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ABSTRACT

Economic policy decisions are often informed by empirical analysis based
on accurate econometric modeling. However, a decision-maker is usually only
interested in good estimates of outcomes, while an analyst must also be in-
terested in estimating the model. Accurate inference on structural features
of a model improves policy analysis as it improves estimation, inference and
forecast efficiency. In this paper a Bayesian inferential procedure is presented
which allows for unconditional inference on structural features of vector au-
toregressive (VAR) processes. We employ measures on manifolds in order to
elicit uniform priors on subspaces defined by particular structural features
of VARs. The features considered are cointegration, exogeneity, determinis-
tic processes and overidentification. Posterior probabilities of these features
are used in a model averaging approach for forecasting and impulse response
analysis. The methods are applied to three empirical economic issues: sta-
bility of Australian money demand; relative weights of permanent and tran-
sitory shocks in a US real business cycle model; and possible evidence on
an inflationary oil price shock and a liquidity trap in a UK macroeconomic
model. The results obtained illustrate the feasibility of the proposed meth-
ods.

Key Words:Posterior probability; Grassman manifold; Orthogonal group;
Cointegration; Exogeneity; Model averaging.
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1 Introduction.

An important function of empirical economic analysis is to provide accurate
information for decision making. This information is generally provided in
the form of estimates of objects of interest such as forecasts of endogenous
variables like money demand, effects of oil price shocks on domestic inflation,
or as relative weights of transitory and permanent components in a real
business cycle model. One may infer from this brief list that, in many cases,
the decision maker is not directly interested in the underlying model used
to produce such estimates. It is, however, in the analyst’s interest to detail
how the results she provides rely upon the model. That is, the analyst, when
providing estimates of the objects of interest, must point out “The results
are conditional upon the validity of the assumptions used in the model ...”
Such restrictions upon the interpretation of the results do not necessarily aid
the decision-maker in her task.

It is generally accepted that, in order to improve policy analysis, it is im-
portant to have accurate inference on the support for the alternative models
considered or to have such inference on the structural features of an encom-
passing model. As such, much effort is expended in investigating the em-
pirical support for various economically and statistically plausible features.
Examples of features of models that are of interest to analysts - but not nec-
essarily decision-makers - include numbers of long run relationships among
variables, forms of these long run relationships, persistent and predictable
long run behaviour of variables, short term behaviour, and the dimension of
the system in variables or in parameters required for the problem of interest.
Each of these features implies zero restrictions on particular parameters in
a general model. If these features are supported by the data - and so are
credible in the sense of Sims (1980) - and if they hold outside the sample,
then imposing them can improve forecasts and inference, and hence policy
suggestions. The support in the data is, however, in many cases not clear
or dogmatically for or against the restriction, and researchers usually do not
have strong prior belief in particular restrictions. Yet it is common to con-
dition upon such features, effectively assigning a weight of one to the model
implied by the restrictions being true and zero to all other plausible mod-
els. Even if the support is strongly for or against a particular restriction,
with only slight support for the alternative unrestricted model, imposing the
restriction ignores information from that less likely model which, if appro-
priately weighted, could improve forecasts.



There is therefore a conflict between the analyst’s need to obtain the best
model and the decision-maker’s need for the least restrictive interpretation
of the information provided by the analyst. As an alternative to conditioning
on structural features, it is possible to improve policy analysis by present-
ing unconditional or averaged information. Gains in forecasting accuracy by
simple averaging have been pioneered by Bates and Granger (1969) and dis-
cussed recently by Diebold and Lopez (1996), Newbold and Harvey (2001)
and Terui and van Dijk (2002). Some explanation for this phenomenon in
particular cases was provided by Hendry and Clements (2002). Alternatively,
the averaging weights can be determined to reflect the support for the model
from which each estimate derives. This requires accurate reflection upon the
uncertainty associated with the structural features defining the model.

In this paper we present a Bayesian approach for conducting uncondi-
tional inference on structural features of the vector autoregressive model.
Specifically, we focus on three contributions. First, a general operational
procedure is presented for specifying diffuse prior information on structural
features of interest which implies well-defined posteriors and existence of mo-
ments. For a more intuitive, specific application we refer to Strachan and In-
der (2004). Given the diffuse prior, the information in the likelihood function
is supposed to dominate. As a result one can evaluate the relative weights or
probabilities of such structural features as cointegration, overidentification,
deterministic processes, and exogeneity. In order to obtain these results we
make use manifolds and orthogonal groups and their measures. Then we can
elicit uniform prior measures on relevant subspaces of the parameter space.
From these measures we develop prior distributions for elements of these sub-
spaces as the parameter of interest. Thus we choose prior specification on
models directly rather than on parameters that are subsequently restricted.

Second, using this methodology we show in this paper how to obtain pos-
terior inference and forecasts from model averages in which the economically
and econometrically important structural features may have weights other
than zero or one.

Third, we apply the proposed methodology to three empirical economic
issues. We start with the issue of stability of the money demand equation
using Australian post war data. Next, we investigate the relative weights
of permanent and transitory components in a real business cycle model of
the USA due to King, Plosser, Stock and Watson (1991). Third, we analyze
the posterior evidence of a UK inflationary oil price shock and the evidence
on a UK liquidity trap using the macro-econometric model of Garratt, Lee,
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Pesaran and Shin (2000).

The structure of the paper is as follows. In the Section 2 we introduce
the general model of interest in this paper - the vector autoregressive model,
the general structural features of interest, and the restrictions they imply. In
Section 3 we present the priors, the likelihood and a general expression for the
posterior. The tools for inference in this paper, the Bayes factor and posterior
probabilities, are introduced and expressions are derived for specific features
of interest like impulse responses. Our approach is a significant divergence
from much of the earlier work. This section therefore provides a discussion
of the advantages of this approach in the context of model averaging. We
demonstrate the approach in Section 4 with three applications using a model
of Australian money demand, A US real business cycle model and a UK
macroeconomic model. In Section 5 we summarize conclusions and discuss
possibilities for further research.

2 The Vector Autoregressive Model.

Ever since the influential work by Sims (1980), modeling economically impor-
tant issues - for instance possible effects of oil price shocks on domestic infla-
tion - has lead to the use of vector autoregressive processes. These processes
can incorporate a wide range of short and long run dynamic, equilibrium and
deterministic behaviours. Further, it has been observed in empirical studies,
that many economic variables of interest are not stationary, yet economic
theory, or empirical evidence, suggests stable long run relationships to ex-
ist among these variables. The statistical theory of cointegration (Granger,
1983, and Engle and Granger, 1987), in which a set of nonstationary vari-
ables combine linearly to form stationary relationships, and the attendant
Granger’s representation theorem provide a useful specification to incorpo-
rate this economic behaviour into the error correction model and allows the
separation of long run and short run behaviour. We work with the vector
autoregressive model in the error correction form to simplify expressions of
restrictions. For more details on a - likelihood - analysis of VAR models with
cointegration restrictions we refer to Johansen (1995).

The error correction model (ECM) of the 1 x n vector time series process
Yy, t =1,...,T, conditioning on the [ observations t = -+ 1,...,0, is

Ayt = yt,1ﬁ+06 + dtﬁ + Ayt,1P1 +...+ Ayt,lfl + & (1)



yt_lﬁ”La + dtglOé + dteo + Ayt_ll“l + ...+ Ayt_lfl + Et
= ZLtﬁOé + 227t(I) + & (2)

where Ay, = yp — yi1, 214 = (de, Y1) , 2ot = (de, Ay, ..., Ayy), dy =
(1,t), ® = (6),T%,...,T) and 8 = (9’1,ﬁ+’),. The matrices 87 and o/ are
n x r and assumed to have rank r, and if r = n then 87 = I,,. In (2) we have
used the decomposition 0 = ;o + 0, which we will explain further in a later
subsection.

The following subsections define the restrictions of interest, combinations
of which define different model features of interest which we may compare or
weight using posterior probabilities.

As we consider a wide range of models in this paper, we will use a consis-
tent notation to index each model to identify the cointegrating rank, the iden-
tifying restrictions, the form of exogeneity, and the deterministic processes
in the model. We will denote the cointegrating rank of a model by r, where
r =20,1,...,n. The particular identifying restrictions placed upon 3 will be
denoted by o, where 0o = 0,1,...,J and o = 0 will be understood to refer
to the just identified model. Partitioning vy, as y; = (y1,+ Y2¢) Where y;, is a
1 X ny vector, n; > r, exogeneity of y,; will be considered with respect to
subsets of the parameters in the equation for y; ;, where will use ¢, and ¢,
to denote these subsets. The particular form of exogeneity restrictions in the
model will be denoted by e, where e = 0, ...,4 and these are defined below.
Finally, the particular form of deterministic processes will be denoted by the
couplet (i,7) where 7,7 = 0,1,2. The ¢ refers to the processes in Ay, and
j refers to the processes in vy;3%. Five commonly considered combinations
of processes are detailed in the subsection on deterministic processes below.
We also allow for a range of lags of differences, however as these have little
economic importance for the studies we look at, and for space considerations,
we do not discuss these further.

The vector identifying a particular model will therefore be w = (r, 0, €, 1, j) .
For example, the least restricted model will be (n,0,0,0,0), while the most
restricted model will be (0,0,4,2,2). The models will be identified as M.
When we are considering only a particular feature such as exogeneity, we will
indicate this by referring to the model as M . ), and if we are conditioning
upon a particular feature, such as rank, M,). Where we have averaged
across or marginalised with respect to the other features, we will indicate
this by M), and the marginal likelihood for a model will be m,,.

