
 1

The Evolution of International Political Risk 1956-2001 
 

Ephraim Clark & Radu Tunaru1 
 
 
 

Abstract 
 

This paper deals with international political risk defined as political events with 

substantial, negative economic and financial repercussions that are felt world wide. We 

use Markov Chain Monte Carlo (MCMC) modelling techniques to measure the evolution 

between 1956 and 2001 of international political risk. For the first time to our knowledge 

international political events are investigated, a timely topic that fills a major hole in the 

literature. The Bayesian Hierarchical Markov Chain Monte Carlo modelling that we 

adopt also adds a new dimension to political risk assessment. 
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1. Introduction 
 

International political events have been a fact of life since the end of the Korean 

War. The Suez crisis of 1956, the Cuban missile crisis of 1962, the oil embargo of 1973, 

and the debt crisis of 1982 are some of the most obvious examples. Combined with the 

ongoing "globalization" process, more recent events, such as September 11, 2001 and the 

war in Iraq, are powerful reminders of the importance of the international aspect of 

political risk. The political risk literature, however, either ignores this aspect or treats it 

indirectly. Root (1973), for example, focuses on country specific characteristics that he 

divides into transfer risks (potential restrictions on transfer of funds, products, technology 

and people), operational risks (uncertainty about policies, regulations, governmental 

administrative procedures which would hinder results and management of operations in 

the foreign country), and, finally, risks on control of capital (discrimination against 

foreign firms, expropriation, forced local shareholding, etc.). Robbock and Simmonds 

(1973) look at country specific political events that cause unanticipated discontinuities in 

the business environment. Brewer (1981) refers to political risk as miscellaneous risks 

from doing business abroad. The expropriation literature is country specific by definition 

(see, for example, Eaton and Gersovitz (1984), Andersson (1989), and Raff (1992)) and 

the contagion literature, which might be expected to consider international political risk, 

is also country focused.2 Valdes (1997), for example, defines contagion as excess co-

                                                 
2 The thrust of the contagion literature is on how a crisis is transmitted from one country to another. Calvo 
(1998), for example, explains contagion as a result of liquidity and asymmetric information, whereby a 
leveraged investor facing margin calls must sell his assets to uninformed investors who cannot distinguish 
between good assets and bad (lemons problem). A variant of this scenario is leveraged investors facing 



 3

movement in asset returns across countries and Eichengreen, Rose and Wyplosz (1996) 

define it as a situation where knowledge of a crisis in one country increases the 

probability of a crisis in another country above that warranted by the fundamentals. 

Meldrum (2000) summarizes the definition of political risk as additional risks not present 

in domestic transactions that typically include risks arising from a variety of national 

differences in economic structures, policies, socio-political institutions, geography and 

currencies.3  

 
In this paper we focus on international political risk, which we define as political 

events with substantial, negative economic and financial repercussions that are felt world 

wide as opposed to political events whose economic and financial consequences are 

limited to a specific country or region. More specifically, we use Markov Chain Monte 

Carlo (MCMC) modelling techniques to measure the evolution between 1956 and 2001 

of international political risk. The novelty of our study is twofold. First, we focus on 

international political events, something that to our knowledge has never been done 

before. The second innovation is the use of MCMC modelling techniques to estimate the 

level of international political risk, where political risk is defined in Clark (1997) and 

Clark and Tunaru (2003) as the expected arrival rate of political events. This definition 

recognizes that political risk can arise from a wide range of sources, which are often 

                                                                                                                                                 
margin calls who sell assets whose price has not yet collapsed, thereby causing the collapse of these prices 
and spreading from market to market. Kaminsky and Reinhart (2000) emphasize the role of common 
lenders, such as commercial banks. In this explanation, the banks' need to rebalance their portfolios and 
recapitalize after initial losses causes an overall reduction in credit to most or all countries that rely on them 
for credit. The most plausible family of contagion models focuses on the role of trade in financial assets 
and information asymmetries. Calvo and Mendoza (2000), for example, show how the costs of gathering 
and processing country risk information can cause herding behavior even among rational investors. 
 
3 For a comprehensive, in-depth presentation of political risk and an extensive bibliography, see Bouchet et 
al. (2003). 
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mutually dependent. As such, it is very general. By looking specifically at international 

political risk, we deal with a timely topic and fill a major hole in the literature. The 

Bayesian Hierarchical Markov Chain Monte Carlo modelling technique that we adopt 

also adds a new dimension to political risk assessment. 

