1, m. In order for the incentive com-

patibility constraint to bind for a newly formed bank it follows that
(

R+1
2

) 1
γ ≤ D1, N

should hold. Substituting for D1, N , which can be obtained by substituting wm = 0 into
3.3, and solving for γ we derive that the coefficient of relative risk aversion should be

γ ≥ ln(R+1
2 )

ln D1, N
in order for the incentive compatibility constraint to bind.
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t = 0, are also the impatient depositors of the previous generation (t = −1)

who have deposited all their endowment. Analysing the sequential budget

constraints as they described by (3.2), we observe that, at period t = 0,

the resources available for investment are equal to the endowment of the

newborn agents, deposited in the current period. In addition, at period

t = 1, the investment made in the long-term technology at period t = −1,

(i.e. I−1, 0 = 1), comes to maturity and the bank has also to serve the

impatient agents of generation t = −1 who are in the last period of their

life and withdraw on aggregate (1 − π)D2, 0. For computational ease and in

order to keep our analysis consistent, we incorporate this extra liability into

y0 which is discounted by R. Hence, for m = 0;

x0 = 1

y0 = 1− (1− π)D2, 0

R
(3.7)

Note also that the previous cycle is identical to the current cycle, and

therefore am−1 = am. Substituting {x0, y0} into the feasibility constraint

3.3, the latter it becomes:

a0 = R (3.8)

where a0 = πD1, 0 + (1− π)D2, 0.

Hence, the steady-state payoff (D1, 0, D2, 0) is such as the bank’s standard

liabilities are equal to the returns of the long-term investment. Solving the

bank’s maximisation problem we can derive that the incentive compatibility

constraint binds, so that 1 < D1, 0 < R < D2
1, 0. Obviously, new generations

of agents do not have incentive to form a new bank since w0 > 0, and therefore

can achieve a higher level of expected utility (i.e. D1, N < D1, 0). Further-

more, by substituting {x0, y0} and equation 3.8, where a0 = am−1 = am,

into the conditions for {It, m} and {St, m} in Proposition 3.2, we observe that

{It, 0} = 1 and {St, 0} = 0 so that for any given period during m = 0, the
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bank invests all the available resources on the productive technology.

In examining how bank’s financial stability evolves during the crisis we

first need to determine the initial allocation of the discrete dynamical system

that we will derive. Of course, this allocation should be feasible and therefore

we require that that the bank survives the first run, or w1 > 0. In particular,

provided that bank runs are unanticipated shocks, let the first run occur

at any time period t where any excess withdrawals are financed out of new

deposits of the current generation.9 This implies that the available resources

for investment at t = 0 are what is left out of new deposits after all the

impatient depositors of the previous generation who withdraw early have

been served. The investment made in the previous period in the long-term

technology remains unaffected, where It, 0 = 1. Therefore, for m = 1;

x1 = 1− (1− π)D1, 0

y1 = 1 (3.9)

where we require that w1 > 0 for the bank to survive at least the first

run. The “short-term” steady-state is such as D1, 1 < D1, 0 < R10 so that

a1 < a0 = R. Checking its feasibility we derive that the conditions on

{It, 0, St, 0}, as they described in Proposition 3.2, are satisfied and therefore

the steady-state equilibrium can be sustained.11

9If the excess withdrawals just exhaust the new deposits from the newborn agents,
then x1 = 0 and y1 = 1 so that w1 = 0. Similarly, in the alternative case where the
bank liquidates the long-term investment made in the previous period in order to meet
any excess withdrawals which just exhaust the resources obtained, then x1 = 1 and y1 = 0
so that again w1 = 0 and the bank “goes out of business”. However, since r < 1 resources
are wasted and therefore liquidation is never an option.

10It is sufficient to show that the difference between w0 and w1 is negative. From our
analysis, w0 − w1 = πD1, 0 − (R(x1 + y1)− a0) and from a0 = R the difference can be
simplified to (1− π)D1, 0 (R−D1, 0) > 0 since D1, 0 < R.

11For the investment in productive and storage technology, we observe that I2λ,1 > 0,
S1, 1 = R−πD1, 0 > 0 and S2λ+1, 1 = R−a1 > 0 since a1 < a0 = R, respectively. If instead
the excess withdrawals where financed by liquidating the long-term investment made in
the previous period, then the resources available for investment at the first two periods of
the first cycle would be x1 = 1 and y1 = 1− (1−π)D1, 0

r where r ∈ (0, (1− π)D1, 0] for the
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After the first run has taken place, Proposition 3.2 indicates an impor-

tant property of the transition path of the investment in the two available

technologies towards feasible steady state equilibria.

Property 3.4 For any m ≥ 1, the bank’s investment in {It, m, St, m}, and

therefore its liquidity position, becomes periodic with a two-period periodicity

in order for a steady-state equilibrium to be sustained. During even periods

the bank holds an illiquid portfolio of assets, and during odd periods it holds

a liquid portfolio of assets.

This property of the “short-term” equilibria arises in our model from the

equal treatment assumption and the nature of the investment technologies.

When the first run occurs, the smooth pattern of the investment in the two

technologies (It, 0 = 1 and St, 0 = 0) is disrupted. The patient agents who

trigger the run receive the payment that is designed for impatient depositors

instead of the higher payment that is designed for their type (D1, 0 < D2, 0).

Hence, the surviving bank finances relatively inexpensive its rather expensive

liabilities out of the new deposits so that the total resources for investment

at t = 0 are less than the endowment of a new generation, but greater at

t = 1 since the investment in the productive technology that was planned to

meet its standard liabilities comes to maturity. Provided that the bank does

not renege on the initial contract, the sequential budget constraints become

stationary for t ≥ 3; after all depositors born at t = 0 have been served.

This process is repeated for any other cycle. From the equal treatment as-

sumption, the two-period periodicity of the bank’s portfolio is perpetuated

for the whole duration of each cycle as the bank offers the same allocation

to all agents within the current cycle.

As a result, the liquidity of the bank’s investment portfolio becomes pe-

riodic with a two-period periodicity so that periods of high liquidity are

followed by periods of low liquidity. From Proposition 3.2 we observe that

bank to survive the first run. Note, however, that w0 − w1 = πD1, 0 − Ry1 = −S1, 1 and
therefore the “short-term” equilibrium is not feasible.
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bank’s total resources during even periods (t = 2λ) in any cycle, net of new

deposits, are equal to the return of the long-term term and short-term in-

vestment made two and one periods ago, respectively; RI2λ−2, m + S2λ−1, m =

R
(

2(am−1)
R−1

− 1
)

+ R − am. Subtracting the standard liabilities am we ob-

tain that the total available resources for investment, net of new deposits,

during even periods are 2(am−R)
R1

< 0, since am < R is required in order for

S2λ+1, m > 0 and the allocation to be feasible. Hence, at even periods the

bank relies on new deposits in order to meet its standard liabilities, and

therefore we argue that during even periods it holds an illiquid portfolio of

assets. In a similar manner, the resources net of new deposits during odd

periods (t = 2λ + 1) in any cycle are RI2λ−1, m + S2λ, m = R, and its total

resources R− am > 0 for a feasible allocation. Hence, the returns from past

investment are greater than its standard liabilities and therefore we argue

that during odd periods it holds a very liquid portfolio of assets. Overall,

the assumptions of our model impose a transition path of bank’s investment

portfolio towards these equilibria. The liquidity of bank’s portfolio, there-

fore, depends only on the model’s parameter values and on the timing of runs;

during periods of low or high liquidity. The periodicity of the investment of

the two available technologies implies that the liquidity of bank’s portfolio

becomes also periodic, which in turn determines the bank’s ability to meet

any excess withdrawals in case of a run for any m ≥ 1.