Finally, we introduce the following terms to simplify the expressions in the
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posteriors. Let z; = (2140 22:), and the (r + k;) X n matrix B = [o/ .

We may now write the model, given in (1) as

Ayt = :Z\:tB + Et. (3)

2.1 Structural features

Within model (1), a number of structural features are commonly of interest
to economists and or econometricians. Here we detail five of these and the
restrictions they imply for (1). To demonstrate we use a simple example:
money demand. The variables, all of which appear in logarithmic form, are
defined as y; = (m; inc;), where m; is the log measure of real money and
inc; is the measure of real income. A decision maker may be interested
in the one step ahead forecast of m; or the overall response path of m; to a
shock in inc,_p, for h = 0,1,2,....The analyst has to estimate the parameters
determining the long and short run behaviour of m; and produce forecasts
of m;, where the forecasts may also be over the long run, or both the long
run and short run.

2.1.1 Cointegration

For cointegration analysis of (1), of interest is the coefficient matrix 37 and
« which are of rank » < n. Of particular interest then, is r which implies
there are (n —r) common stochastic trends in y;, and r is the number of
I(0) combinations of the element of y; extant. In the case r < n and as-
suming for now § = 0, 87 is the matrix of cointegration coefficients, v;5"
are the stationary relations towards which the elements of y, are attracted,
and « is the matrix of factor loading coefficients or adjustment coefficients
determining the rate of adjustment of v, towards y,37.

In the money demand example, r € [0,1,2]. It is common to regard the
money demand relation as the cointegrating relation between the integrated
variables in y; ~ I (1), and supply is exogenous (see for example Johansen,
1995 and Funke, Hall and Beeby, 1997). That is, {, = [,m; + Byinc; =
v 3" ~ 1(0), E((,) = dif; and possibly 6; # 0. Therefore, for the analysis
to make sense, we require that cointegration should hold (and so r = 1). In
this case for (1) one has 37 = (8, 3,)" and a = (a1, ay).



2.1.2 Exogeneity

As is usually accepted in econometric modelling, there are benefits from
parsimony. Thus, an important issue is the dimension of the system to
be estimated in terms of the number of equations. Recall the partition
Y = (Y14 y2,) - If the set of variables in y,; can be treated as exogenous for
inferential purposes, a partial system may be estimated in which no equations
are estimated for these variables. This is essentially ignoring information that
contributes nothing to the inference. As an example, it is not uncommon to
assume that to estimate the income elasticity of money, a researcher would
be interested in whether an equation for income need be estimated, or could
this analysis be done with a single equation. In certain cases, exogeneity has
been given an economic interpretation such as in Garratt, Lee, Pesaran, and
Shin (2002) who treat oil prices as a ‘long-run forcing’ variable.

Under the condition of cointegration, the representation of the model in
(1) will be useful for the analysis of exogeneity. Partition o = (o o)
conformably with the dimensions of y;; and y»,. In this paper we consider
weak exogeneity of yo; with respect to the parameters influencing long run
behaviour of ¥y, ¢ = (vec (8)", vec (041)/)/. As shown in Urbain (1992) and
Johansen (1992) inter alia, y»; will be weakly exogenous with respect to ¢,
if ag = 0. To preserve the rank of a requires that n; > r, which implies we
cannot have more than n — r variables weakly exogenous with respect to ¢;.
An important model in the literature which relies upon this assumption is
the triangular model (Phillips, 1991) used by Phillips (1994) in which n; = r.

For a given cointegrating rank r, denote by M,y the various models of
exogeneity. The model with no exogeneity restrictions imposed is e = 0 and
the model with weak exogeneity of y» ; with respect to ¢, is e = 1. Other forms
of exogeneity include: strong exogeneity of y»; with respect to the parameters
influencing long run behaviour of y;4, ¢; (e =2); weak exogeneity of ya;
with respect to the parameters influencing long and short run behaviour of
Y1z (¢y = (¢}, vec(T11), vee (F21)')/) (e = 3); and strong exogeneity of y,
with respect to the parameters influencing long and short run behaviour of
Y1+ (e = 4) . These imply further restrictions upon the parameters in (1) such
as Granger noncausality. We do not explore them here as the first case is
sufficient to demonstrate the approach.

If we are interested in whether we may estimate the money demand equa-
tion ¢, (and so estimate 3") from a single equation for m,, then this would
require that the variable inc, be weakly exogenous with respect to 37 (e = 1) .



a1 is the adjustment coefficient in the equation for Am; and as is the same
in the equation for inc; such that these parameters determine the response
in v, to a nonzero value of ¢, ;. Weak exogeneity of inc, with respect to 3
therefore implies ay = 0.

2.1.3 Overidentifying restrictions on the cointegrating vectors

As discussed in Garratt et al. (2002), when modelling economic systems,
economic theory tends be more useful when it focuses upon the form of
long run, or equilibrium, relationships between variables and leaves the short
run relations unrestricted (see Sims 1980 for discussion about the dangers of
imposing incredible restrictions on short run dynamics). For money demand,
the stability of the (log of the) inverse velocity of money, v, = m; — inc¢; is
an important issue for econometric analysis. We note that stability is here
interpreted in the sense that velocity is I (0) but may have deterministic
trends - we discuss this latter possibility in the following subsection.

In both the classical and Bayesian approaches, to test the appropriateness
of such restrictions and to estimate the restricted model, requires a specifi-
cation of the model subject to these restrictions. In the classical maximum
likelihood approach, Johansen (1995) has provided methods for estimation
with, and testing of, these restrictions. The three restrictions commonly
investigated are presented in Johansen (1995, Chapter 5) as the following
hypotheses.

(0 =0) No restrictions upon (3.

(0=1) = Hy
where the dimensions of the respective matrices are: H n x s, 9 s X r, r < s.

(0=2)  B=(byp)=(bbrv)
where the dimensions of the respective matrices are: bn x s, by nx (n — s),
Y (n—8)x(r—s),s<r.

(0 = 3) 6 = (H1¢17H2¢27---aHl77Z}l)
where the dimensions of the respective matrices are: H; n X s;, ¥, is ; X 1y,
i <8, L<r, Y ri=r.

The restriction in 0 = 0 imposes no restriction on the space of 3, in o =1
the cointegrating space is completely determined (given 7). The third re-
striction, o = 2, restricts the cointegrating space to pass through a known
vector or set of s vectors, b, and the remaining » — s vectors, b, v, are un-
known except that they are orthogonal to b, such that the space of 3 is not
completely known. The final hypothesis, o0 = 3, generalizes the first two.



2.1.4 Deterministic terms

Economists are commonly interested in the presence or absence of determin-
istic processes in y; or y,3". For both statistical and economic reasons, the
persistent and predictable, or deterministic, component economic behaviour
is important. Of interest are questions such as whether linear or quadratic
drifts are present in y; and whether nonzero constant terms and determinis-
tic trends are present in 1,3". For example, the velocity of money in many
countries has not remained stable over the long run. For extended periods
it has displayed what appears to be a clear trend. If we were to assume
the velocity was an equilibrium or long run relation of interest, it would be
important to allow for some trend in this relation. It is well known, how-
ever, that simplistic treatment of the deterministic terms by testing whether
0 or some elements of # are zero leads to the strange and unsatisfactory sit-
uation that very different trending behaviour is implied in the levels of the
process for different values of r. For an example involving a Bayesian analy-
sis of purchasing power parity we refer to Schotman and Van Dijk (1991)
. Therefore we decompose 6 into 8 = 61« + 6y where 6; = 0o’ (! )71 and
0o = 0a’, (a1 /) " oy such that 8, = (uy,6,) represents the deterministic
processes associated with y,87 and 6y = (ug, &) represents those for Ay,
(see Johansen, 1995 Section 5.7 for further discussion). Assuming d; = (1,t)
(and [ = 0 for simplicity) then

E (Ayt) = dte(] = g+ t(S()
and
E (y87) = diby = py + té1.

Although a wider range of models are clearly available, the five most com-
monly considered may be stated as follows, where in M ), the i denotes
the model for Ay, and the j denotes the model for 13" at given rank 7 :

Moow : E(Ay) = pg + 6ot and E (y,87) = py + 61t
M(LUIT) E (Ayt) =y and E (ytﬁJr) = py + 61t
Maye : E(Ay) = po and E (8%) = py

Mais @ E(Ay) =0and E (y,8") = iy

Mooy @ E(Ay)=0and E (y87) =0
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3 Priors and posteriors.

In this section the forms of the priors and resultant posterior are presented.
We restrict ourselves to flat priors where possible, although consideration is
given to informative priors when discussing the parameters of interest. For
the model in (3), assume the rows of the 7' x n matrix ¢ = (&}, ¢}, ...,e%)
are €, ~ 11dN (0, X). The likelihood can then be written as

~ -z 1 —1
L(y|E,B,6,w,Z>o<\Z\ 2 exp —Etr(E 55) . (4)

3.1 The prior for (3, B,w).

The priors for the elements of w = (7, 0, €, 7, j) are not independent, as certain
combinations are either impossible, meaningless (such as, for example, r = 0
with 0o = 2) or observationally equivalent to another combination (such as,
for example, r = 0 with 0 = 2 or 7 = n with ¢ = 1 or 2). However, we
specify all combinations of the indices in w be equally likely to avoid biasing
the evidence in favour of other classes of models. For example, at » = 0 the
models with (¢,7) = (0,1) and (¢,7) = (1,1) are observationally equivalent.
If we were to treat these two as one model such that they receive half the
prior probability of other models, systematic employment of this principle
would bias the prior weight in favour of models with 0 < r < n, and thus
bias the evidence in favour of some economic theories for which we wish to
determine the support. If a user wishes to treat these models differently,
they made do so by reweighting the output from our analysis. This implies
we use p(r) = (n+1)"" and p(i,§) = 0.2. As we consider weak exogeneity,
the prior density for the states of exogeneity e € [1,2] is p (e|r) = 1/2 and
for the states of overidentification of 5 we consider, o € [1,4], p(0) = 1/2.
The standard diffuse prior for 3, p () o |2 ™/? is used.