 

Traditional methods for assessing political risk are generally country specific and 

range from the comparative techniques of rating and mapping systems to the analytical 

techniques of special reports, dynamic segmentation, expert systems, and probability 

determination to the econometric techniques of model building and discriminant and logit 

analysis.4 The non-econometric techniques are generally very timely but have the 

shortcoming of also being very subjective. Rating systems, for example, reflect the latest 

information but the different factors and factor weights are generally subjective in the 

sense that they have no comprehensive statistical or theoretical underpinning. The 

econometric techniques are less subjective but have the shortcoming of not being very 

timely. For example, when conditions change, it can take a long time and many 

observations before the change is fully reflected in the estimated coefficients. MCMC 

simulation based on Bayesian hierarchical models has the advantage of being both timely 

and less subjective. It can also handle an important aspect of political risk that is widely 

acknowledged in the literature and modelled explicitly by Clark and Tunaru (2003), that 

is, that loss causing political events arise from a wide range of sources, which are often 

mutually dependent. 

 

                                                 
4 See Bouchet et al. for a comprehensive presentation and analysis of assessment techniques. 
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Treating political risk as a loss causing event is clearly in the spirit of authors 

such as Root (1973), Simon (1982), Howell and Chaddick (1994), Roy and Roy (1994) 

and Meldrum (2000), who analyse risk as an explicit negative event that causes an actual 

loss or a reduction of the investment’s expected return. This stands in contrast to other 

authors such as Robock (1971) and Haendel et al. (1975), Kobrin (1979) or more recently 

Feils and Sabac (2000), who focus on political risk as it affects the volatility of an 

investment’s overall profitability both negatively and positively. Tests of political risk on 

investment outcomes reflect these two approaches. Kim and Mei (2001), Chan and Wei 

(1996), Cutler et al. (1989) and Bittlingmayer (1988) consider political risk with respect 

to stock market volatility. Other papers, such as Erb et al. (1995 and 1996), Cosset and 

Suret (1995), Bekaert (1995), and Bekaert and Harvey (1997) focus on losses and test 

political risk with respect to stock market performance. We choose the negative slant on 

political risk because we find it more intuitive and more in line with what investors 

generally understand by political risk. 

 

The rest of the paper is organized as follows. Section 2 presents the data and 

section 3 contains an overview of Bayesian hierarchical models that can be applied for 

analysing rare events and MCMC techniques that are needed for extracting statistical 

inference from the economic time series. The main findings are discussed in Section 4 

where empirical results are compared. The last section summarises and concludes. 
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2. Data 
 

The data presented in table 1 is organized annually and comprises international 

political events between 1956 and 2001. We could find no general objective criteria on 

which to distinguish country specific or regional specific events from the truly 

international ones. Thus our choice of events is largely subjective, based on personal 

analysis with the help of professional historians. Although this subjective element is a 

potential weakness, we feel that the majority of events included in the study are non-

controversial. These include events such as the Suez Crisis of 1956, the Cuban Missile 

Crisis of 1962, the stockmarket crash of 1987, the September 11 terrorist attack, the 

international debt crisis of 1982,  the 1994 Mexican peso crisis, the 1997 Southeast Asian 

economic meltdown, the reorganization of the world monetary system in 1976 and the 

runs on gold and the international monetary crises of 1960, 1962, 1967, 1971, 1973, and 

1985. We also feel that nuclearization is a world shaking event. Thus, we include 

France's first nuclear tests in 1960 and those of India and Pakistan in 1998. Other events 

that would normally be consigned to the regional event category are international events 

because of the oil factor. These include the 1967 Middle East War, the 1972 Arab 

terrorist attack at the Munich Olympic Games, the 1973 Middle East War that provoked 

the oil embargo, the 1979 Iranian Revolution, the 1980 Iran-Iraq war, and the 1990 Iraqi 

invasion of Kuwait followed by Operation Desert Storm in 1991. The Cold War is the 

direct source of other international events such as the U2 spy plane incident in 1960, the 

construction of the Berlin Wall in 1961, the 1968 invasion of Czechoslovakia by Warsaw 

Pact troops, and the US government’s Star Wars Initiative in 1983. It is also an indirect 

source for regional conflicts that would otherwise have been purely regional affairs. This 
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is true for the Indo-Pakistan war of 1965, the Turkey-Cyprus wars of 1964 and 1974, the 

war between the Bengali rebels and Pakistan in 1971, and the Ethiopian-Eritrean war of 

1975. Combined with the economic, military and political power of the United States in 

the world, it was also an important element in incidents such as Kennedy’s assassination 

in 1963, and incidents in the Vietnam war, such as the US bombing of North Vietnam in 

1966, and the Tet offensive of 1968. The Vietnam war itself is responsible for a series of 

US political events that rocked the country and, because of the US position of 

overwhelming international power, the world as well: the assassinations of Martin Luther 

King and Robert Kennedy and the upheaval at the Democratic convention in 1968, the 

massive anti-war demonstration in Washington DC in 1969 and the Kent State incident 

where US troops fired on and killed protesting students. Again, the importance of the US 

in the world makes any threat to its political stability a threat to the world. Thus we 

include Clinton’s impeachment in 1998 and the contested presidential election in 2000. 

