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Abstract

We examine the relation between US stock market returns and the US business cycle for the

period 1960 - 2003. We identify two channels in the transmission mechanism. One is through

the mean of stock returns via the equity risk premium, and the other is through the volatility of

returns. We find that the relation is asymmetric with downturns in the business cycle having a

greater negative impact on stock returns than the positive effect of upturns. These results are based

on a new model of the relation between returns and their volatility derived from the stochastic

discount factor model of asset pricing. This model encompasses CAPM, consumption CAPM and

Merton’s (1973) inter-temporal CAPM. It is implemented using a multi-variate GARCH-in-mean

model with a time-varying conditional heteroskedasticity and correlation structure.
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1 Introduction

The key to understanding how an asset is priced is the relation between its return and its volatility.

This relation lies at the centre of most modern theories of asset pricing and much of the associated

empirical work. Intuitively, the larger the uncertainty about the future price of an asset, which

increases with its volatility, the greater is the required return to compensate for risk. The problem

is to specify exactly what the relation between the return and its volatility is.

Both ad hoc and formal models have been used in the literature. These may be linear or non-

linear. The model may seek to explain the asset’s return, or its excess return per unit of volatility -

the Sharpe ratio. Since it is future (or conditional) volatility that is relevant, a volatility forecasting

model is required. This may take the form of predicting future volatility from its past, or of using

additional, possibly macroeconomic, variables. This has become a common way to link asset-price

movements with the macro-economy.

In this paper we use a generalisation of the stochastic discount factor model that encompasses

most of the empirical models used in the literature, including CAPM, consumption CAPM, time

non-separable utility and Merton’s inter-temporal CAPM. The advantage of this approach is that

enables us to examine the effect of the business cycle on the stock market within a no-arbitrage

framework. Our econometric model is an extension of multivariate GARCH that includes “in-

mean” effects (to capture risk premia) and asymmetry. We show that there are two channels by

which macroeconomic shocks affect stock returns. One is their affect on the mean via the equity

risk premium. The other is through the volatility of returns. We find that the effect is asymmetric

with downturns in the business cycle having a larger negative effect on stock returns than the

positive effect of upturns.

Nominal stock returns also appear to be affected by inflation volatility. In a single factor

model, we find that nominal returns are negatively related to the conditional covariance between

inflation and nominal returns. This is because the conditional covariance between nominal returns

and inflation are generally negative. But in a multi-factor model that also includes output, the

conditional covariance between inflation and nominal returns has a positive effect on nominal

returns. The reason for the switch in sign is that the conditional covariance between inflation and

output is predominantly negative. In other words, positive inflation shocks are associated with

negative output shocks. This has an interesting interpretation. Whereas a positive demand shock

tends to increase both inflation and output, a negative supply shock tends to increase inflation

but reduce output. Thus the observed negative covariance between inflation and output over our

data period 1960.1 - 2003.12 indicates that the equity risk premium is dominated by the recesssion

of the mid-1970s which was caused by a negative supply shock, the rise in oil-prices.
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The paper is set out as follows. In Section 2 we review the literature on the relation between

stock market returns and volatility. In Section 3 we discuss alternative models of the risk premium

to CAPM that may explain the impact of the business cycle on stock returns. In Section 4 we

consider econometric issues, including how to model macroeconomic effects and asymmetries in

the volatility structure in a way that satisfies the condition of no arbitrage. Our results, based on

monthly data for the US stock market, are reported in Section 5 and our conclusions are presented

in Section 6.