As B changes dimensions across the different models of w and each ele-
ment of the matrix B has the real line as its support, the Bayes factors for
different models will not be well defined if an improper prior on B, such as
p(B|B,w) o« 1 were used. For discussion on this point see (among many
others) Lindley (1957), Bartlett (1957), Jeffreys (1961) and more recently
O’Hagan (1995), Strachan and van Dijk (2003) and Strachan and van Dijk
(2004). For this reason a weakly informative proper prior for B must be
used. We take the prior for B conditional upon (%, 5,w) as normal with zero
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mean and covariance X ® (B,ﬂ E) where H = 7111,y and

~ 8 o0
/B_lo ]’fi}

such that B/ﬂ B = 7I(y11;). We choose the value of 7 = 0.5 as this provides a
reasonably flat prior. Evidence on the influence of this choice can be found
in Strachan and Inder (2004).

3.2 Eliciting a prior on (.

There is a large body of work in Bayesian cointegration analysis in which
methods are proposed to deal with a range of problems. A feature of much
of this work is that linear identifying restrictions were adopted to enable
estimation of 3. We start with a brief discussion of this work as it relates to
the aim of this paper - model averaging. We then present a general analysis
of our alternative approach. For specific applications and a more intuitive
explanation of this approach in different contexts, we refer to Strachan and
Inder (2004) and Strachan and van Dijk (2003).

Linear restrictions and the cointegrating space: It is well known
that as 3 and « appear as a product in (2), 72 restrictions need to be imposed
on the elements of § and « to just identify these elements. These restrictions
are commonly imposed upon 3 by assuming ¢/ is invertible for known (r x n)
matrix ¢ and the restricted 3 to be estimated is § = 3 (cﬁ)fl. The free
elements are collected in 3, = ¢, where ¢, ¢ = 0. A common choice in

_ _ /
theoretical work is ¢ = [I,. 0] such that § = [Ir ﬁ;] . A prior is then specified

for 3, which is then estimated and often its value is interpreted.’

Assuming that ¢ is known, Kleibergen and van Dijk (1994, 1998) and
Bauwens and Lubrano (1996) detail remaining pathologies and features which
complicate analysis associated with the posterior for 32 with a flat prior.
Kleibergen and van Dijk (1994) demonstrate how a variable addition spec-
ification - which would provide a natural way of performing inference on r
by nesting the reduced rank model within a full rank model - results in an

!There exist practical problems with incorrectly selecting c. The implications for clas-
sical analysis of this issue are discussed in Boswijk (1996) and Luukkonen, Ripatti and
Saikkonen (1999) and in Bayesian analysis by Strachan (2003). In each of these papers
examples are provided which demonstrate the importance of correctly determining c.
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improper posterior distribution at reduced ranks, thus precluding inference.
For the non-nested reduced rank model, as in (2), Kleibergen and van Dijk
(1994) outline the additional issue of local nonidentification which manifests
itself in the likelihood and results in asymptotes in the marginal posterior dis-
tributions, nonexistence of moments of 3,, and precludes the use of MCMC
due to reducibility of the Markov chain. As a solution they propose using the
Jeffreys prior as the behaviour of this prior in problem areas of the support
offsets the problematic behaviour of the likelihood. Kleibergen and van Dijk
(1998), Kleibergen and Paap (2002), and Paap and Van Dijk (2003) use a
singular value decomposition to nest the rank » < n model within the rank
n model. Importantly, they include in the posterior the Jacobian for the
transformation from the full rank model to the parameters of the reduced
rank model into the posterior. In this specification, the Jacobian behaves in
a similar way to the Jeffreys prior in the problem areas of the support, how-
ever this approach allows freer expression of prior beliefs than the Jeffreys
prior. Use of the Jeffreys prior or the singular value decomposition avoid the
issue of local nonidentification, result in proper posteriors and allow use of
MCMC, however the posterior again has no moments of (3,.

Bauwens and Lubrano (1996) begin with the reduced rank model and
provide a study of the posterior distribution of 3,. Using the results for the
1-1 poly — t density of Dreze (1978), they show the posterior has no moments
due to a deficiency of degrees of freedom. Similar results have been shown
for the simultaneous equations model (Dreéze 1978, Kleibergen and van Dijk
1998). Nonexistence of moments is not commonly a concern for estimation
as modal estimates exist as alternative estimates of location. However, as the
kernel of the 1-1 poly —t is a ratio of the kernels of two Student —t densities,
the posterior may be bimodal - with the modes sometimes well apart from
each other - making it difficult to both locate the global mode and bringing
into question the interpretation of the mode as a measure of location.

Exogeneity is a commonly employed restriction and is important in two
of our applications. For our applications in which we combine restrictions to
define new models, we have the additional problem that the posterior for 3,
is improper when exogeneity is imposed. A proof of this result is provided
in Appendix I. An improper posterior is a significant issue as it implies we
know a priori we cannot obtain inference on any estimate of an object of
interest if exogeneity is imposed. Nonexistence of moments is a significant
issue as this implies we know a priori any estimate of an object of interest,
g (32) - obtained by averaging across the set of models - will not exist (or be
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infinite) if ¢ (32) is a convex or linear function of 3,.

Further, it is clear from the discussion on the prior for B that a flat
prior on (3, cannot be employed to obtain posterior probabilities for w, since
the dimensions of Bz depend upon w. As argued in the introduction, an
advantage of the Bayesian approach is the ability to explicitly incorporate
prior beliefs into the analysis. A flat improper prior is generally intended to
reflect ignorance about the parameter of interest, therefore the above issues
with the posterior at least, may be resolved by relinquishing this option and
making use of an informative prior on Bz- For example, a student-t prior may
be used, or inequality restrictions - such as a marginal propensity to consume
between zero and one - are often useful. Priors such as the Jeffreys prior
have been proposed which may resolve some of the above problems, however
this prior does not allow for evaluating proper posterior probabilities and
model averaging. Therefore, to preserve the options of both informative and
uninformative priors, to preserve the function of the prior as a representation
of prior beliefs, to simplify the application and estimation, and as we do not
see 3, as the parameter of interest, we diverge at this point from much of the
earlier literature in both specifying our parameter of interest and eliciting an
uninformative prior on that parameter.

The parameter of interest: It is necessary that we explain the above
comment regarding ‘the parameter of interest’ and the implications of fo-
cussing upon and using (,. If we denote the space spanned by a matrix A
by sp(A), we can say that in cointegration analysis it is not the values of
the elements of § that are the primary object of interest, rather it is the
space spanned by (3, p = sp (), and this space is in fact all we are able
to uniquely estimate. The parameter p is an r-dimensional hyperplane in
R™ containing the origin and as such is an element of the Grassman man-
ifold*> G,.,_, (James, 1954), p € G,,_, . Before we derive the priors for p
we briefly comment on the relationship between priors for 3, and p. First
we must introduce some notation for matrix spaces and measures on these
spaces. For an introduction to these concepts see Muirehead (1982) and for
a more intuitive discussion see Strachan and Inder (2004).

The r x r orthogonal matrix C' is an element of the orthogonal group of
r x r orthogonal matrices denoted by O (r) = {C (r x ) : C'C = I,.}, that is

2The authors would like to thank Soren Johansen for making this point to one of the
author’s while visiting the EUI in Florence in 1998. Villani (2000, 2004) also makes use
of a prior on p
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C € O(r). The n x r semi-orthogonal matrix V' is an element of the Stiefel
manifold denoted by V,.,, ={V (n xr) : V'V = I.}, that is V € V}.,,. As the
vectors of any V' are linearly independent (since they are orthogonal) the
columns of V' define a plane, p, which is an element of the (n — r)r dimen-
sional Grassman manifold, that is p = sp (V) € G,.,—,. That is, all of the
vectors in V' will lie in only one r— dimensional plane, p. The cointegrating
space for an n dimensional system with cointegrating rank r is an example
of an element of G,.,,_,. Finally, let the j largest eigenvalue of the matrix
A be denoted \; (A).

As discussed in James (1954), the invariant measures on the orthogonal
group, the Stiefel manifold and the Grassman manifold are defined in exte-
rior product differential forms (for measures on the orthogonal group and the
Stiefel manifold, see also Muirhead 1982, Ch. 2). For brevity we denote these
measures as follows. For a (n X n) orthogonal matrix [by,bs,...,b,] € O (n)
where b; is a unit n-vector such that 5 = [by,ba,...,b.] € V,.pn, r < n, the
measure on the orthogonal group O (n) is denoted dv;; = AL A}_, ,bidb;,
the measure on the Stiefel manifold V;.,, is denoted dvy = Aj_ A%, b.db;,
and the the measure on the Grassman manifold G, ,_, is denoted dg; =

i A7, 1 bdb;. These measures are invariant (to left and right orthogo-
nal translations).The underscore denotes the normalised measure such that

/. dg! = 1.
Gr,nfr —Jr

We begin with a discussion of the relationship between the cointegrating
vectors identified using the linear restrictions, (35, and the cointegrating space
as the object of interest, p.