We include the interest equalization tax of 1963 and the mandatory controls on foreign 

investment in 1968 because of their effects on the international financial system and 

world capital flows. 

To get a better feel for what we have included as international political events, it 

is instructive to consider some events that were not included. For example, why did we 

exclude the Hungarian invasion by the Soviet Union in 1956 while including the invasion 

of Czechoslovakia in 1968 or why did we exclude the Bay of Pigs in 1961 but include the 

Cuban missile crisis of 1962? The invasion of Hungary was aimed at putting down a 

revolution, seen from the eyes of the recognized government, basically an internal affair, 

and treated as such by the US and the rest of the free world. The invasion of Hungary was 
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aimed at toppling the recognized government, basically an act of war, and treated as such 

by the free world. The Bay of Pigs did not involve the superpowers directly while the 

missile crisis did. The same reasoning went for excluding the Soviet invasion of 

Afghanistan and the US invasions of Grenada and Panama. 

 
Table 1. International Political Events 1956-2001 

1956 Suez Crisis 
 
1960 Run on gold causes creation of London gold pool 
1960 Soviets shoot down American spy plane 
1960 France tests its first atomic weapon 
 
1961 Berlin Wall is constructed 
 
1962 Cuban missile crisis 
1962 France begins selling dollars for gold 
 
1963 Kennedy assassinated 
1963 interest equalization tax 
 
 
1964 Turkey planes attack Cyprus (UN peace force takes over in Cyprus) 
 
1965 Indo-Pakistan War 
 
 
1966 B-52 bomb North Vietnam 
 
1967 Devaluation of British pound followed by world monetary crisis 
1967 Middle East War 
 
 
1968 Tet offensive 
1968 Czechoslovakia invaded by Warsaw Pact troops 
1968 Martin Luther King assassinated 
1968 Robert Kennedy assassinated 
1968 Upheaval at Democratic convention 
1968 mandatory controls on foreign investment by US residents 
 
 
1969 Massive antiwar demonstration in DC 
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1970 Kent State incident troops fire on students 
 
1971 Gold convertibility suspended 
1971 War between Bengali rebels and Pakistan 
 
1972 Arab terrorist attack at Munich Olympics 
 
1973 Dollar devalued 
1973 Oil embargo/Yom Kippur War 
 
1974 Turks invade Cyprus 
 
1975 Ethiopian-Eritrean War 
 
1976 New international monetary system (gold demonetized, floating exchange rates 
agreed) 
 
1979 Iranian Revolution 
 
1980 Iran-Iraq War 
 
1982 Mexico defaults 
 
1983  Star Wars Initiative by US government 
 
1985 Group of 5 announce policies to push down the dollar's value 
 
1987 Stockmarket crash 
 
1990 Iraq Invades Kuwait 
 
1991 Operation Desert Storm 
 
1994 Peso crisis 
 
1997 Asian crisis 
 
1998 India and Pakistan conduct nuclear tests 
 
1998 Clinton impeached 
 
2000 Contested election 
 
2001 September 11  
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3. Bayesian Hierarchical Modelling with Markov Chain Monte 
Carlo Simulations 
 

The data we analyse falls outside repeated random independent experiment 

framework. Hence, classical statistical inferential methods are not appropriate. Moreover, 

the data generation process undergoes major changes from time to time, which 

necessitates a more flexible tool than maximum likelihood inference or least-squares 

class of methods or the more empirical methods-of-moments approach. Ideally the 

analyst could use a tool that embeds all the above in an exploratory methodology that 

allows fitting any model that is correctly specified for the data investigated. 

 
In addition, it is a well accepted fact that data cannot be the whole story all the 

time. Data is still a valuable source of information in finance but the imminent change in 

tax or increase or decrease of interest rates may shift the future data pattern to a direction 

that is not implied by the current state of affairs. Bayesian Hierarchical Modelling 

provides a solution for both problems identified above but the price to pay is the need for 

complex computational methods for practical implementation. The necessary 

computational methods do exist and are widely applied in other areas such as 

biostatistics, marketing, business, and epidemiology (see Gilks et al. (1996) for a wide 

range of applications). 