2 Stock market returns and volatility

Many papers have examined the effect of stock market volatility of stock returns, most notably,

French, Schwert and Stambaugh (1987), Campbell (1987), Harvey (1989), Turner, Startz and

Nelson (1989), Baillie and DeGennero (1990) and Glosten, Jagannathan and Runkle (1993). The

theoretical basis of these studies is the capital asset pricing model (CAPM) of Sharpe (1964) and

Lintner (1965). This can be written as a simple linear relation between the conditional mean and

the conditional variance of equity market returns:

Et(R
M
t+1 −Rf

t+1) = α+ βVt(R
M
t+1) (1)

where RM
t+1 is the real return on the market and Rf

t is the real return on a risk-free asset. Under

CAPM, α = 0 and β is the coefficient of relative risk aversion, which may be time-varying. A survey

of the results for the US stock market obtained in these studies is provided by Scruggs (1998). He

reports that, depending on the measure of market returns, the model of the conditional variance

and the method of estimation used, the estimates of β have varied from significantly positive to

significantly negative.

Broadly, the research into this relation has followed two routes. One involves using increasingly

general ways to model conditional volatility. The other employs a more general model of asset

pricing than CAPM. Most of the papers surveyed by Scruggs model conditional volatility as a

symmetric GARCH process which assumes that the stock market responds similarly to positive

and negative shocks. A variant is to include additional variables in the conditional volatility

process. Capiello, Engle and Sheppard (2003), for example, using weekly data, find evidence of

asymmetries in the conditional variance of most of the developed world’s equity indices.

We examine four possible explanations for the asymmetry in the volatility of equity returns.

One is the leverage hypothesis due to Black (1976). This states that when the total value of the

levered firm falls, the value of its equity decreases relative to the total value of the firm. If equity
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characterises the full risk of a firm, the variance of the equity return should then rise. A price

increase should have the opposite effect. Campbell, Lo and MacKinlay (1997) and Schwert (1989)

find that this explanation does not fully account for the size of the correlation between the return

and its volatility.

A second possible explanation is the volatility-feedback hypothesis of Campbell and Hentschel

(1992) which is based on CAPM. They claim that positive shocks to volatility drive down returns.

For example, if there is good news about future dividends which raises returns, this will increase

the variance of returns and, due to volatility persistence, increase expected future returns. If

expected excess returns were perfectly correlated with the conditional variance of the excess return

then there would be a decrease in the current stock price which would tend to offset the positive

dividend news. If, on the other hand, there is negative news about future dividends we would

expect future bad news about dividends and hence expected higher volatility. This would imply a

higher expected risk premium and a fall in the price of the stock which would amplify the negative

news about future dividends. The volatility-feedback hypothesis therefore requires squared return

innovations to be negatively correlated with future volatility.

A third possible explanation for the finding of asymmetry is that it is the result of misspecifying

the volatility process. Without using a no-arbitrage asset pricing framework, Kroner and Ng

(1998) assume that a multivariate GARCH process with asymmetry is required. Bekaert and

Wu (2000) use a restricted version of the multivariate GARCH process whilst focusing on the

risk premium implied by a single-factor CAPM. They use weekly data for the Japanese market

portfolio and three leverage-sorted portfolios. They also use a riskless debt model that implies

that their specification can divide the potential asymmetry into leverage and volatility feedback

effects. Although the leverage effect is not found to be important, there is strong evidence of

variance and covariance asymmetry. Bekaert and Wu conclude that their CAPM model generates

a time-varying risk premium that, they conjecture, cannot be replicated by general equilibrium

models.

A fourth possible explanation is that the information used to form conditional volatility is

incomplete. Instead of using an information set based solely on past returns, Lettau and Ludvigson

(2002) include other variables. They experiment with several choices, including a proxy for the

ratio of consumption-wealth ratio, the log dividend yield and the term spread. All of these variables

may be affected by the business cycle. In this way the business cycle can affect returns through

their effect on forecasts of volatility. Using the wrong information set may also explain why the

estimates of the impact of volatility on returns vary so much.
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3 The equity risk premium and the business cycle

In this paper we take a new approach. We examine whether an explanation both for the different

results concerning the relation between the mean return and the volatility of returns, and for

the finding of asymmetries in the conditional variance, is that a more general theory of asset

pricing than CAPM is required. The theory we propose admits the influence of the business cycle

on returns, and does so in an asymmetric manner and in a way that satisfies the condition of

no-arbitrage.