Theorem 1 The Jacobian for the transformation fromp € G, ,,—, to vec (BQ)
R s defined by

f(nfr)rl—‘[?j I [(n +1-— j) /2]
I +1-) /2

(dB,) (5)

—n/2

Ir + B;BQ

dg; =m

where T (q) =[5 u™ e "du for ¢ > 0.
Proof. See Appendix II.
Thus while a uniform distribution on G, ,,_, implies a uniform distribution
on V., this uniform distribution on G, ,,_, implies a Cauchy distribution for
5. This last result was also derived by Phillips (1989).

3This transformation of the measure is relevant in both Bayesian and classical appli-
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Generally, estimating the cointegrating space using linear identifying re-
strictions will result in Cauchy tail behaviour unless there are other terms
- such as prior information - offsetting the effect of this transformation. As
one example of this effect of prior information, Bauwens and Lubrano (1996)
show that overidentifying restrictions - which therefore reduce the number
of free parameters to be estimated and, importantly, restrict the range of p
within G, ,_, - will result in a posterior with as many moments as overiden-
tifying restrictions.

A common justification for the linear restrictions is that an economist
will usually have some idea about which variables will enter the cointegrating
relations and so she chooses ¢ to select the rows of coefficients most likely to
be nonzero - more generally linearly independent from eachother - and then
normalise on these coefficients. This is a necessary assumption to ensure
(cﬁ)f1 in By, = c, 3 (cﬁ)f1 exists. Using these linear restrictions, however,
has the unexpected and undesirable result that the Jacobian for Bz — P
places more weight in the direction where the coefficients thought most likely
to be different from zero are, in fact, zero (or linearly dependent). In fact,
normalisation of 3 by choice of ¢ with a flat prior on 3, implies infinite prior
odds against this normalisation (see Theorems 2 and 3 in Appendix II for a
proof of this statement and simple demonstration). In other words, assuming
(cﬁ)_1 exists and then using this assumption makes this assumption a prior:
impossible.

A uniform prior on the cointegrating space: We wish to avoid
the problems outlined above deriving from the use of linear restrictions with
normalisation to identify the elements of # and the subsequent treatment of
Bz as the parameter of interest. Our recommendation is, if the economist
wishes to incorporate prior beliefs about the cointegrating relations, these

cations. As discussed in Phillips (1994), the form in (13) which introduces Cauchy tails
into the distribution for 3, explains why applying linear restrictions to the maximum like-

~ ~1 o~ = ~ ~—1
lihood estimator of Johansen, § = [ﬁl ﬂz} results in an estimator, 8 = ($,8; , which

is occasionally unreliable. The finite sample distribution for 3 has Cauchy tails and this
Cauchy behaviour is a direct result of imposing the linear restrictions. This form also
provides an alternative explanation for the rather similar but Bayesian results of Bauwens
and Lubrano (1996). They show posterior Cauchy tail behaviour of the Bayesian estima-
tor of B = (437" where no (additional) prior information on the cointegrating space is
employed, although they use a 1-1 poly-t argument to find this result. Similar results can
be found for the simultaneous equations model in Kleibergen and van Dijk (1998) and
Dreze (1976).
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should be expressed in the prior distribution for the cointegrating space.

As we have claimed the cointegrating space to be the parameter of inter-
est, rather than (3,, we propose working directly with p = sp (B) avoiding the
linear restrictions and normalisation. Initially we present a distribution and
identifying restrictions for # from the form of the uniform distribution for p
over Gy ,_, using the results of James (1954) (see also Strachan and Inder,
2004). The identifying restrictions on [ follow naturally from this approach.

This prior has the form
1

- fGr,n—’r dg;L

where [ is the r-frame with fixed orientation in p. In the proof of Theorem 1
in Appendix II, the measure on G, ,,_, used in the above expression is derived
from its relationship with the spaces V,,, and O (7).

To avoid using linear restrictions with a normalisation to identify 3 it
is necessary to find an alternative set of restrictions that do not require
knowledge of ¢ and which avoid the issues associated with the posterior for
B,. Fortunately the definition (11) and the discussion in the proof of The-
orem 1 provide a natural solution to this question. That is use 8 € V,,,
which implies r (7 + 1) /2 restrictions. The dimension of the Grassman man-
ifold is only (n —r)r while the dimension of the Stiefel manifold V., is
nr —r(r 4+ 1) /2, which exceeds that of G,,,_, by r (r — 1) /2. In (11), these
remaining restrictions come from the orientation of 5 in p by C € O (r). The
prior, the posterior (as is made clear later) and the differential form for
are all invariant to translations of the form 8 — GH, H € O (r). Therefore
it is possible to work directly with § as an element of the Stiefel manifold

)
and adjust the integrals with respect to § by ( J o) dv, ) . Note that these

identifying restrictions do not distort the weight on the space of the parame-
ter of interest, p, and it is never necessary to actually specify the orientation
of 3 in p.

Thus, contrary to the situation when using linear identifying restrictions,
we are able to employ innocuous identifying restrictions, place a prior directly
on the parameter of interest and, as we show below, we achieve a better
behaved posterior about which we know much more. Before we discuss the
posterior, however, we note that in Appendix III extends this approach to
informative distributions on the cointegrating space.

p(B) (6)
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3.3 The posteriors.

Using the priors specified above and the likelihood in (4), the general form
of the posterior is then

p(BaEaﬁﬂ”,i\y) X p(ﬁ) |E‘_(T+n+ki+7’+1)/2
1 N B
con{ o frs (58 v (5-5) o
% (27T)—n(ki+7’)/2 T_n(ki-H“)/Z

= k(B %, B,wly).

We refer the reader to Appendix IV for definition of the terms in the above
and following expressions.

For B € R%+"" and ¥ positive definite (denoted ¥ > 0), to estimate the
relevant Bayes factors, B = %, for the models of interest, estimates of the
marginal likelihoods, e.g.

m= [ [ e s @) ). ©

are required. To perform the integration in (8) of ¢ = (X, B, ), we first
analytically integrate (7) with respect to (¥, B) as these parameters have
conditional posteriors of standard form. This integration gives us the follow-
ing.

Theorem 2 The marginal posterior for (3,w) is

p(B,0ly) o gu [ Sool "7 [Maa| 213 DB |BDIBITT PR (B) (9)
where in this case g, = T~/ 2g—(i=r)r/2p—n(kitr)/2,

Proof. See, for example, Zellner (1971) or Bauwens and van Dijk (1990).1

Remark: From the expression (9) that we see that not only is dg* invariant
to f — BC for C € O (r), but so is k (§) and thus the posterior.

Next we need to integrate (9) with respect to 3 to obtain the posterior
for w. Here we find one of the advantages of our approach over previous ap-
proaches in that for all model specifications we consider, the posterior will be
proper and all finite moments of 3 exist (see Appendix II for proof). The im-
portance of this statement becomes evident when we consider that economic
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objects of interest to decision-makers are often linear or convex functions
of the cointegrating vectors. As discussed in a previous section, with linear
identifying restrictions expectations of such objects are not defined unless
overidentifying restrictions are imposed or an informative prior is used. Fur-
ther, this result holds even when exogeneity is imposed - again in contrast
to when linear identifying restrictions are used.

To obtain the posterior distribution of w = (r,0,¢,7), p(w|y), it is nec-
essary to integrate (9) with respect to § and so obtain an expression for

p(wly) = / p(B,wly) dg? (10)

The marginal density of 3 conditional on w implied by (9) is not of stan-
dard form. Although one may exist, we do not currently know of a simple,
general analytical solution for ¢, = fVm kg (B) dg! and so we estimate c,,.

Two possible approaches to estimafing ¢, are either to use Markov Chain
Monte Carlo (MCMC) methods or to use deterministic methods to approxi-
mate the integral. Kleibergen and van Dijk (1998) develop a MCMC scheme
in the simultaneous equations model and Kleibergen and Paap (2002) ex-
tend this to the cointegrating error correction model. Bauwens and Lubrano
(1996) demonstrate an alternative approach. In each of these applications
a method is presented to evaluate integrals using MCMC when ( has been
identified using linear restrictions rather than those used in this paper. Stra-
chan (2003) demonstrates the MCMC approach when [ has been identified
using restrictions related to those of the ML estimator of Johansen (1992).
An approach commonly used in classical work to approximate integrals over
Vin, is to use the Laplace approximation (see Strachan and Inder, 2004)
which is computationally much faster than MCMC.

The Laplace approximation is a second order asymptotic approximation
to the marginal likelihood. There is an alternative, simpler, first order as-
ymptotic approximation to the marginal likelihood which assumes dominance
by the likelihood. That is, we may treat the Bayesian information criteria
of Schwarz (1978) (BIC) as an asymptotic approximation to —7'/2 times
the log marginal likelihood, ¢, for each model. Thus we are able to obtain
estimates of the posterior probabilities of the models. In the Applications
section we estimate the integrals both by MCMC approximation and the BIC
approaches.

As we wish to obtain estimates of economic objects of interest averaged
across models we need to be able to obtain draws of  from the posterior.
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The next subsection outlines an approach to obtaining MCMC draws from
the posterior with the uniform prior used in this paper.