 

In Bayesian hierarchical modelling the model is specified on several layers. For 

example, denoting generically the vector of all data by y, the vector of all parameters by 
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φ5 and a probability density function by p, we first provide a likelihood distribution 

)|( ϕyp  and an a priori distribution for the parameters )(ϕp . Then, using the Bayes’ law 

it is true that 

  )()|()|( ϕϕ∝ϕ pypyp     (1) 
 
where the ∝  signifies up to a proportionality constant. This process may continue 

hierarchically with further prior parameters associated with φ. The models in this paper 

are all hierarchical. 

 
One of the simplest models for our data would be the following model (Model 1 

from now on) 

 
),(~    ),(~

),(~,

)(~

2121 bbGammaaaGamma
Gamma

PoisYi

βα

βαβαθ

θθ

   (2) 

where 2121 ,,, bbaa  are some constants that are chosen in order to specify the degree of 

information that the analyst has about the parameters α and β. Most of the time there is no 

precise information available so those values must be chosen such that the resulting 

Gamma distribution has a wide range of likely values. The model postulates that the 

number of events in each year are conditionally independent draws from the same 

Poisson distribution with arrival rate θ which is also a random draw from a Gamma 

distribution with parameters α and β. 

 
For this model the joint posterior distribution of all parameters is 

                                                 
5 A missing data observation can be considered as a parameter in the context of Bayesian modelling 
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In order to obtain inference, the analyst samples from values from the posterior 

distributions. While this may be an easy task when the obtained distributions are well-

known distributions such as normal, Poisson or Gamma, this may be a daunting task 

when faced with distributions such as that obtained above for α. Moreover, it is 

intuitively obvious that with more sophisticated models hierarchically specified, the 

posterior combinations of probability density functions can be far from known.  

 
The inference is easily obtained via simulation techniques such as Markov Chain 

Monte Carlo (MCMC). The first step is to ensure that the simulated chain or chains are 

stationary. Although it is theoretically impossible to be 100% sure that the chain has 

converged, a series of tests, measures and exploratory graphical investigations are 

conducted prior to any inferential calculations. 
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The results reported below for the models we use were obtained after a burn-in 

period of 30000 iterations. The first step for checking convergence is the trace plots of 

the simulated values, then the autocorrelation plots and then the Gelman-Rubin statistics. 

Two chains were used starting from overdispersed values and the inference sample is 

sometimes thinned (taking every 5th value from the sample) so that more independent 

values from the posterior densities are employed for calculations. The beauty of the 

MCMC methodology is that once a sample for the joint posterior distribution of all 

parameters and data is estimated6. 

 

4. Empirical Analysis 
 
The model described above in Section 3 is just a starting point. One may wish to consider 

that each year the number of events is coming from a different Poisson distribution or 

that the arrival rate has a time trend. Two other more complex models using 

generalizations of the Poisson distribution are investigated later in this section. 

The Model 1 is fitted for 001.0,001.0,1,10 2121 ==== bbaa  both sets of values 

ensuring a very wide spread Gamma distribution. Forecasting a future number of events 

can be done in two ways for Model 1. A new draw can be made from the fitted Poisson 

distribution with parameter θ. The table contains main summary statistics for all 

parameters describing the model. The forecast for the next future year is one event. 

Another idea that is quite easy to implement is to consider the next future event count as 

a missing data observation. The Bayesian Hierarchical modelling coupled with MCMC 

                                                 
6 Note that this sample is made of values that are correlated. Nonetheless the sample is large enough to 
cover the whole density range and the lack of independence does not affect in any way the inference. If 



 14

techniques can handle this scenario quite easily. As shown in subtable b) the inference is 

very similar, confirming that next year is very likely to observe one event. 