From the above property, xm and ym can be determined and the system

of difference equations can be derived. In this way, consider the period tm−1

which is the last period of cycle m − 1 during which the m run takes place

and therefore constitutes the initial period of the m cycle.

If tm−1 is a period of low liquidity (even period), the total resources avail-

able for investment, incorporating new deposits, are 2(am−1−1)
R−1

−1. Therefore,

xm is equal to the total resources minus the excess withdrawals, and ym is

equal to the investment in the productive technology made in the odd period

of the previous cycle (i.e. I2λ+1, m−1).
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xm =
2(am−1 − 1)

R− 1
− 1− (1− π)D1, m−1

ym = 1 (3.10)

On the other hand, if tm−1 is a period of high liquidity (odd period),

the total resources available for investment, incorporating new deposits are

1 + R− am−1. Therefore, xm and ym are:

xm = 1 + R− am−1 − (1− π)D1, m−1

ym =
2(am−1 − 1)

R− 1
− 1 (3.11)

Hence, depending on tm−1, by substituting xm and ym into the budget

constraint, incorporating the incentive compatibility constraint, we obtain a

function Bm(D1, m, D1, m, R) = 0 which is an implicit function of the differ-

ence equation between the two successive “short-term” equilibrium payoffs.

Let the “long-term” steady-state be (D1, M , D2, M). Setting D1, m = D1, m−1,

we obtain a function Bm(D1, m, R), the solution of which (fixed points) may

constitute potential “long-term” equilibria if they satisfy our conditions on

{St, M , It, M} (i.e. BM(D1, M , R) = 0). The “long-term” steady state is bud-

get feasible and therefore can be sustained only when wM > 0, S1, M > 0,

and D1, M ≤ D1, 0 in order for S2λ+1, M to be positive.12

As the reader can notice, the evolution of bank’s liquidity position dur-

ing the whole crisis is described by a set of difference equations. However,

provided the randomness of a bank run event within each cycle when we

consider the whole crisis, the system becomes unpredictable since through

the process of iteration, fixed points and orbits will depend on the timing

of these events. Hence, the system becomes very unstable and may exhibit

chaotic behaviour.

12From equation 3.8 we can observe that for any D1, M ≤ D1, 0 it follows aM ≤ a0, and
therefore S2λ+1, M > 0.
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4 Bank’s Financial Stability with Reserve Re-

quirement and Borrowing

The erratic behaviour that arises in our model results from the periodicity

of the liquidity of bank’s portfolio, which in turn depends only on the tim-

ing of runs and the model’s parameter values, since the investment in the

two available technologies is determined by Proposition 3.2. However, the

introduction of the possibility of external borrowing can resolve the unpre-

dictability of banks’ liquidity provision. In this respect, we consider that a

Central Bank responsible for the conduct of monetary policy and the sound-

ness of the banking system is in place. On its role as a Lender of Last Resort

can improve the financial stability of the banking system through injections

of capital to illiquid intermediaries by providing access to a discount window.

In addition, as a part of its responsibility in the formulation and implemen-

tation of monetary policy, a minimum reserve requirement is introduced as

a way to control banks’ liquidity.

These policy measures can smooth the liquidity of banks’ portfolio over

periods of financial distress and ensure the soundness of the banking system

over the whole period of crisis. Following the standard literature, we view a

Central Bank as being largely motivated by the negative consequences that

bank failures, originating in liquidity problems, have on the stability of the

financial system. Banks are identical and, according to property 3.4 are mod-

elled as illiquid but solvent institutions since we require that they survive the

first withdrawal shock. In addition, the Central Bank has full information

about their liquidity position, and therefore, moral hazard problems involved

in direct lending do not arise in our model.

In this setting, suppose that a Central Bank is in place which has ac-

cess to unlimited resources and lends funds through a discount window to

illiquid but solvent banks. Let τ ∈ [0, 1] be the one-period interest rate for

one unit of resources borrowed, and κm ≥ 0 the amount of resources that

the central bank lends during a period of low liquidity. Therefore, a bank

with an illiquid portfolio of assets that borrows an amount of resources κm at
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t = 0 has to repay an amount κm(1 + τ) at period t = 1, during which it has

high liquidity. In this way, the Central Bank can impose τ and κm through

a minimum reserve requirement, to smooth the liquidity of banks’ portfolio

over the periods characterised by an abnormal increase in withdrawals.

We follow a simple formulation of the problem where τ and κm are choosen

such as banks’ liquidity is perfectly smoothed during the event of a run. In

this way, the timing of runs becomes irrelevant in our model since the evolu-

tion of liquidity over different cycles can be described by a single difference

equation which we can analyse and examine whether or not is possible for a

representative bank to survive a crisis.

Let the amount κm borrowed by an illiquid bank that experiences a with-

drawal shock be sufficiently high such that its available resources for invest-

ment at the current period are equal to the resources that it holds during

the periods of high liquidity, or alternatively x2m−1 = κm + x2m−2, for every

m ≥ 2. This amount is repaid after one period where the bank has sufficient

liquidity after the investment in the long-term technology comes to maturity.