Obtaining MCMC draws from the posterior with an uninfor-
mative prior on the cointegrating space: The mode of the marginal
posterior for 3, [3,is relatively straight forward to obtain (see Strachan and
Inder, 2004). This gives us a method of developing a candidate density for
the posterior with mass in the same location as the posterior. The technical
details on the development and form of this distribution are left to Appendix
III. The steps in this approach are:

1) Specify a distribution for 7 which includes specifying its standard de-
viation, o. _

2) Let H = 3 and construct the orthogonal complement H, such that
H'H, =0.

3) Take a draw of 7 and construct P, = HH' + H, H' 7.

4) Draw Z from the multivariate standard normal.

5) Construct X = P, Z.

6) Construct 8* from the orthogonal-triangular (QR) decomposition X =
B*k.

B* is then a draw from the candidate density for p with location p =

Sp <ﬁ) and we iterate over steps 3) to 6) to obtain draws from the candidate

distribution.

Acceptance for a Metropolis Hastings scheme or weighting in an Impor-
tance sampling method will be determined by a function the ratio of the
posterior to the candidate.

4 Empirical Applications

In this section we provide empirical results for three economic issues. The
first is relatively simple and involves the issue of stability of Australian money
demand. In the second we evaluate the relative weights of permanent and
transitory shocks in a US real business cycle model. Here we make use of the
classic study of King, Plosser, Stock and Watson (1991). In the third case we
evaluate posterior evidence on an inflationary oil price shock and a liquidity
trap in a UK macroeconomic model developed by Garratt, Lee, Pesaran en
Shin (2002).
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4.1 Stability of Australian money demand.

We consider a simple study of the stability of Australian money demand.
The variables, all of which appear in logarithmic form, are defined as

y=(m¢ p inc),

where m; is the measure of M1, p; is the price level, such that m;—p; measures
real money, and inc,; is real gross national income. The data are quarterly
observations from September 1976 to December 2002 and were sourced from
the web site of The Australian Bureau of Statistics, specifically tables D03,
GO09 and GO02.

As is commonly done (see for example Johansen, 1995 and Funke, Hall
and Beeby, 1997), we regard the money demand relation as the cointegrating
relation among the variables

2 = Prme + Bope + Baince + pg + 61t =y

and are interested in the stability of this relation and whether this relation is
the velocity of money. This implies a secondary question of interest is whether
the velocity of money is stable. From the money demand relation above we
can see that stability of the (negative log) velocity of money, v = m;—p;—inc;,
is implied by the identifying restrictions 3, = —f3, = —35. Figure 1 shows a
plot of v over the sample period and we see immediately that there is a clear
break in the behaviour of v around 1990. There is some uncertainty about
the date of this break so we will simply denote it as 7. This graphical evidence
could lead us to believe that v is not a cointegrating relation and therefore
is not stable (in the sense of being I (0)). An alternative explanation is that
there was a change in the equilibrium relationship among these variables and
that the velocity is still 7 (0) but not necessarily stationary. This could occur
if there were a change in the mean of z;, E (z;) = p,, for example, or a trend
were introduced into z;, E (z;) = pq + 01t, after the date 7. Either of these
could reflect the financial deregulation and advances in finance technology
that began in the 1980s and either consolidated in the 1990s (mean shift) or
a continuing expansion in the real money supply (trend). It is also possible
that the cointegrating relation is not v but that there is still a break in that
relation.

Thus we allow for a break in the cointegrating relation such that 5 = 3,

for t <1 and § = (- for t > 7. We also allow for the possbility that v is I (0)
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Figure 1: Plot of the velocity of money (v) as the solid line (against the left
hand axis), and the probability of a break in the money demand relation at
each date (vertical bars against the right hand axis).

which implies a restriction on the cointegrating space. As we would also like
to capture any possible change in the deterministic behaviour of the money
demand relation, we allow the deterministic process to differ pre and post
7. One final structural feature we allow is that income is weakly exogenous
with respect to the long run relations for which we find mixed support.
With no break in the cointegrating relation, weak exogeneity of income
has a posterior probability of zero, while with a break there is a 22.5% poste-
rior probability that income is weakly exogenous. Not allowing for a break in
the behaviour of the money demand relation, the probability that v is I (0)
is zero and there is a 53% probability that there is a linear deterministic drift
in Ay, and a nonzero mean in ;5" and a 44% probability that there is a
trend in v, 37. The probability of the break occurring at each date is plotted
against v as the vertical bars in Figure 1 and against each of the variables
in the system in Figure 2. We see from Figure 1 that the probabilities of a
break seem to lag the actual break in the behaviour of the velocity of money.
However, as the unconditional probability that v is I (0) is reasonably low at
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22.16%, it may not be appropriate to consider the stability of this relation
when our concern is the stability of the money demand relation.

We can, however, say something about the deterministic behaviour of
the money demand relation before and after the break. That is, there is
a 42.6% posterior probability that there was a trend in the relation before
and after any break date, and a 21.9% posterior probability that there was
no trend prior to the break and there was a trend after the break. If we
consider the evidence for a break at each date against the plots in Figure
2, we see that the probabilities coincide well with changes in the behaviours
of prices and income. At or around the most probably break date, the rate
of inflation slowed and the rate of income growth first became negative and
then accelerated to a faster rate than prior to the break. Noteable events at
this time were the recession at the begining of the 1990s and the completion

of a period of financial deregulation over the 1980s which is evidenced in the
behaviour of the velocity of money.

0.8
0.6 -

0.4 -

prices
0.2 -

—e——income

Sep-76

Sep-78
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Sep-92 |
Sep-94 |
Sep-96
Sep-98
Sep-00
Sep-02

Figure 2: Plot of the probability of a break in the money demand relation as

vertical bars (right hand axis) and each of M1, prices and income (left hand
axis).

This is not a trivial modelling exercise. The results were averaged over

23



80 models that assumed no structural break, and for each date at which
we allowed a break we considered 288 models. As we allow for a break at
any date between March 1978 (¢t = 2) and September 2002 (t = T — 1),
we considered in total some 28,016 models. With a burn-in of 5000 draws
and 10000 draws from the posterior for each model, the computation of the
probabilities on a desk top PC took 90 minutes.

4.2 Relative weights of permanent and transitory com-
ponents in a US real business cycle model.

In this study we investigate the Bayesian evidence for the presence of a com-
mon stochastic trend in real US consumption (¢;), investment (i;) and income
(inc;) as implied by the Real Business Cycle model (RBC) studied in King,
Plosser, Stock and Watson (1991). We extend this study to a decomposition
of the variance of the three variables in the system y; = (¢4, i, inc;) into that
part due to permanent shocks and that part due to transitory shocks. We use
the approach of Cubadda and Hecq (2001) for achieving this decomposition
in the time domain. The data are quarterly covering the period from the
first quarter 1951 to the final quarter of 1999 and come from the study by
Paap and van Dijk (2003).

King, et al. investigate the support for a feature of the process that is
implied by the RBC: the number of stochastic trends, n — r. We therefore
allow the rank, r, to vary over all possible values, r € [0, 1,...,n]|. The other
important feature of the RBC is that the Great Ratios of consumption on
income and investment on income should be stationary. We therefore allow
the log differences ¢; — inc; and i; — inc; to either form the cointegrating
relations (if r = 2) or the variables will enter the cointegrating relations via
these relations (if » = 1). This implies we allow the cointegrating vectors to
be overidentified as # = H¢ where the 2 X r matrix ¢ is semiorthogonal such
that ¢’ =1 and

1 0
H = 0 1
-1 -1

Finally we also allow for the range of five combinations of deterministic
processes suggested in Subsection 2.1.4. Thus the set of 320 models may
be summarised as r € [0,1,2,3], (¢,5) € [(0,0),...,(2,2)],l € [1,...,4] and
o€ [0,1].
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Beginning with the support for the alternative models in the model set,
the modal model with posterior probability of 41.4%, has one stochastic trend
(r = 2) and the great ratios form the cointegrating relations, 3 = H. The
posterior probabilities of the models are given in Table 1. These results show
that without the overidentifying restrictions, the weight of support is upon
there being three stochastic trends in y;, with some support for there being
no stochastic trends. With the overidentifying restrictions imposed, we find
that the support shifts to a single stochastic trend. This gives an indication
of the dangers of a sequential testing procedure for these restrictions. While
the marginal probability of the overidentification restrictions is only 44.9%,
49.5% of the posterior mass is on models in which these restrictions are either
impossible (r = n) or meaningless (r = 0) . These results give a clear example
of where there is a high degree of uncertainty as to what is the appropriate
or ‘best’ model, and averaging offers an attractive approach to accounting
for this uncertainty in subsequent inference.

Table 1: Posterior probabilities of structural features for real business
cycle model. Note that the cells for observationally equivalent models have

been merged and their probabilities added together.
Just Identified Models (o = 0)

r ] (,9)=(0,0)](,)=00]6H)=>01]6H)=21)]6g)=(22)
0 0.000 0.000 0.33

1 0.000 0.001 0.023 0.028 0.000

2 0.000 0.000 0.002 0.000 0.000

3 0.000 0.156 0.001

Over Identified Models (o = 1)
1 0.000 0.001 0.007 0.012 0.001
2 0.000 0.000 0.414 0.008 0.006

Decomposing the impulse response into the transitory and permanent
shocks we gain an impression of the importance of the effects for the vari-
ability of the consumption, investment and income. Table 2 shows the vari-
ance decomposition into the two components in three separate cases where h
denotes the number of quarters after the shock. The first part of the table,
part A, gives the results averaged over all of the models considered. In this
case the variance is shared almost equally between the two sources of shocks
and there is little change over the horizons considered. Part B shows the
results for the best (highest posterior probability) model. Here we see that
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for all three variables the transitory shock accounts for most of the variability
and, for consumption and income, this effect increases slightly from a hori-
zon of one to 36. A similar pattern is found when we only consider models
with cointegration but no trend in the error correction term and no linear
deterministic drift. These three cases demonstrate the implications of con-
ditioning upon individual models or even subsets of models. This is not to
suggest that this conditioning is necessarily inappropriate, but it does have
implications for the conclusions we obtain.