 
 
Table 2 Summary statistics for the Poisson model with a single rate of arrival 
The estimated quantities are obtained from two chains with over-dispersed initial 
values. after a burn-in period of 20000 from a thinned sample of 4000, that is every 
5th value from the 10000 values part of the stationary Markov chains; a) model is 
fitted with 46 data points and prediction is made by drawing a new value from the 
fitted hierarchical Poisson model and b) model is fitted with 47 data points, the last 
one being declared a missing data and prediction is made by considering this 
missing observation as a parameter in the fitted hierarchical Poisson model 
a) 

node  mean  Sd  MC error 2.50% median 97.50% 
alpha 10.02 3.143 0.040 4.847 9.709 17.06 
beta 10.68 5.075 0.066 3.132 9.886 22.73 
theta 0.956 0.145 0.001 0.694 0.951 1.261 
y.new 0.947 0.976 0.007 0.0 1.0 3.0 
deviance 118.0 1.443 0.010 117.0 117.4 122.1 

 
b) 

alpha 10.02 3.156 0.024 4.827 9.691 17.08 
beta 10.7 5.095 0.039 3.125 9.923 22.76 
theta 0.957 0.144 0.0006 0.693 0.95 1.262 
y[47] 0.946 0.979 0.004 0.0 1.0 3.0 
deviance 118.0 1.446 0.006 117.0 117.4 122.2 

 
 
 
Another advantage of MCMC modelling is that a whole posterior distribution can be 

estimated. In all this section for the majority of parameters the posterior density kernels 

are estimated. For example, in Figure 1 it can be seen that the mode of the posterior 

distribution for the future number of events is 0. In addition the distribution for the arrival 

rate is quite symmetric around 1. 

 
 
 
 
                                                                                                                                                 
some sort of independence in the sample is desired then the sample can be thinned by retaining from the 
sample every k-th value. 
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Figure. 1 Posterior density functions and histogram for the main parameters of 
interest of the Poisson model with a single rate of arrival  gamma distributed. 

 
This feature can be very useful to identify multimodal posterior distributions that cannot 

be included in the maximum likelihood framework, to explore possible correlations 

between parameters or to directly estimate any complicated function of subsets of 

parameters. 

 
The next model investigated is a generalization of Model 1. Here we assume that every 

year the number of events comes from a Poisson distribution with individual arrival rate 

iθ  and all those rates are independent random draws from a Gamma distribution. Note 

that although here we have more parameters (θ’s and other hyper-prior parameters) than 

data points, inference can be obtained because of the hierarchical structuring of the model 

on several layers. The Model 2 is given by 
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The last line Gamma specification is not very restrictive, is till quite a wide spread 

distribution and it leads to conditional distributions that are easier to follow. The joint 

posterior distribution of all parameters is 
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The conditional distributions need for MCMC simulations are 
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The two chains simulated with the help of WinBugs 1.4 become stationary quite rapidly. 

The autocorrelation plots, not provided here for lack of space, show no problems with 

convergence. The Gelman Rubin statistics are also very good, all being between 0.98 and 

1.01. Various MCMC output produced in WinBUGS that is taken into consideration 

when extracting inference is presented in the Appendix. 

The inference is summarised in Table 3. To forecast for the next year, first a new arrival 

rate newθ  is simulated and then a Poisson draw is made from this distribution. It is 

obvious that a good estimate for the future number of events is 1 with a credibility 

interval [0, 4].  