The interest rate charged by the central bank is set such as to ensure that ym

remain the same independently of the time periods of runs, or alternatively

y2m−1 = y2m−2 − κm(1+τ)
R

, for every m ≥ 2. Clearly, the cost of borrowing an

amount κ for one period at an interest rate τ , has to be discounted over two

periods by R in order to be subtracted from the investment in the long-term

technology. Doing the relevant substitutions from equations 3.10 and 3.11,

we derive;

τ =
R− 1

R + 1

κm =
R− am−1

τ
(4.1)

What we consider here is a variation of the minimum reserve requirement

regulatory policy which we will refer to as “adjustable” reserve requirement

as it provides more flexibility to banks’ investment portfolio. Such policy is
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implemented by imposing that at the time period where resources are below

the level that a solvent bank has during periods of low liquidity, they should

increase to the level at which they are at periods of high liquidity. When the

run m is triggered and resources fall below 2(am−1−1)
R−1

− 1, the bank has to

borrow from the central bank a sufficient amount of resources km to restore

its liquidity position bank to its high level during the odd periods. Provided

that the unit cost of borrowing for one period is determined by 4.1, the timing

of runs during the crisis becomes irrelevant as xm and ym are always given

by equation 3.11. This “adjustable” policy of reserve holdings, apart form

eliminating the unpredictability of banks’ liquidity position during runs, it

also encourages an optimal allocation of resources, in contrast with a flat

minimum reserve requirement which reduce investment in the productive

technology and therefore social welfare. This is simply because the thresh-

old level of reserves at which the policy is enforced is lower than the actual

level of liquid reserves that the bank is required to hold when the policy is

implemented, and reserves are adjusted only when runs are triggered. This

facilitates higher investment in the productive technology, and therefore, an

optimal allocation of resources for the whole duration of a cycle, in contrast

with a constant minimum required level of reserves for the whole duration of

the cycle.

Consequently, irrespectively of the time period of runs, the bank’s re-

sources available for investment and distribution at the first two periods of

each cycle are given by equation 3.11 for any m ≥ 2. By substituting wm

into the budget constraint and setting D1, m = D1, m−1, the later becomes

Bm(D1, m, R) = R2− (1− π)(R− 1)D2
1, m−RD1, m the roots of which deter-

mine the potential “long-term” equilibria. The discriminant of the quadratic

function is always positive, and therefore, bifurcations do not occur for our

model’s parameters. The two fixed points are;

D1, M =
±R

(√
1 + 4(1− π)(R− 1)− 1

)

2(1− π)(R− 1)
(4.2)

from which we accept the positive root by the nonnegativity condition on
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equilibrium payments. This payoff can constitute a potential “long-term”

equilibrium only if it is feasible.

Lemma 4.1 The positive root satisfies the conditions on {It, M , St, M} and is

monotonically increasing in R. It constitutes a potential “long-term” steady-

state equilibrium when the return of the long-term investment is sufficiently

high such as wM > 0.

(Proof: see appendix)

The above lemma guarantees that the “long-term” steady state equilib-

rium payoff we have derived is feasible. However, whether or not the system

converges towards this payoff depends on its nature which is characterised by

the derivative of any particular “short-term” equilibrium payoff with respect

to the previous equilibrium payoff, when is evaluated at this fixed point. By

substituting xm and ym as described by equation 3.11 into the budget con-

straint Bm in equation 3.3 and evaluating the derivative at D1, M , we derive;

∂D1, m

∂D1, m−1

∣∣∣∣
D1, M

= 1−

R + 2(1− π)(R− 1)D1, M

π +
2(π+2(1−π)D1, M)

R−1


 (4.3)

The value and sign of the above derivative characterises the transition of

successive equilibrium payoffs. If the absolute value of the derivative is less

than unity, then the “long-term” equilibrium is referred to as “attractive” and

the successive equilibrium payments will converge towards that equilibrium.

Otherwise, the “long-term” equilibrium is referred to as “repelling” since

successive equilibrium payoffs diverge from that payoff, and consequently

it can not be achieved. Moreover, the time path towards or away from

the “long-term” equilibrium steady-state is determined by the sign of this

derivative; if positive, the system converges (or diverges) monotonically, and

if negative, the system oscillates towards to (or away from) the equilibrium.

However, an important property of 4.3 enables us to characterise the

“long-term” steady-state equilibrium.
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Property 4.2 The derivative described in 4.3 is always less than unity and

monotonically decreasing in R.

(Proof: see appendix).

The above property suggests that, for a given π, cycles (orbits) nearby the

“long-term” steady-state will converge towards the equilibrium for low values

of R, but diverge as the returns of the productive technology increase. The

monotonicity of ∂D1, m

∂D1, m−1

∣∣∣
D1, M

in terms of R enables us to define two thresh-

old values of R which determine the nature of the “long-term” steady-state

equilibrium. Let R the value of R for which ∂D1, m

∂D1, m−1

∣∣∣
D1, M

= 0 and R the

value of R for which ∂D1, m

∂D1, m−1

∣∣∣
D1, M

= −1, for a given π, as it is indicated by

equation 4.3. In the analysis that follows, the the transition towards “long-

term” steady states in each case is graphically displayed through graphical

iteration using web diagrams.

Initially, for low values of R such as R < R it follows that 0 <
∂D1, m

∂D1, m−1

∣∣∣
D1, M

<

1 so that Bm has a positive slope. The fixed point is an attracting equilib-

rium, and the system of the difference equation which describes successive

cycles’ equilibrium payoffs converge monotonically to this “long-term” equi-

librium. This case is illustrated in figure 1 where on the horizontal and

vertical axis we measure the successive equilibrium payoffs. The area where

a “long-term” equilibrium is feasible is delimitated by the area between D1, N

and D1, 0. The payoff D1, N is the lower boundary value for D1, M because for

any equilibrium payment below the payment that newborn agents can reach

by forming a new bank it would imply that wm < 0, so one of our conditions

would be violated, in a given cycle m. Also, D1, 0 is the upper boundary value

for D1, M because for any equilibrium payments above D1, 0 the nonnegativ-

ity condition on S2λ+1, m would be violated. The “long-term” steady-state

payoff is determined by the intersection of Bm(D1 m, D1, m−1, R) = 0 func-

tion, which is the graphical illustration of the general budget constraint and

represents the relationship between payoffs of successive cycles, and the 45

degrees line through the origin. Successive equilibrium payments converge
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monotonically towards the long-term equilibrium.

Despite the fact that the bank holds a very liquid portfolio of assets,

for very low values of R, the “long-term” equilibrium may violate the lower

boundary so that wM < 0. This case is represented by the Bm, 1 = 0 line

and the fixed point M1 which does not constitute a long-term equilibrium

since, after a particular run has taken place, newborn agents will prefer to

form a new bank. For example, for π = 0.4 and R = 1.2, D1, M = 1.0827 <

D1, N = 1.0943 < D1, 0 = 1.1196 and dD1, m

dD1, m−1

∣∣∣
D1, M

= 0.916. However, for

higher values of R such that wM > 0, the fixed point such as M2 constitutes

a “long-term equilibrium” and is determined by the intersection of Bm, 2 = 0

and the 45 degrees line.