Table 2: Estimated variance decompositions into permanent and transitory
components in the time domain.

A: Averaged over all models
Permanent Transitory
Cy 1 ne; Ct 1 e
0.543 | 0.496 | 0.498 | 0.454 | 0.501 | 0.499
0.510 | 0.496 | 0.495 | 0.487 | 0.501 | 0.502
36 | 0.499 | 0.496 | 0.492 | 0.498 | 0.502 | 0.505
B: From the best model (ij = (1,1),7r=2,0=1)
Permanent Transitory
Cy 1 ney Ct 1 nec
0.374 1 0.249 | 0.259 | 0.626 | 0.751 | 0.741
0.294 | 0.249 | 0.253 | 0.706 | 0.751 | 0.748
36 | 0.272 1 0.249 | 0.248 | 0.728 | 0.751 | 0.752
C: Averaged over all models with
(1>0,7>0N0<r<n)
Permanent Transitory
Cy 1 e Ct 1 e
0.407 | 0.313 | 0.317 | 0.593 | 0.687 | 0.683
0.342 | 0.313 | 0.311 | 0.658 | 0.687 | 0.689
36 | 0.319 | 0.312 | 0.306 | 0.681 | 0.688 | 0.694

= =S

N R

|| >

4.3 Evidence on inflationary oil price shock and lig-
uidity trap in the UK.

Garratt, Lee, Pesaran, and Shin (2003) provide an extensive model of the
UK economy which focuses upon the long run relations, but incorporates
useful short run restrictions to improve modelling. In their paper, Garratt
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et al. highlight two differences in their approach from other large models.
First it is developed for a small open economy, and second it takes a new and
practical approach to incorporating long run relations while leaving short run
relations largely unrestricted. The variables in the econometric model are

— * * * (o
Y = (TtawtaAptvpt _ptaetaht —wt,'r’t,wt,pt),

where, in logarithms, p¢ is the price of oil, w; is UK real per capita GDP
and w; is the foreign (OECD) real per capita GDP, p, is the UK pro-
ducer price index, p; is foreign (OECD) producer prices, e; is the nomi-
nal Sterling effective exchange rate, h; UK real per capita M0 money stock,
ry = 0.25In (1 + R;/100) where R; is a function of 90 day interest rates and
r; a similar function of the US, Germany, Japan and France 90 day rates.

The long run relations which form the cointegrating relations, subject to
all restrictions finally imposed as a result of the analysis by Garratt, et al.,
are

Dbt — p: — € = Uit

Te— T = Ugy

Wy —w; = Usy
re—Ap, = ug, and

Bsg (hy —wy) = M6t + BaaTt + Us ¢

where the u;,; are I (0) with unrestricted means. Assuming the rank r =5,
these results suggest a cointegrating space spanning the space of the matrix
8= (Hy [35) where

000 O 1 -120 0 0 O
I — 010 O 0O O 0 -1 0 O
~to0o01 0 0 0 0 0 —-101{"
010 —-10 0 0 O 0 0
By = Hyp
-1 0 000 O0O0O0O0O0
H, = 0O -1 00 0 0O0O0O0OTO
0O 0 O00O0OO0OT1TO0O0OTO
¢ = (Nu,é Bas 532) .

27



There are three parameters* to be estimated in 3. In their paper, Garratt
et al. make oil prices strictly exogenous with respect to the rest of the
system®. The parameterisation they use implies weak exogeneity of oil prices
with respect to a and 3. The restriction that there is no quadratic trend
in y; implies p; sa = 0. Further, the exclusion of a trend from all long run
relations except the money-income relation, us ;, implies the restriction upon
the first row of 3 is iy 5 = (0, 0,0, 0,,u11’6) .

The combinations of restrictions implied by the above model can be de-
noted in the notation of Section 2 as M, with w = (5,2,1,1,0), that is, the
cointegrating rank is 5, we employ the overidentifying restrictions on 3 of
type 2, oil prices are weakly exogenous with respect to o and 3, and there is
no quadratic drift in y; but there may be a trend in v (ij = (1,0))

The range of models we include in our model set are defined by r &
0,1,...,9], e € [0,1], 0 € 0,2], and (i,5) € [(0,0),...,(2,2)], for a total
of 200 models. As a number of the models implied by combinations of these
restrictions are either impossible or observationally equivalent, we need only
estimate 87 models. Analysing their macroeconomic model within (1), Gar-
ratt, et al. find support for » = 5 using Johansen’s trace test. They also
find support for the overidentifying restrictions and trend restrictions using
a log-likelihood ratio test, where they used bootstrap estimates of critical
values. They do not appear to test support for the weak exogeneity of oil
prices. Below we present the posterior probabilities of the various models
(zeros or near zeros are suppressed or omitted) where e = 1 implies weak
exogeneity of oil prices.

*Note that we do not use linear identifying restrictions (or normalisation) for the vector
35, in which coefficients must be estimated. Instead, as discussed below, we identify ¢ by
nonlinear restrictions of the form ¢’¢ = 1. We do this to simplify estimation, and to avoid
the potential problem that the posterior may have no moments and possibly be improper,
particularly when we impose exogeneity.

®The concept of strict exogeneity has been criticised (Engle, Hendry and Richard 1983
and Hendry 1995) for introducing ambiguity of interpretation. The concepts of weak,
strong and super exogeneity do, however, have clear interpretations and implications.
Therefore, it is fortunate that in making oil prices strictly exogenous, Garratt et al. in
fact make them weakly exogenous with respect to 87 and a. The weak exogeneity of oil
prices implies as = 0.

28



p(r,i,e=0Jy)
|714,j=0,0]2;=10]47=1,1]47=2,1]i,j=2,2
0
1 0.0101 0.0008 0.0324 0.0128
2 0.0004 0.0001 0.0040 0.0190
p(r.i,e=1ly)
ri,j=00]4j=10]ij=11]4j=21]ij=272
0
1 0.0213 0.0085 0.2507 0.1262
2 0.0001 0.0002 0.0756 0.4376
3 0.0001

Marginal Probabilities
[pGly) [1,5=00]ij=10]ij=11[4j=21[4j=22]
| | 0.0000 | 0.0320 | 0.0096 | 0.3626 | 0.5958 |

(p(rly) [r=0]r=1|r=2|r=3|r=4|
| | | 0.4628 | 0.5371 | 0.0001 | |

The posterior probabilities for the rank suggest support for a rank of
one or two with P (r = 1|y) = 0.4628 and P (r = 2|y) = 0.5371. We also find
marginal probabilities of no deterministic processes (i, j = 2, 2) of 0.5958 and
of an intercept in the cointegrating relations (7,7 = 2,1) of 0.3626. The pos-
terior probability that the oil prices are weakly exogenous is 0.9203 providing
strong support for this restriction. The combined restrictions of overidentifi-
cation, exogeneity, four stochastic trends and a linear trend in the long run
money-income relation had a joint probability of effectively zero within this
model set.

With the overidentifying restrictions, the only coefficients to be estimated
in the long run relations, ignoring the intercepts, are in the money market
equilibrium condition given by

ht - wt - N21,Tt + 6227} _I_ u47t.

Estimating the coefficients in this relation subject to the restrictions proposed
by Garratt, et al., we obtain

hy —w, = —0.0070t — 43.2148r; + w4,
which compares with the classical estimate of Garratt et al. of

ht — Wy = —0.0073t — 5609757} + Uy, t-
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Both results suggest a downward trend in the money-income ratio which may
be attributed to technological innovations in the finance sector (Garratt, et
al. 2003).

Although there is a clear modal model, M, oci ) = M(2,1,2,2,2), there is just
as clearly some support for nearby models such as M 1221y and M 122 9).
We incorporate the information value of these models for decision making
through averaging the economic object of interest. As an example of an
averaged output which can be used as an input for decision making, Figure 3
presents the higher posterior density regions (hpds) for the impulse response
function over 60 months for a response in relative UK prices, p; — p;, to a
shock in oil prices, p?. This output is averaged across all models and was
produced from 100,000 draws from the full posterior. The intervals plot the
boundaries of the 20%, 40%, 60% and 80% hpds. The UK during the period
of the sample was a net oil exporter and we see the effect of this reflected
in the figure as the distribution of the response path indicates initially that
the rest of the world experiences a larger response to an oil price shock than
the UK, after which the UK appears to catch up slightly. However, the
greater impact on world prices relative to UK prices seems to persist as after
60 months the path is centred around a slightly negative mode just above
negative 1%. This is not a surprising result given the likely exchange rate
adjustment in the pound.

It should be pointed out that these intervals are not comparable with the
usual classical confidence intervals as, in addition to variable uncertainty,
they incorporate parameter uncertainty and model uncertainty. With this
extra uncertainty it is sensible then that the intervals containing a given
mass will be wider and the mass in any particular region does not have the
same interpretation. Trimming the model set of unreasonable models would
likely produce smaller intervals. However, the results we present are more
informative on the question ‘What will happen to relative prices in the UK
if there is an oil price shock?’ as they do not require the addendum: ‘... if
this model and these parameter values are correct?’.