 
Table 3 Summary statistics for the Poisson model with independent gamma rates of 
arrival. The estimated quantities are obtained from two chains with overdispersed 
initial values. after a burn-in period of 20000 from a thinned sample of 4000, that is 
every 5th value from the 10000 values part of the stationary Markov chains 
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node  Mean  sd  MC error 2.50% Median 97.50% 
alpha 2.821 1.272 0.030 1.13 2.581 5.963 
beta 3.017 1.459 0.036 1.072 2.727 6.555 
theta[1] 0.984 0.543 0.009 0.230 0.883 2.312 
theta[2] 0.695 0.447 0.007 0.083 0.605 1.837 
theta[3] 0.688 0.453 0.008 0.088 0.596 1.868 
theta[4] 0.682 0.443 0.006 0.081 0.597 1.772 
theta[5] 1.51 0.709 0.011 0.506 1.38 3.263 
theta[6] 0.973 0.552 0.007 0.221 0.859 2.347 
theta[7] 1.244 0.608 0.010 0.383 1.125 2.726 
theta[8] 1.246 0.624 0.009 0.370 1.139 2.713 
theta[9] 0.967 0.533 0.008 0.219 0.871 2.268 
theta[10] 0.978 0.546 0.007 0.216 0.877 2.351 
theta[11] 0.982 0.540 0.009 0.227 0.879 2.246 
theta[12] 1.234 0.598 0.010 0.378 1.137 2.687 
theta[13] 2.375 0.982 0.018 0.967 2.199 4.655 
theta[14] 0.954 0.521 0.008 0.215 0.864 2.208 
theta[15] 0.978 0.537 0.008 0.225 0.886 2.253 
theta[16] 1.248 0.630 0.010 0.355 1.135 2.834 
theta[17] 0.951 0.515 0.008 0.212 0.857 2.149 
theta[18] 1.246 0.622 0.009 0.356 1.135 2.771 
theta[19] 0.964 0.525 0.007 0.223 0.867 2.233 
theta[20] 0.963 0.524 0.007 0.216 0.871 2.226 
theta[21] 0.961 0.545 0.008 0.202 0.856 2.342 
theta[22] 0.682 0.434 0.006 0.077 0.602 1.73 
theta[23] 0.691 0.449 0.007 0.081 0.610 1.763 
theta[24] 0.974 0.540 0.007 0.232 0.869 2.322 
theta[25] 0.966 0.536 0.007 0.217 0.866 2.306 
theta[26] 0.690 0.453 0.007 0.087 0.607 1.798 
theta[27] 0.963 0.550 0.008 0.213 0.875 2.313 
theta[28] 0.963 0.528 0.009 0.228 0.868 2.276 
theta[29] 0.694 0.464 0.007 0.075 0.601 1.824 
theta[30] 0.958 0.538 0.009 0.221 0.855 2.294 
theta[31] 0.678 0.453 0.007 0.077 0.591 1.818 
theta[32] 0.967 0.532 0.008 0.222 0.862 2.265 
theta[33] 0.688 0.449 0.007 0.079 0.599 1.835 
theta[34] 0.691 0.458 0.006 0.084 0.599 1.816 
theta[35] 0.973 0.538 0.008 0.225 0.886 2.223 
theta[36] 0.965 0.549 0.009 0.222 0.863 2.277 
theta[37] 0.697 0.461 0.007 0.072 0.607 1.821 
theta[38] 0.677 0.449 0.007 0.083 0.585 1.783 
theta[39] 0.958 0.537 0.008 0.203 0.861 2.236 
theta[40] 0.689 0.447 0.006 0.079 0.611 1.802 
theta[41] 0.689 0.451 0.006 0.077 0.604 1.798 
theta[42] 0.950 0.515 0.008 0.216 0.864 2.218 
theta[43] 1.251 0.630 0.010 0.367 1.13 2.84 
theta[44] 0.687 0.446 0.007 0.083 0.603 1.801 
theta[45] 0.962 0.528 0.007 0.218 0.868 2.225 
theta[46] 0.961 0.538 0.009 0.217 0.867 2.335 
theta.new 0.961 0.657 0.012 0.133 0.813 2.651 
y.new 0.971 1.175 0.017 0 1 4 
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Moreover, the most likely next future value is 0. This can be easily seen from the kernel 

mass density (histogram) of the future value in Figure 2. It would be difficult to 

distinguish between various estimates for this theoretical value. The posterior median is 1 

with a credibility interval [0,4] that is not symmetric around the estimate. The estimate 

that is arguably most useful to the analyst is the posterior mode. This is 0 in this case and 

also it can be seen that the distribution where it is coming from is not multi-modal. This 

type of analysis is one of the strengths of the MCMC . 

 
 
 

Figure 2. Posterior density functions and histogram for the main parameters of 
interest of the Poisson model with independent gamma rates of arrival 
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Dealing with a time series it seems natural to query whether the there is a time trend for 

the arrival rate of events. The next model (Model 3) deals exactly with this type of 

situation. 
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The last line of the model specification acknowledges our lack of any prior information 

about the regression coefficients that are treated as random variables. The 

parameterisation of the normal distribution is in terms of precision, which is the inverse 

of variance. This is the way it is implemented in WinBugs and therefore a very small 

precision means a very large variance leading to a very flat normal distribution similar to 

an uniform distribution over a very large range. The joint posterior distribution of the 

parameters of interest, the regression coefficients a and b here, is 

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ +
∝∝

−−

=

+−

∏
22

2
0001.0

2
0001.0

1 !
)(   )()(),|()|,(

baN

i i

biay
ee

y
ebiabpapbaypybap

i
 (9) 

 
 
 
 
For MCMC sampling the conditional distributions are required. These are 
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and it is obvious that powerful computational techniques are needed in order to simulate 

from these distributions. After checking that the simulated Markov chain looks stationary 

a large sample is used for inference. From Table 4 it can be seen that an a posteriori 
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estimate is a = 0.451 and b = -0.024. Testing whether there is a time trend can be done by 

looking at the 95% credibility interval constructed from the 2.5% percentile and 97.5% 

percentiles. This is [-0.047, -0.0013] and it just misses out the zero value. Thus we can 

say that there is a time trend but only just. A 99% credibility interval may lead to the 

conclusion that there is no time trend.  