In terms of figure 1, we analyse the path of successive cycle’s equilibrium

payoffs by the process of graphical iteration, where the arrows on the graph

indicate the direction of iteration. From an initial value, we use Bm, 2 = 0

line to map successive payoffs on the vertical axis, and the 45 degrees line to

transplot them to the horizontal axis. Starting from D1, 1 on the 45 degrees

line which is the first point of the orbit, we move down towards the Bm, 2 = 0

line which maps D1, 1 into D1, 2 and we read its height on the vertical axis as

the value of D1, 2. Next, in order to map D1, 2 into D1, 3, firstly we transplot

D1, 2 on the horizontal axis (the second point of the orbit), and then down

towards the Bm, 2 = 0 line that maps D1, 2 into D1, 3 as we can read on the

vertical axis. By repeating this process we can trace out all the subsequent

values of D1, m until we reach the “long-term” steady state equilibrium at

point M2. Hence, for low values of R, but sufficiently high to ensure that

the surviving bank “stays in business” in the long-term for a given π (i.e.

wM > 0), the system converge monotonically to the “long-term” equilibrium

such as point M2 in figure 1. For example, for π = 0.75 and R = 2, D1, N =

1.3642 < D1, M = 1.6568 < D1, 0 = 1.7015 and ∂D1, m

∂D1, m−1

∣∣∣
D1, M

= 0.276035.

The monotonic transition towards the “long-term” steady state is ex-

plained by the positive relationship between successive “short-term” equi-

librium payoffs, and the effect of R on D1, 0 which, in turn, affects the first

allocation of the system D1, 1. Indeed, from 3.8 we can observe that D1, 0 is
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increasing in R and therefore, for very low values of R, the cost of financ-

ing excess withdrawals out of new deposits is low. The remaining resources

available for distribution and investment during the first cycle are sufficiently

high such as D1, 1 is relatively high in comparison to the initial allocation.

Of course, this effect is perpetuated between successive equilibrium payoffs

through the iteration process, and diminishes over time as is indicated by the

slope of Bm which is less than unity, until we reach the “long-term” steady-

state.

Moreover, for higher values of R such as R < R < R, it follows that

0 <
∂D1, m

∂D1, m−1

∣∣∣
D1, M

< −1 so that the “long-term” equilibrium is attracting

and the system of difference equation converges to this equilibrium in an os-

cillatory way. The relationship between successive “short-term” equilibrium

payoffs is graphically represented by Bm, 3 = 0 line which has a negative

slope less than unity, and the long-term equilibrium by point M3 where the

Bm, 3 = 0 line crosses the 45 degrees line. Similarly to the previous case, D1, M

is bounded to the area between D1, N and D1, 0 in order for our conditions to

be satisfied. As before, we use the Bm, 3 = 0 line to map successive equilib-

rium payoffs on the vertical axis, and then use the 45 degrees line to transplot

them to the horizontal axis. Starting from D1, 1 on the 45 degrees line, we

map D1, 1 into D1, 2 by moving upwards towards the Bm, 3 = 0 line. In order to

map D1, 2 into D1, 3, firstly we transplot D1, 2 on the horizontal axis by moving

towards the 45 degrees line, and then downwards towards the Bm, 3 = 0 line.

By continuing this process of graphical iteration, where the direction of iter-

ation is indicated by the arrows, successive equilibrium payoffs oscillate and

converge to the “long-term” steady-state equilibrium point M3. For example,

for π = 0.75 and R = 2.5, D1, N = 1.4848 < D1, M = 1.9371 < D1, 0 = 2 and
∂D1, m

∂D1, m−1

∣∣∣
D1, M

= −0.29967.

For the limit case where R = R, it follows that dD1, m

dD1, m−1

∣∣∣
D1, M

= −1, and

therefore, the system of difference equations of the “short-term” equilibrium

payoffs rotates on a 2-period constant orbit, as it is illustrated in figure 3. In
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this case, R is sufficiently high so that, as the system oscillates, D1, 2 becomes

identical to D1, 0. In general, D1, 2m−2 = D1, 0 and D1, 2m−1 = D1, 1 for any

m ≥ 2. Despite the fact that non of the conditions on {It, M , St, M} is vio-

lated, the “long-term” equilibrium can not be reached as successive equilib-

rium payoffs rotate on a constant orbit. For example, for π = 0.75 and R = 3,

D1, N = 1.5825 < D1, M = 2.1961 < D1, 0 = 2.2749 and dD1, m

dD1, m−1

∣∣∣
D1, M

= −1.

Consequently, for even higher values of R such R < R, successive equi-

librium payoffs also oscillate but the system of difference equations naturally

“explodes” away from the fixed point so that the upper boundary condition

is violated for m = 2, and therefore D1, 2 will not feasible. In our example,

for any R > 3 when π = 0.75, S2λ+1, 2 becomes negative. This, however,

does not mean that another “short-term” payoff is not feasible. In fact, the

intermediary has sufficient liquidity to offer even a higher allocation than the

one that it could offer prior to any withdrawal shock. For such a high pay-

off though, the binding sequential feasibility constraints are not satisfied as

S2λ+1, 2 becomes negative. The highest feasible payoff that could be offered

in this case is D1, 0 and the system returns to its initial allocation. In this

process, some of the extra resources are wasted and the system rotates on a

2-period constant orbit as is presented in figure 3.

For high values of R, oscillations arise due to the effect of D1, 0 on the

first allocation D1, 1 and the negative relationship between successive cycles’

payoffs. High values of R imply that the cost of financing excess withdrawals

out of new deposits at m = 1 is high, which implies a low D1, 1, but this

cost becomes low at m = 2, which implies a high D1, 2. Again, through it-

eration this effect is perpetuated between successive payoffs and diminishes

when the absolute value of the slope of Bm is less than unity so that we con-

verge to the “long-term” steady state, or increase when the absolute value of

the slope of Bm is greater than unity, so that we diverge from the fixed point.

From the above analysis we generalise our results in the following propo-

sition.
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Proposition 4.3 An infinitely-lived intergenerational bank with an illiquid

portfolio of assets can survive a crisis when external borrowing is available.

The cost of borrowing and the desired level of liquidity determine the transi-

tion path towards a feasible “long-term” steady state allocation.

In our analysis of this section we have consider only some particular val-

ues of κm and τ . Of course there are many other values of these the policy

parameters that the Central Bank can consider in order to ensure the finan-

cial stability of the banking system during a crisis. However, for any other

set of values, the evolution of banks’ liquidity during the crisis will be de-

scribed by a different set of difference equations which will complicate the

problem. In addition, depending on the parameters of our model, this will

result different fixed points and transition paths of “short-term” equilibrium

payoffs which is impossible to predict and analyse.

5 Banks’ Financial Stability without a Cen-

tral Bank

In this section, we examine the evolution of banks’ liquidity over the whole

period of the crisis in the presence of borrowing restrictions. In this case,

banks’ inability to borrow implies that the liquidity of their portfolio of assets

will necessarily be periodic during bank run episodes, new fixed points will

emerge, and on the whole, banks’ financial stability becomes unpredictable

during a crisis. We derive some general properties of these fixed points and

we identify the factors that affect the transition path of successive “short-

term” equilibria .