Figure 4 plots the hpds for the impulse response function over 60 months
for a response in UK inflation, Ap,, to a shock in oil prices, p?, again produced
from 100,000 draws from the posterior. The median response after 60 months
shows a moderate increase in the level of inflation of around 2.5% and so the
median impulse response is about where we would expect it and the 20% and
40% hpds are reasonable.
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Figure 3: Higher posterior density regions for the impulse response of relative
UK prices (p: — p;) to a shock in oil prices. The z-axis spans zero to sixty
months.

An interesting feature of both figures are the long tails at low lags. This
tail behaviour is due entirely to the set of 40 models (out of 97 models) in
which oil prices are not constrained to be weakly exogenous. Although these
models are given a small (but not negligible) posterior probability (around
8%), their implied response paths are so extreme that they have a noticeable
influence upon the marginal distribution of the response.

It is to demonstrate this rather strange behaviour that we have reported
the results using the BIC approximation to the posterior probabilities. The
same plots of the hpds for the impulse response paths when we used the
Laplace approximation or the MCMC estimation do not demonstrate such an
extreme diversion in the tail and look similar to what we obtain if we use BIC
but exclude the models in which oil prices are not exogenous (e = 0). The
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Figure 4: Higher posterior density regions for the impulse response of relative
UK inflation (Ap;) to a shock in oil prices. The z-axis spans zero to sixty
months.

reason for this is that the Laplace and MCMC methods tend to concentrate
the mass of the density for the models on fewer models and attribute no mass
to the models with e = 0. The behaviour in Figure 4 demonstrates the risks
of conditioning on particular models, but also the risks - also inherent in our
approach - of not using a sufficiently well considered model set.

The final output from this analysis is the forecasts of the probability that
the UK would encounter both negative prices changes and negative growth
from the year 2000 on, after the end of the sample (the near future with
respect to the sample). The occurance of these two events would lessen the
effectiveness of interest rate cuts (as they cannot go negative) thus removing
an important policy tool from the central bank. Although more technical
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definitions exist, for conciseness we will term an occurance of both negative
inflation (Ap;+, < 0) and negative growth (Aw,,, < 0) in one quarter as an
occurance of the the liquidity trap. To obtain the predicted probability of
this joint event, we must forecast of the joint predictive density for income
and inflation and estimate the mass of the density in the region where both
are negative. Figure 5 plots the observed growth (dashed line) and inflation
(solid line) over the final eight quarters of the sample. While growth was
positive in all quarters (but zero in December 1998), there were three quarters
in which there was negative inflation. Figure 6 plots the predicted marginal
probabilities of negative growth (dashed line) and negative inflation (solid
line) and we see the recent behaviour shown in Figure 5 reflected in these
probabilities in the immediate future. The behaviour of the data and the
signals from predictions that each will go negative give a mixed signal as to
the chance of encountering the liquidity trap. Figure 7 shows the probability
of encountering the liquidity trap in the near future as well as the product of
the marginal probabilities of the two events of negative growth and negative
price changes. The difference between these two plots gives a clear indication
of the importance of being able to forecast the joint predictive distribution
and not just the marginals. The two lines would of course be identical if the
two events were independent. One interesting observation is that although
the likelihood of the liquidity trap occuring is very low initially, due to the
strong growth in the UK at the end of 1999, the probability increases two
years later then falls again. The increase in the probability coincides with a
period when central banks were beginning to express some slight concern for
the possibility of such an event.

5 Conclusion.

In this paper we have presented a Bayesian approach to obtain uncondi-
tional inference on structural features of the vector autoregressive model by
means of evaluating posterior probabilities of alternative model specifica-
tions using a diffuse prior on the structural features of interest. The output
produced this way allows forecasts and policy recommendations to be made
that are not conditional on a particular model. Thus this model averaging
approach provides an alternative to the more commonly used model selec-
tion approach. Specifically we provide techniques for estimating marginal
likelihoods for models of cointegration, deterministic processes, exogeneity,
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Figure 5: Plot of UK growth (dashed line) and inflation (solid line) over the
quarters March 1998 to December 1999.

and overidentifying restrictions upon the cointegrating space. The estimates
are derived using a mixture of analytical integration and MCMC or asymp-
totic approximations to integrals. Three applications of the methodology are
provided: stability of Australian money demand, permanent and transitory
shocks in the US business cycle and UK evidence on an inflationary oil price
shock and a liquidity trap.

We end with mentioning two topics for further research. First, there exists
the issue of the robustness of the results with respect to prior and model
specification. Very natural extensions of our approach are to include prior
inequality conditions in the parameter space of structural VARs and consider
forms of nonlinearity and time variation in the model itself. For instance, in
using a SVAR for business cycle analysis one may use prior information on the
length and amplitude of the period of oscillation. An example of a possible
nonlinear time varying structure that may prove useful is presented in Paap
and van Dijk (2003). Systematic use of inequality conditions and nonlinearity
implies a more intense use of MCMC algorithms. Second, one may use the
results of our approach in explicit decision problems in international and
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Figure 6: Plot of predicted marginal probabilities of negative growth (dashed
line) and negative inflation (solid line).

financial markets like hedging currency risk or evaluation of option prices.
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8 Appendix I

8.1 Posterior distribution of (3, given exogeneity.

In this section we show the marginal likelihoods are not well defined for [,
when weak exogeneity is imposed. The following results apply for a wide class
of priors. To consider weak exogeneity with respect to 3, we partition the
matrix o as a = ( Q) Qg ) such that the exogeneity restriction is implied by
ay = 0 and derive the marginal distribution of (a3, 3). Next we set ay = 0
in p(as, Bly). If [p(Blae =0,y) (8'd3) = oo, then the posterior does not
integrate to a finite constant and Bayes factors are not defined. Thus by
demonstrating that the above integral is not finite when linear restrictions
are imposed on 3, such that § = [, I,] and 3, € R" 7" we show the
marginal likelihoods are not finite.
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The marginal, joint posterior distribution for («, 3) given r = ns, is

ple, Blr,y) o |TS + (o — @) B'SuB(a— a)}—wm/z .
such that

plaflry) o TS+ (a—a) #Suba—a) "

= |@sup 41 @@ s @ -ay|

« |TS|—(V+T’)/2 ‘ﬁ/511ﬁ|f(u+r)/2 .

Let 045 denote the last ny rows and columns of 7'S and partition 7'S as

TS:|:SH Sl2:|'

521 022

Next, denote the ns X ny matrix made up of the last n, rows and columns
of Sgo by Spo.22, and note that ooy = Spo.20 — A3’ S1130s. Next, we integrate
with respect to a;. The conditional distribution of a3 is

p(alB,y) o ’(5,5115)71 + 7! (a0 — @) g1 (a — a), —(v+r)/2
= ’(5,5115)71 + g1 (az) + g2 (1) S
where
91(02) = (00 = @2)03] (22— @)

g (@) = (00— R) (Su— S0y Sn) " (o1~ &)

Integrating with respect to a; gives us the marginal distribution of (aw, 3)
as

~ ~ —(v—n+r+ng)/2
p(ag, Blr,y) o |og + (ay — @2) F'S1f (a2 — @) ( 2/
X ‘ﬁ,511/6|7(n7n2)2 ‘0_22|(V—n+n2)/2 ‘S|—l//2 ]

. ~~ AN _1
Since Spo22 = 022 + 0/25/5115042 = 092 + So1,208 (5/5115) /8/510,27 then eval-
uating this expression at ay = 0 and rearranging we have

p (Blaz = 0,7,y) oc |8'DB| "% |5 Do o8| """
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where D072 = 511 — 5107250_0:7[2250172, 51072 = 56172 is the last Tlog TOWS of SlO- If
we partition D and Dy, conformably as

. D11 D12 o A11 A12
D= [Dm 4 } and Do = [Am s }
use the linear restrictions 8 = |G IT]/, then let d, = d — Dy Dy{ D1s,

0s=06— A21Af11A12, BQ = DﬂlDlz and Bz = AﬂlAu;

—lo

p(Bolag =0,my) o |ds+ (52 - Bz>,D11 (52 - 32)

I
X

bs + (ﬁz - Ez>/A11 (52 - Ez)

Thus we have the 1-1 poly-t form for the posterior of f|las = 0. As the
posterior is integrable only if 7y = 2 (ly — l;) — (n — r) > 0. In this case, then,
since ng = r

vy=2lp—lL)—(n—r)=v—v4+n—my—n+r=0

and the posterior is clearly not integrable. Note that is is possible to take
ng > r provided n; > n — r. In this case v = r — ny < 0, again producing an
improper posterior.

Taking strong exogeneity with respect to 5 will result in ns being replaced
by ko = ny + In giving

2(lp—l1)—(n—r) = v—v4+n—ky—n+r
= —ny—In+r<0

and the posterior is not proper in any situation.