 
Table 4. Summary statistics for the Poisson model with rates of arrival regressed on 
time 
 
a) 

Node  mean  sd  MC error 2.50% median 97.50% 
a 0.455 0.274 0.0046 -0.112 0.463 0.971 
b -0.024 0.012 1.94E-04 -0.047 -0.024 -0.001 
mu_a 0.450 0.756 0.0073 -1.058 0.452 1.945 
mu_b -0.024 0.692 0.0046 -1.423 -0.021 1.352 
V_a 2.993 1.714 0.0134 0.627 2.683 7.193 
V_b 3.006 1.738 0.0125 0.627 2.669 7.307 
Deviance 114.7 1.97 0.0244 112.8 114.1 120.1 

 
b) 

a 0.451 0.274 0.00439 -0.108 0.460 0.964 
b -0.024 0.011 1.88E-04 -0.047 -0.024 -0.0013 
Deviance 114.7 2.022 0.02235 112.8 114.1 120.1 

 
 
The entire posterior distributions of the parameters of interest are illustrated in Figure 3. 
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Figure 3. Posterior densities for the parameters of the Poisson model with rates of 
arrival regressed on time 
 
 
 
The residual analysis points to a possible outlier, see Figures 4 and 5, the 1968 year when 

6 events were observed. Maybe this was just a signal for the troubles to come in the 
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Figure 4. Residuals versus time for the hierarchical Poisson model with rates of 
arrival regressed on time and noninformative priors for the regression coefficients 
 
 

 
Figure 5. Residuals versus the expected values of observed data for the hierarchical 
Poisson model with rates of arrival regressed on time and noninformative priors for 
the regression coefficients 
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with 10 << λ  and 0>µ . 
 
 
 

Table 5. MCMC inferential summary statistics for the ZIP model. 
 

node  mean  sd  MC 
error 

2.5% median 97.5% 

NLL 59.74 1.0710 0.01258 58.57 59.45 62.6 
lambda 0.0778 0.0637 7.589E-4 0.0026 0.0627 0.2363 

mu 1.0200 0.1644 0.00136 0.7319 1.0080 1.3770 
p[1] 0.4159 0.0576 4.472E-4 0.3059 0.4146 0.5321 
p[2] 0.3350 0.0246 3.008E-4 0.2734 0.3407 0.3654 
p[3] 0.1701 0.0255 1.796E-4 0.1198 0.1705 0.2192 
p[4] 0.0590 0.0176 1.307E-4 0.0296 0.0573 0.0978 
p[5] 0.0157 0.0073 5.816E-5 0.0054 0.0145 0.0335 
p[6] 0.0034 0.0022 1.877E-5 8.001E-4 0.0029 0.0092 
p[7] 6.44E-4 5.541E-4 4.845E-6 9.721E-5 4.891E-4 0.0021 
p[8] 1.237E-4 1.445E-4 1.298E-6 1.119E-5 8.036E-5 4.967E-4 

 
 
The second is based on the generalised Poisson distribution (GP) as proposed by Consul 

(1989) and is described by 
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again with 10 << λ  and 0>µ . 
 

Table 6. MCMC inferential summary statistics for the GP model. 

 node  mean  sd  MC 
error 

2.5% median 97.5% 

NLL 59.32 1.0130 0.0118 58.3900 59.0 62.020 
lambda 0.0957 0.0701 7.382E-4 0.0043 0.0823 0.2636 

mu 0.8871 0.1479 0.0011 0.6178 0.8800 1.2010 
p[1] 0.4163 0.0606 4.487E-4 0.3010 0.4148 0.5392 
p[2] 0.3284 0.0255 2.722E-4 0.2693 0.3325 0.3643 
p[3] 0.1604 0.0256 1.952E-4 0.1110 0.1602 0.2117 
p[4] 0.0622 0.0166 1.162E-4 0.0327 0.0611 0.0974 
p[5] 0.0215 0.0093 7.694E-5 0.0074 0.0202 0.0432 
p[6] 0.0072 0.0049 4.609E-5 0.0014 0.0059 0.0198 
p[7] 0.0024 0.0025 2.52E-5 2.136E-4 0.0016 0.0094 
p[8] 0.0015 0.0028 3.05E-5 3.395E-5 5.549E-4 0.0087 
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These models can be used to estimate the probability to see in the future 0 events, 1 

event, 2 events and so on. From a practical perspective the probability to see a large 

number of events, although non-zero mathematically, is practically speaking zero. In 

other words the probability mass distribution function produced by these models has 

smaller and smaller probabilities in the right tail. Therefore, one may decide to consider 

only a sufficient number of probabilities7. Here only the first eight probabilities are 

reported. As can be easily seen from Tables 5 and 6 the probabilities to see 0, 1, 2,…, 7  

events are decreasing as a sequence and the last probability reported is much less than 