In the absence of a Central Bank that can perfectly smooth banks’ liquid-

ity during the course of a crisis as we have analysed in the previous section,

new fixed points can arise in our model as potential “long-term” steady state

allocations. The general property 3.4 of our model implies that in this case,

the evolution of banks’ liquidity depends on the timing of bank run episodes,
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which determine the available resources in each cycle. By substituting the

corresponding values of xm and ym into the budget constraint, incorporating

the incentive compatibility constraint, we derive a set of implicit functions of

difference equations (denoted as Bm(D1, m, D1, m−1, R) = 0) that, depending

on whether a bank run occurs at a period of high or low liquidity, describe

the relationship between successive allocations. In this respect, new possible

fixed points may exist. In particular, if the last run before the system settles

takes place at a period of high liquidity then, following our analysis in the

previous section, the “long-term” steady state is given by equation 4.2. On

the other hand, if the last run before the system settles happens at a period

in low liquidity, by substituting xm and ym as given by equation 3.10 into

the budget constraint and setting D1, m = D1, m−1, we obtain the quadratic

function B(D1, m, R) = −(1 − π)(R − D1, m)D1, m, the solutions of which

(fixed points) may constitute potential “long-term” equilibria if they satisfy

our conditions. We derive that this function has two fixed points; D1, M = R

which violates the nonnegativity condition on S2λ+1, M , since D1, M > D1, 0

and may result to a misallocation of resources, and D1, M = 0 which vio-

lates the lower boundary since D1, N > 0. Despite the fact that these new

fixed points violate the feasibility conditions, it is interesting to examine

their properties in order to characterise the behaviour of nearby orbits. By

differentiating the budget constraint with respect to successive equilibrium

payoffs and evaluating the derivative at D1, M = R we obtain;

∂D1, m

∂D1, m−1

∣∣∣∣
D1, M=R

= 1 +
R(1− π)(R− 1)

π(R− 1) + 2 (π + 2(1− π)R)
(5.1)

which is clearly greater than unity and therefore this is a repelling fixed point.

However, when we evaluate the derivative at D1, M = 0, we obtain;

∂D1, m

∂D1, m−1

∣∣∣∣
D1, M=0

= 1− R(1− π)(R− 1)

π(R + 1)
(5.2)

From the above derivative we can observe that D1, M = 0 is an attracting

fixed point since the absolute value of its derivative is less than one, provided

33



that w1 > 0 holds.13 Hence, D1, M = 0 is another fixed point to which the

“short-term” steady states will converge if bank runs occur at periods of low

liquidity. Of course, it is not a feasible “long-term” steady state equilibrium

since in the process of convergence, during a particular run incident, new

generations will prefer to form a new bank and therefore the existing bank

will go “out of business”.

Having identified a second fixed point that successive allocations may

converge to, we can characterise the general behaviour of the system around

these fixed points. Differentiating the implicit functions of the difference

equations with respect to successive “short-term” steady-state equilibrium

payoffs, we derive;

∂D1, m

∂D1, m−1

= −∂Bm/∂D1, m−1

∂Bm/dD1, m

= −∂wm/∂D1, m−1

∂vm/∂D1, m−1

(5.3)

since only the wm term of the budget constraint depends on D1, m−1, and

correspondingly, only the vm term depends on D1, m. However, when we

evaluate the above derivative at the fixed point D1, M = D1, m = D1, m−1,

from the balance budget constraint it follows that ∂wm/∂D1, m−1|D1, M
=

∂BM/∂D1, M − ∂vm/∂D1, m|D1, M
, and therefore it can be simplified to;

∂D1, m

∂D1, m−1

∣∣∣∣
D1, M

= 1− ∂BM/∂D1, M

∂vm/∂D1, m−1|D1, M

(5.4)

Provided that the budget constraint, which is the difference between as-

sets and liabilities, balances at all times we can infer that at the “long-term”

steady state the constraint decreases monotonically in D1, M since higher equi-

librium payoffs correspond to higher liabilities, and therefore more resources

are required for the constraint to remain balanced (i.e. ∂BM/∂D1, M < 0). In

a similar manner, the part of the budget constraint that captures the current

resources (endowments of the new generation) and liabilities of a particu-

13It is clear that the derivative in 5.2 is less than 1. Thus, it is sufficient to show that
is always greater than -1. By developing the inequality and substituting R for a0, we de-
rive that 0 < π (D1, 0 (1 + (1− π)D1, 0) + 2)+w1D1, 0

(
π2 + (1− π)

(
D1, 0 + (1− π)D2

1, 0

))
which always holds for w1 > 0.
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lar cycle (vm) decreases in D1, m as higher equilibrium payoffs correspond to

higher liabilities (i.e. ∂vm

∂D1, m

∣∣∣
D1, M

< 0).14 Therefore, the change in the budget

constraint relative the change in the current cycle’s resources and liabilities,

due to a change in the equilibrium payoff is positive when evaluated at the

“long-term” steady-state (i.e.
∂BM/∂D1, M

∂vm/∂D1, m−1|D1, M

> 0).15 From the above ex-

pression we derive an important property about the transition of successive

equilibrium payoffs around the fixed points we have identified.

Property 5.1 The system of difference equations does not “explode” monoton-

ically away from a “long-term” equilibrium since ∂D1, m

∂D1, m−1

∣∣∣
D1, M

< 1, indepen-

dently of the timing of runs (i.e. {xm, ym}).

In order to identify the factors that affect the nature of the fixed points

that arise in our model and provide some intuition about the behaviour of the

system away from these fixed points, we need to identify the factors that affect

the relationship between successive “short-term” steady state payoffs. For

this reason we use the expression for wm in terms of xm and ym which captures

the resources that remain available for investment from the previous cycle in

order to highlight the importance of the liquidity of the bank’s portfolio at

the time period when runs take place. We have shown that the denominator

in equation 5.3 is negative whereas the numerator can take any sign and can

be written as:

∂wm

∂Dm−1

= R

(
∂xm

∂D1, m−1

+
∂ym

∂D1, m−1

)
− ∂am−1

∂D1, m−1

(5.5)

Hence, the sign of the derivative described in equation 5.3 depends on

the effect that a change in the equilibrium payoff has on the resources that

become available for investment from the previous cycle’s investment deci-

sions (wm). In a similar manner, the magnitude of the derivative depends

on the magnitude of this effect relative to the magnitude of the effect due

14 ∂vm

∂D1, m

∣∣∣
D1, M

= −



2 ∂am
∂D1, m

���
D1, M

R−1 + π


 < 0, where ∂aM

∂D1, M
> 0.