9 Appendix I1

9.1 Proof of Theorem 1:

In deriving the invariant measure on the Grassman manifold, James (1954)
presents a relationship between an element of the Stiefel manifold, V € V,.,,,
and element of the Grassman manifold, p = sp(8) € G,,,—, where the r-
frame § € V,,, and an element of the orthogonal group, C' € O (r). 8 has a
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particular (fixed) orientation in p such that it has only (n — r) r free elements.
Thus as p is permitted to vary over all of G, ,,_,, 3 is not free to vary over all
of V. For p = sp(V), V is determined uniquely given p and orientation of
Vin p by C € O (r), such that V' = C. Note that as p is permitted to vary
over all of G,.,,_,, V is free to vary over all of V,.,,. The resulting relationship
between the measures is
dv;! dg, dv,.
or dv; = dg; dv;. (11)

T

James® obtains the volume of Grpr as

[ —
/ dgrn — ™n .
Grn—r fO(r) dvr

_ ﬂ_(nfr)r]:[r' I [(’l" +1— J) /2]
- Tl (n+1-5) /2

(12)

Since the polynomial term accompanying the exterior product of the dif-
ferential forms is equivalent to the Jacobian for the transformation (Muirhead
1982, Theorem 2.1.1), we can see from the expression (11) that the Jacobian
for the transformation V' to (5, C) is one.

Next consider the transformation from V € V,,, to By, € R™)" and
C € O(r) presented by Phillips (1989 and 1994, Lemma 5.2 and see also
Chikuse, 1998) and reproduced here:

/ 73 == 172
V=[d+dB) [L+BB]  C
The differential form for this transformation is

o = ,ﬂ_—(n—r)r T I [(n +1-— j) /2]
o BT 1) /2

—-n

L+ BB By () (13)

(Phillips, 1989, 1994).
Equating (11) and (13) gives the result. Another, slightly more general
proof for the same result is presented in Chikuse (1998).H

SWe note that the sums, 3, in (5.23) of James (1954) should be products, II.

42



9.2 Proof that linear identifying restrictions with a flat
prior give zero weight to the chosen linear restric-
tions:

The Jacobian defined by (5) implies that a flat prior on p is informative with

respect to 3, and vice versa. This leads us to consider the implications of a
flat prior on 3, for the prior on p.

Theorem 3 The Jacobian for the transformation from B, € R™™7 to p €
Gy oy 15 defined by

n—r)ryyr P[<T+1_j)/2] =1 o1 g -1 n
I e R A Te e )

= Jdg, . (14)

n/2

(d52)

Proof. Invert (13) and replace (3, by ¢, (c3) .1l

Theorem 4 Given r, use of the normalisation By, = ¢, 3 (cﬁ)f1 results in
a transformation of measures for the transformation 3, € R™"" — p €
G n—r that places infinite mass in the region of null space of c relative to the
complement of this region.

Proof. Let p,, be the plane defined by the null space of c. Define
a ball, 9B, of fixed diameter, d, around p. and let Ny = B N G, ;- and
N = Gy — Ny. Since for d > 0, [, Jdg} is finite whereas fNo Jdg" = oo,

we have
Iy, Jday

Jn Jdgy >

|

Discussion: To demonstrate this result, consider a n—dimensional sys-
tem for y = (2, 2')’ where z is a r vector. To implement linear restrictions a
normalisation must begin by first choosing c¢. Suppose it is believed that if a
cointegrating relationship exists then it will most likely involve the elements
of z in linearly independent relations. That is in yf = x5, + 28, «~ 1(0),
det (8,) is believed far from zero making it safe to normalise on (,, and so
choose ¢ = [I, 0] and estimate 8, = ¢, 3 (c3) .

>From (14) we see as p = sp(B) — sp(c), c1f — Opm—r)xr and ¢f —
O (r) and J — 1. However, as vectors in 3 approach the null space of ¢, that
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is det (¢f) — 0, then (¢f)" — oo, and thus J — co. As a result the prior
will more heavily weight regions where det (¢3) = det (3,) = 0, contrary to
the intention of the economist. As a trivial example, consider our money
demand study with » = 1 and ¢, = Bym + Byinc. If we believe money is
most likely to enter the cointegrating relation, we would choose ¢ = (1,0)
as we believe 3; # 0. Yet the Jacobian places infinite weight in the region
B, = 0 excluding m; from the cointegrating relation.

9.3 Proofs that the posterior will be proper and all
finite moments of 3 exist.

Since g, is finite for the class of priors considered, that the Bayes factor is
finite requires the integral with respect to § to be finite. The following are
some general results with respect to this integral.

Theorem 5 The marginal posterior density for [ conditional upon w has
the same form for each model considered:

p(Blw,y) o |8 Dos| 7?8 Dyg) " (15)
= ks (B)

where kg (8) = |3 DB "/* |8 Dy 8" 2.

Theorem 6 The marginal posterior density for 3 conditional upon (r,i) in
(15) is proper and all finite moments exist.

Proof. Denote by b;; any element of 3. The proof follows from the result
that the integral

M’B:/v |bi|™ kg () dvy!

for m =0,1,2,... is bounded above almost everywhere by the finite integral
M fjl |b;;|™ db;;. As the elements of 3, b;;, have compact support, it is only
necessary for this proof to show that ks (5)dv) is bounded above almost
everywhere by some finite constant function over V;.,, (note the adjustment
to the integral over G,,_, simply requires division by the finite volume of
O (r), thus we only need consider the integral over V,,). As demonstrated
in the proof to Theorem 1 in Section (4.2), dg! is integrable and therefore
bounded above almost everywhere by some finite constant, M;.
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The eigenvalues \; (D;) for [ = 0,1, will be positive and finite with prob-
ability one. By the Poincaré separation theorem, since 3 € V; ,,, then

H§:1>\nfr+j (Dl) < |5/D15| < H;’:1)‘j (Dl)

and so kg (0) is bounded above (and below) by some positive finite constant,
M,. Thus kg (83) dg!* has a finite upper bound, M = M, M,. With the com-
pact support for b;;, these conditions are sufficient to ensure the posterior for
(B will be proper and all finite moments exist (see Billingsley 1979, pp. 174
and 180).H

10 Appendix III

10.1 An informative distribution on the cointegrating
space

In this Appendix we present a method of developing an informative distri-
bution on the cointegrating space. Uses of such a distribution include as
an informative prior or as a candidate density in a Markov Chain sampling
scheme. The development of the distribution makes use of a specification of
the location of the distribution and a specification of the dispersion. The es-
timator for the mode of the posterior presented in Strachan and Inder (2004)
provides a means of locating the distribution near the mass of the posterior,
as for an informative prior the researcher specifies the location space in the
form of a matrix.

When considering the cointegrating space p, we will denote our desired
location or the likely value as p? = sp (Hk) (as in the Garrett et al. case)
where H € V;,, is a known n x s (s > r) matrix, H, € V,_,, its orthogonal
complement and « is an s x r full rank r matrix. To obtain H in V,,,
first specify the general matrix HY with the desired coefficient values (that
is HY may be the modal estimate of ( in the posterior, or some matrix
specified by the researcher). One might consider as an example the matrix
H presented in Section 4.2. Next map this to V,., by the transformation
H = H9(HYH9) '/*.

At the extreme, a dogmatic distribution for p could be specified by letting
B =HkV,V € O(r).Next define kV =V, € V; ; and specify the distribution
in (6) for V. This resulting distribution assigns unit probability mass to

p=pH.
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Next we specify an informative, nondogmatic, distribution for p centered
at p = p but with positive mass elsewhere in G, ,,_,.

Let the random scalar T have E (1) = 0 and E (72) = 2. The value of o
will control the tightness of the density around p’. Next construct

P. = HH' +H H\r
I. 0 ik
- [HHL]{O In_rr] {H’L]

and let the elements of the n x r matrix Z be independently distributed
as standard normal, N (0,1). The matrix X = P,Z can be decomposed as
X = [k where 8" € V,,, and & is an r X r upper triangular matrix. For
T # 0 and |7| < oo, the space of 3%, p = sp(57), is a direct weighted sum of
the spaces p and p* with the weight determined by .

At 7 =0 and 7 = o0, p is respectively p and pf+. It is for this reason
that we chose E (7) = 0 such that with respect to 7, the space will on average
be pf. One choice for 7 is N (0,1) and the form of the resultant density for
5" and the hyperparameter 7 is

2

p(rs) = e T P8, (16

where ¢, = 2772 D/AZE U2 D (n 41— j) /2]

As an alternative, if the researcher would prefer to assign more weight in
the direction of pf+ but preserve dim (p) = r with probability one, she may
choose P, = HH' (1 —72)"% 4 H,H' 7 with 7 € [—1,1]. Again the choice
of E (1) = 0 would make sense and F (72) = 02 controls the tightness of the
density around p. A possible choice of a distribution for n = 7 + 1 may be
Beta over 1 € [0, 2] which allows some mass to be distributed around p#+ by
appropriate choice of parameter values

11 Appendix IV

11.1 Terms in the posterior:

We define the terms in (7) by S = Spo—Sp1 5 (ﬁ/Snﬁ)fl B3 S10, B= [ a P ]/,

~/

a = (5/5115)71 3810, @ = Syo' S0, and V = f3 (E;‘P:lzgszﬂ)B where
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2t = (214 22.¢). The values for the S;; are defined as

TM;; = hi+ E?:ﬁé,tzj,t fori and j = 1,2,
hij = 0ifi# j and hy; = 0.011,
TMy = ElezévtAyt, TMy = 2:{2121,15Ayt7
TMy = XL, Ay/Ay, andso
Sij = My — MMy Mo, forij =0,1,2,
except ¢ = j = 2 where

522 = M22 — MglMl_llMlg and
Sy = Mzo—leMﬁle-

For later use we also define Dy = D — Dy, D1 = S1; and Dy = SOISﬂlSm.

47