1%. Looking at the posterior distributions of these probabilities illustrated in Figures 6 

and 8 it can be seen that the distribution gets very peaked around a value very close to 

zero.  However, from a methodology point of view there is no problem in estimating 

more probabilities if needed.  

 
 
The posterior distributions of the two parameters describing the ZIP model are illustrated 

in Figure 7. Visually an analyst may consider inferring a value of 1 for µ. For λ it is a 

different story as its distribution is heavily skewed. Standard statistics are reported in 

Table 5. 

 
 
 
 

                                                 
7 Note that the first probability corresponds to the event that there is no event, the second probability to see 
one event and so on. Thus, the censoring is done at 7 events. The notation is somehow shifted with p[1] for 
the probability of no events and p[8] the probability of 7 events. This is a result of using WinBUGS. 
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Figure 6. Posterior density plots for the probabilities of the ZIP model censored on 
the right at 7 events or more. 
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Figure 7. Posterior distributions of λ and µ the two parameters of the ZIP model. 
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Similarly, the posterior distributions of the two parameters describing the GP model are 

illustrated in Figure 9. Specific statistics such as the mean, median and credibility 

intervals are reported in Table 6. 
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Figure 8.  Posterior density plots for the probabilities of the GP model censored on 
the right at 7 events or more. 
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lambda chains 1:2 sample: 20000
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Figure 9. Posterior distributions of λ and µ the two parameters of the GP model. 
 
It can be observed that while the distribution of µ is quite symmetric the distribution of λ 

is much skewed. 

Both models predict that the most likely number of events to occur is zero. However the 

probability for this is less than half, about 41%, so there is enough mass probability 

attached to more than one event. For example, the probability to have one, two or three 

events is estimated using the posterior means with the ZIP model as 

 
 5641.00590.01701.03350.0]4[]3[]2[ =++=++ ppp   (13) 

  
and with the GP model as 
 

 5510.00622.01604.03284.0]4[]3[]2[ =++=++ ppp   (14) 
 

This type of inference would have been almost impossible to obtain by standard 

econometrics techniques. The methodology outlined here can provide various answers 

like that using the same MCMC output. This opens new possibilities of extracting 

valuable information from sparse data that can be used as further inputs in decision taking 

under uncertainty, policy making, pricing projects and products. 
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5. Conclusion 
 

International political risk has received a renewed interest given the latest major 

world events. There is little literature focusing on this special issue and empirical 

investigations are difficult given the sparse nature of the data. We showed here how  

Markov Chain Monte Carlo (MCMC) modelling techniques can be usefully applied to 

quantify the evolution between 1956 and 2001 of international political risk.  

The major tool is the arrival rate of political events. We have taken into 

consideration through our modelling the fact that political risk can arise from a wide 

range of sources, which are often mutually dependent.  

Bayesian hierarchical models are fitted via Markov Chain Monte Carlo and a 

wide and interesting set of statistical inference is extracted. The approach presented here 

can be easily adapted to fit complex models in the same area. Here a zero-inflated model 

and a generalized Poisson model are also fitted on the same dataset. 
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Appendix 

 

 
 
Figure A1. Autocorrelation plots for the main parameters of interest of the Poisson model 
with a single rate of arrival gamma distributed 
 
 

 
Figure A2. Posterior density functions and histogram for the main parameters of interest 
of the Poisson model with a single rate of arrival gamma distributed 
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Figure A3. Autocorrelation plots for all parameters of interest of the Poisson model with 
a single rate of arrival gamma distributed 
 
 
 
 

 
Figure A4.  Trace plots of the simulated Markov chain for all parameters of interest and 
the deviance of the Poisson model with a single rate of arrival  gamma distributed 
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Figure A5. Autocorrelation plots for the parameters of interest of the Poisson model with 
independent gamma rates of arrival showing that the simulated Markov chain is 
stationary 
 
 
 

 
 
Figure A6. Autocorrelation plots for the parameters of the hierarchical Poisson model 
with rates of arrival regressed on time and noninformative priors for the regression 
coefficients 
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