15This can be shown by equations 4.3 and 5.2, when the last bank run before the system
settles occurs at a period of high and low liquidity, respectively.
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to a change in the equilibrium payoff on the assets and liabilities of the cur-

rent cycle (vm). From Property 3.4 it is clear that the values of xm and ym

depend on the timing of runs for the whole duration of the crisis. However,

despite the fact that D1, m−1 can not be explicitly defined when runs occur

at random time periods during a crisis, we can make inferences about the

sign of the above derivative during periods of high and low liquidity of the

bank’s portfolio of assets, since the sequential budget constraints and the

investment in {St, m, It, m} become stationary at t ≥ 3 for any cycle. In

this way, we can make inferences not only about the orbits around the “long-

term” equilibria, but also about the transition paths towards these equilibria.

Consider the last period of the cycle m− 1 during which the m run takes

place and therefore constitutes the initial period of the m cycle. As we have

seen in the previous section, during periods of high liquidity (odd periods),

the total resources available for investment, xm and ym, are given by equation

3.11 from which we compute that ∂xm

∂D1, m−1
< 0 and ∂ym

∂D1, m−1
> 0.16 In this

case, the liquid assets which are used to finance the excess withdrawals, and

consequently the resources available for investment at t = 0, are negatively

related to the previous cycle’s equilibrium payoff. However, the investment in

the long-term technology that comes to maturity at t = 1 is positively related

to the previous cycle’s equilibrium payoff as more resources are required to be

invested in the productive technology in order to maintain higher payments.

Substituting the above derivatives into equation 5.5 we derive that for

any payoffs away from the fixed points, this will become;

∂wm

∂D1, m−1

=
∂am−1

∂D1, m−1

(
R

(
2

R− 1
− 1

)
− 1

)
R + 1

R− 1
−R(1− π)

Of course, we do not know the explicit value of D1, m−1 since this depends

on the timing of withdrawal shocks that have happened in the past, but we

can make general inferences about the sign of the above derivative: since

16When a run happens at odd periods ∂xm

∂D1, m−1
= − ∂am−1

∂D1, m−1
−(1−π) < 0 and ∂ym

∂D1, m−1
=

2
(

∂am−1
∂D1, m−1

)
/(R− 1) > 0.
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∂am−1

∂D1, m−1
> 0 for any surviving intermediary, its sign depends on the para-

meter values. For example, for any R not exceeding 2 the above derivative

will always be positive, whereas for any R no lower than 3 it will always be

negative.17 Hence, independently of the value of D1, m−1, in the case when

runs take place in odd periods, the transition path of successive “short-term”

equilibrium payoffs of the surviving bank does not “explode” monotonically

away from a fixed point. In the case when the system settles at the fixed point

described in equation 4.2 so that runs around this equilibrium take place at

odd periods, nearby orbits may be attracted or repelled depending on the

responsiveness of ym due to a change in D1, m−1 as opposed to that of xm and

am−1, and therefore, on the values of our parameters. This is consistent with

our analysis in the previous section where Central Bank intervention guar-

antees that, independently of the timing of withdrawal shocks within each

cycle, bank’s liquidity remains always at the level that it has during odd

periods. As we have seen from property 4.2 and in our numerical examples,

for a given π, when R = 2 the system monotonically converges to M2, and

for any other higher value less than 3 it oscillates and converges towards M3,

as we have illustrated in figures 1 and 2.

On the other hand, if the run m takes place during a period of low liquidity

(even periods), the total resources available for investment, xm and ym, are

given by equation 3.10 where ym is independent of D1, m−1, and ∂xm

∂D1, m−1
> 0

for a surviving bank since w1 is required to be positive18. Clearly, despite

the fact that the bank holds an illiquid portfolio of assets during the time

period that a run takes place and all excess withdrawals are financed by its

liquid assets, the resources that are available for investment at t = 0 are pos-

17Indeed, for R = 2 we derive that ∂wm

∂D1, m−1
= 3 (π + 2(1− π)D1, m−1)−2(1−π) which

is always positive for a surviving bank since D1, m−1 > D1, N > 1. However, for R = 3
the derivative becomes ∂wm

∂D1, m−1
= −2 (π + 2(1− π)D1, m−1) − 3(1 − π) which is always

negative.
18When a run happens during periods of low liquidity ∂xm

∂D1, m−1
= 2

(
∂am−1

∂D1, m−1

)
/(R −

1) − (1 − π). Substituting R = a0, the expression will become 4(1 − π)D1, m−1 + w1π +
1 − (1 − π)2D2

1, 0, which can be simplified to 4(1 − π)D1, m−1 + w1 (1 + π + (1− π)D1, 0)
which is positive from the requirement that the bank survives the first run.
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itively related to the equilibrium payoff of the previous cycle. This is simply

due to the effect the change in equilibrium payoff has on the investment in

the productive technology. In other words, the higher the previous cycle’s

equilibrium payoff, the greater the investment in the long-term technology

that is required for this payoff to be sustained, and therefore, the greater the

returns for distribution following a run. Hence, for any cycle m for which

the m run has been triggered in an even period, we derive;

∂wm

∂D1, m−1

=
∂am−1

∂D1, m−1

(
R + 1

R− 1

)
− (1− π)R

The sign of the above derivative depends on whether the positive effect

on the resources that are available for investment at t = 0 is greater than the

negative effect of the standard liabilities of the previous cycle, due to a change

in the previous cycle’s equilibrium payoff. However, we can not make posi-

tive conclusions about the sign of this derivative since these effects depend

on the parameters of our model and on the value of D1, m−1 which in turn

depends on the timing of the withdrawal shocks that have happened in the

past. Hence, we can not make any inferences about the transition of succes-

sive allocations when a runs take place at periods of low liquidity away from

a fixed point. Property 5.1 describes only the behaviour of the system before

successive allocations settle at D1, M = 0 so that successive bank runs occur

at periods of low liquidity. As we have mentioned earlier, this fixed point

is not feasible and is associated with bank failure. In the extreme example

when we allow runs to take place only at periods of low liquidity, successive

payoffs may oscillate or move monotonically towards D1, M = 0 until, for a

given cycle m, xm becomes negative and the newborn generation forms a new

bank. For example, when π = 0.22 and R = 1.5, ∂D1, m

∂D1, m−1

∣∣∣
D1, M=0

= −0.6363

so that successive payoffs oscillate towards D1, M=0 but the bank “goes out

of business” at m = 2 since x2 becomes negative. In addition, when π = 0.75

and R = 2, ∂D1, m

∂D1, m−1

∣∣∣
D1, M=0

= 0.7777 so that successive payoffs monotonically

converge towards D1, M=0 but the bank “goes out of business” at m = 7 as

x7 becomes negative.
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Our analysis so far has only been concerned with explaining the transi-

tion between successive payoffs away from or close to the fixed points that we

have identified, provided that a series of run episodes (at least 2) occur during

periods of high or low liquidity between successive cycles. If, however, these

episodes occur at periods characterised by different levels of liquidity, then

it becomes impossible to predict the relationship of these equilibrium alloca-

tions, and more importantly, the system may not converge to a fixed point.

In particular, the relationship of allocations away from the fixed points will

depend on our model’s parameters and on the timing of past run events. This

determines the value of the previous cycle’s equilibrium allocation, which in

turn through the process of iteration, affects the whole transition path. Fur-

thermore, the system can settle to a fixed point only if a series of successive

bank runs occur at periods characterised by the same level of liquidity. If

this is not the case then successive cycles’ equilibrium payoffs will rotate on

constant orbits of n-cycles when the timing of the withdrawal shocks and the

model’s parameters are such that D1, m = D1, m+n, for any n that belongs to

the set of nonnegative integers. Hence, it becomes evident that due to the

unpredictability that arises in the model, it is impossible to establish a com-

plete description of the effects that a crisis has on banks’ financial stability

in the presence of borrowing restrictions.

Overall, we have shown that this erratic behaviour of banks’ liquidity dur-

ing a crisis results from the periodicity of the investment in the two available

technologies that is required in order for the “short-term” steady-state pay-

off to be offered to all the generations of agents within the same cycle. Our

results suggest that when borrowing restrictions are in place, intermediaries

may survive the crisis if they converge to a feasible “long-term” steady state

(or rotate on constant orbits of feasible allocations), or fail. This chaotic

behaviour that characterises the liquidity of banks’ portfolios of assets can

threaten the soundness of a banking system that consists of solvent but illiq-

uid banks. However, when external borrowing is available, illiquid interme-

diaries can smooth the returns of their investment portfolio during periods

of financial distress and may survive a crisis. We have presented a particular
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case where the amount of resources borrowed and the cost of borrowing are

predetermined, and we analysed the transition paths that arise towards a

feasible “long-term” steady state payoff for different values of the model’s

parameters.

6 Discussion

In this paper we have developed a model that highlights the importance of

the liquidity of banks’ portfolio, which determines their ability to survive

a crisis. External borrowing by a Central Bank acting as a Lender of Last

Resort by providing a discount window that enables transfer of resources

across time, and a minimum reserve requirement can provide the necessary

stability in the banking system during a period characterised by a series of

withdrawal shocks. In this respect, several assumptions of our model merit

some comments.

In our analysis, we have restricted our attention to steady state payoffs

within a cycle by treating each generation of agents the same. As we have

mentioned in the formulation of a representative bank’s planning problem,

starting with a large number of identical banks, competition in the market

compels banks to perfectly compete on the terms of their deposit contract in

each period in order to attract new deposits. This does not only mean that

sequential budget constraints should hold with equality, as with the equal

treatment assumption in place, but also banks may have incentives to offer

even higher payoffs to new generations under the premise that such high pay-

ments will drive their competitors out of the market and enable them in the

future periods to make monopoly profits. However, there are major concep-

tual and technical difficulties associated with this approach in determining

the whole strategy set in the formulation of banks’ planning problem.19 This

19In this respect, Bencivenga and Smith (1991)[5] in developing an endogenous growth
model using an overlapping generations framework they viewed banks as coalitions of
agents of the same generation without prior liabilities or additional deposits by other
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interesting issue is a subject for future research.

Another important issue in our analysis is that bank runs are modelled

as massive withdrawals where all the depositors who hold an outstanding

liability, exercise their right to withdraw. The requirement of our model that

the bank survives the first run where all the excess withdrawals are satisfied

by liquid assets, therefore, imposes restrictions on our model parameters in

order to be satisfied. In other words, w1 is required to be positive where at

the same time is decreasing with respect to the returns of the long term tech-

nology. Therefore, for a given π, there is a small range of values that R can

take so that the bank will “remain in business” after the first run has taken

place so that excess withdrawals are relatively inexpensive to be financed by

new deposits. This requirement affects the behaviour of the system since it

determines the initial orbit of the system and consequently, through itera-

tion, the final outcome. However, these restrictions on the parameters can

be relaxed if we allow instead only a small fraction of impatient depositors

observe this extinsic factor that affects their beliefs about banks’ solvency,

and consequently trigger the run (as in as in Allen and Gale (2000)[3]). Un-

der these circumstances, it is more likely that these excess withdrawals can

be met out of new deposits and therefore, our results can be extended for

higher values of R.

Moreover, an interesting issue that arises in our model concerns the os-

cillations of successive equilibrium payoffs and withdrawal behaviour of im-

patient agents. As we have seen, in case of oscillations, a run triggered by

one generation can lead to an improvement of welfare for future generations.

However, this behaviour is incompatible with the assumption of our model

that the bank does not renege on the initial contract. In other words, pa-

tient depositors do not have incentives to trigger a run and misrepresent

themselves as newborn agents of the first generation of the new cycle sim-

ply because the payment that will receive in the last period of their life is

identical to the payment that impatient depositors of the same generation

generations of agents.
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had received. Provided that the incentive compatibility constraint binds,

“strategic” withdrawals do not arise in our model, irrespectively of whether

generations of the new cycle will receive a higher equilibrium payoff.

The final point concerns our approach to banks’ financial stability. We

view bank runs unanticipated withdrawal shocks where any external event

that triggers depositors to belief that other depositors will withdraw their

deposits results in a run. An interesting extension of our paper would be to

model explicitly the mechanism that causes agents’ beliefs to change as in

Ennis and Keister (2003)[14], but this is left for future research.
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Figure 1

Figure 2
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Figure 3
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A Appendix

Proof of Proposition 3.2

This proof is a generalisation of Qi’s (1994)[19] earlier work.

The sequential budget constraints can be written as:

At t = 0 : I0, m ≤ xm − S0, m (A.1)

At t = 1 : I1, m ≤ 1− πD1, m−1 + ym R + S0, m − S1, m (A.2)

At t = 2 : I2, m ≤ 1− πD1, m − (1− π)D2, m−1 + I0, mR + S1, m − S2, m (A.3)

: I2, m ≤ 1− πD1, m − (1− π)D2, m−1 + R (xm − S0, m) + S1, m − S2, m

At t = 3 : I3, m ≤ 1− am + I1, m R + S2, m − S3, m (A.4)

: I3, m ≤ 1− am + R (1− πD1, m−1 + ymR) + R (S0, m − S1) + S2, m − S3, m

At t = 4 : I4, m ≤ 1− am + I2, mR + S3, m − S4, m (A.5)

: I4, m ≤ 1− am + R (1− πD1, m − (1− π)D2, m−1)

+ R2 (xm − S0, m) + R (S1, m − S2, m) + S3, m − S4, m

At t = 5 : I5, m ≤ 1− am + I3, mR + S4, m − S5, m (A.6)

: I5, m ≤ 1− am + R (1− am)

+ R2 (1− π D1, m−1 + ym R) + R2 (S0, m − S1, m) + R (S2, m − S3, m) + S4, m − S5, m

The above constraints can be described in two sequences for λ the set of

positive integers for t ≥ 3.

I2λ+1, m ≤ 1− am + I2λ−1, m R + S2λ, m − S2λ+1, m or (A.7)

I2λ+1, m ≤
λ∑

i=1

Rλ−i(1− am) + Rλ(1 + ymR− πD1, m−1) +
λ+1∑
i=1

Rλ+1−i (S2i−2, m − S2i−1, m)

and
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I2λ+2, m ≤ 1− am + I2λ, m R + S2λ+1, m − S2λ+2, m or (A.8)

I2λ+2, m ≤
λ∑

i=1

Rλ−i(1− am) + Rλ(1− πD1, m − (1− π)D2, m−1)

+ Rλ+1 (xm − S0, m) +
λ+1∑
i=1

Rλ+1−i (S2i−1, m − S2i, m)

Suppose that the payoff (D1, m, D2, m) is budget feasible; there exist some

nonnegative {It, m} and {St, m} such as the above sequential budget con-

straints hold.

Take St, m ≥ 0. It follows that:

I2λ+1, m + I2λ+2, m ≤ 2
λ∑

i=1

Rλ−i(1− am) + Rλ (2− πD1, m − am−1 + R (ym + xm))−Rλ+1S0, m

+
λ+1∑
i=1

Rλ+1−i (S2i−2, m − S2i, m) (A.9)

Simplifying the above expression, we obtain:

I2λ+1, m + I2λ+2, m ≤ 2
λ∑

i=1

Rλ−i(1− am) + Rλ (2− πD1, m − am−1 + R (ym + xm))

− (R− 1)
λ∑

i=1

Rλ+1−iS2i−1, m − S2λ, m (A.10)

or alternatively,

I2λ+1, m+I2λ+2, m ≤ 2
λ∑

i=1

Rλ−i(1−am)+Rλ (2− πD1, m − am−1 + R (xm + ym))

where the last inequality obtains because {St} ≥ 0 is taken as given.
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Taking the limit as λ approaches infinity, it follows:

lim
λ→∞

(I2λ+1, m + I2λ+2, m) ≤ lim
λ→∞

Rλ

(
2(1− am)

R− 1
+ 2− πD1, m − am−1 + R(xm + ym)

)

(A.11)

By contradiction, if 3.3 does not hold then limλ→∞ (I2λ+1, m + I2λ+2, m) =

−∞, implying that either I2λ+1, m or I2λ+2, m (or both) is negative for a large

λ. That is, there is no nonnegative I2λ+1, m and I2λ+2, m that makes the

sequential budget constraints true. This is contradictory to the assump-

tion of budget feasibility. Therefore, a budget-feasible steady-state payoff

(D1, m, D2, m) must satisfy the condition 3.3.

When ymR − πD1, m−1 < 0, the other set of conditions on {It, St}, is

described by:

St, m =





0 for t = 0 and t = 2λ, λ ∈ Z++

1 + ymR− πD1, m−1 for t = 1

1− am for t = 2λ + 1, λ ∈ Z++

It, m =





xm for t = 0
2(am−1)

R−1
− 1 for t = 2λ, λ ∈ Z++

0 for t = 2λ + 1, λ ∈ Z+

We can observe that this set of conditions on {It, St} also satisfies the

sequential budget constraints with equality but violates the nonnegativity

condition since when S2λ+1, m > 0 it follows that I2λ, m < 0 and vice versa.

For this reason is ignored

Proof of Lemma 4.1

From the definition of this case S1, M = ymR − πD1, M > 0. In addition,

{xM , yM} > 0 so that I0,M = xM > 0 and I2λ, M > 0. The last condition on
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the investment technologies for the “long-term” steady-state equilibrium to

be feasible is that S2λ+1, M = R− aM is positive. Hence, is sufficient to show

that D1, 0 > D1, M which implies that a0 > aM , where a0 = R.

Evaluating the general budget constraint for the “long-term” steady state

at D1, 0, we obtain:

BM(D1, 0, R) = R2 − (1− π)(R− 1)D2
1, 0 −R (π + (1− π)) D1, 0

where BM(D1, M , R) = 0 is strictly decreasing and concave in D1, M > 0.

Hence, if D1, 0 > D1, M then we need to show that BM(D1, 0, R) < 0. Indeed

by substituting for a0 = πD1, 0 + (1− π)D2
1, 0 into the above expression, this

can be simplified to:

BM(D1, 0, R) = R2 −R a0 + (1− π)D2
1, 0 −R(1− π)D1, 0

and from a0 = R, it follows:

BM(D1, 0, R) = (1− π)D1, 0 (D1, 0 −R) < 0

since D1, 0 < R. Hence, from the monotonicity of BM(D1, M , R) = 0 in

D1, M it follows that D1, 0 > D1, M , or equivalently a0 > aM , which implies

that S2λ+1, M = R− aM > 0.

Differentiating the general budget constraint the “long-term” steady state

D1, M with respect to R we obtain:

dBM(D1, M , R)

dR
=

∂BM

∂R
+

(
∂BM

∂D1, M

)
dD1, M

dR
= 0

or alternatively,

dD1, M

dR
= − ∂BM/∂R

∂BM/∂D1, M

= −
(

(1− π)D2
1, M + D1, M − 2R

2(1− π)(R− 1)D1, M + R

)

where ∂BM/∂R can be written as aM − R + (1− π)D1, M − R < 0 since

aM < R.
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Therefore,
dD1, M

dR
> 0 indicating that the “long-term” steady-state equi-

librium payoff is increasing in R.

Proof of Property 4.2

In order to determine the sign of the the derivative of equation 4.3 with re-

spect to R, we simply focus on the derivatives numerator and denominator

with respect to R, respectively. If the the later has a different sign from

the former we can conclude that the sign of the whole derivative. Note that

D1, M depends also on R.

Differentiating the nominator with respect to R we obtain:

1 + 2(1− π)

(
D1, M + (R− 1)

dD1, M

dR

)
> 0

Differentiating the denominator with respect to R we obtain:

4(1− π)
(
(R− 1)

dD1, M

dR
−D1, M

)
− 2π

(R− 1)2

Focusing on the terms inside the brackets, where D1, M =
R
�√

1+4(1−π)(R−1)−1
�

2(1−π)(R−1)

and
dD1, M

dR
= R

(R−1)
√

1+4(1−π)(R−1)
−

(√
1+4(1−π)(R−1)−1

2(1−π)(R−1)2

)
. Hence:

(R−1)
dD1, M

dR
−D1, M = −D1, M

R
−

R
(
1 + 2(1− π)(R− 1)−

√
1 + 4(1− π)(R− 1)

)

2(1− π)(R− 1)
√

1 + 4(1− π)(R− 1)
< 0

where 1 + 2(1− π)(R− 1) >
√

1 + 4(1− π)(R− 1).

Therefore, the derivative of the denominator with respect to R is negative,

and on the whole d(dD1, m/dD1, m−1)

dR
< 0.
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