In Smith and Wickens (2002) we review various alternative empirical asset-pricing models to

CAPM. In other papers we have applied this methodology to the stock market (Smith, Sorensen

and Wickens (2003)), to the term structure of interest rates (Balfoussia and Wickens (2004)) and

to the FOREX market (Smith, Sorensen and Wickens (2005)). We now explain this approach and

how it can be modified to incorporate business cycle effects and asymmetries in the response of

stock returns to shocks arising both from the stock market and from macroeconomic variables.

3.1 Modelling returns and volatility using the SDF model

The inability to hedge against much of the risk arising from the business cycle implies that this

risk will be priced in stock market returns, see Shiller (1993). Further, as long horizon returns are

partly forecastable, the equity risk premium must be time-varying. And since risk premia arise

from conditional variation between returns and economic factors, this suggests that we should

study the effects of the business cycle on stock market returns and volatility. It also implies that

we should focus on modelling the risk premium. Our model of the relation between returns and

volatility is based on the stochastic discount factor (SDF) model of asset pricing.

In the SDF model future real returns are discounted at the stochastic rate Mt+1. Thus

1 = Et[Mt+1(1 +Rt+1)] (2)

If rt = ln(1 +Rt) and mt = lnMt are jointly normally distributed then it can be shown that the

expected excess return is

Et(rt+1 − rft ) +
1

2
Vt(rt+1 − rft ) = −Covt(mt+1, rt+1 − rft ) (3)

where rft = ln(1 + Rf
t ) is known at time t. The conditional volatility term on the left-hand side

is the Jensen effect, and the term on the right hand-side is the risk premium which must satisfy

Covt(mt+1, rt+1) < 0 for the risk premium to be positive, see Cochrane (2000). It is common to

represent mt as a linear function of n factors zit

mt = −
Pn

i=1 βizit
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implying that the SDF pricing equation is1

Et(rt+1 − rft ) +
1

2
Vt(rt+1) =

Pn
i=1 βiCovt(zi,t+1, rt+1) (4)

Most asset pricing models can be shown to be special cases of the SDF model. These models

usually both determine the choice of factors and impose restrictions on the coefficients. For

example, the general equilibrium model, consumption CAPM (C-CAPM) due to Breeden (1979)

is a single factor SDF model of form

Et(rt+1 − rft ) +
1

2
Vt(rt+1) = σtCovt(∆ct+1, rt+1) (5)

where the factor is the rate of growth of consumption, ct is log consumption and σt is the coefficient

of relative risk aversion.

CAPM gives the asset pricing equations

Et(Rt+1 −Rf
t ) = βtEt(R

M
t+1 −Rf

t )

βt =
Covt(R

M
t+1, Rt+1)

V art(RM
t+1)

Et(R
M
t+1 −Rf

t ) = σtV art(R
M
t+1) (6)

Consequently,

Et(Rt+1 −Rf
t ) = σtCovt(R

M
t+1, Rt+1)

Since the market return satisfies 1 + RM
t+1 =

Wt+1

Wt
, where Wt is wealth, defining wt = lnWt, and

noting that rt = ln(1 +Rt+1) ' Rt, we can also express CAPM approximately as

Et(rt+1 − rft ) = σtCovt(∆wt+1, rt+1) (7)

In effect, equation (6) is an SDF model in which the market return is acting as its own factor -

and we have omitted the Jensen effect by not assuming log-normality - while equation (7) reveals

that CAPM uses wealth as the factor rather than consumption as in C-CAPM.

In Breeden’s C-CAPM it is assumed that the utility function is time separable. If we assume

instead that utility is time non-separable, having the Epstein-Zin (1989) CES form

Ut =
·
(1− β)C

1− 1
γ

t + β[Et(U
1

1−σ
t+1 )]

1− 1
γ

¸ 1

1− 1
γ

where β is the discount rate, σ is the coefficient of relative risk aversion and γ is the elasticity of

inter-temporal substitution, we can show that the asset pricing equation becomes

Et(rt+1 − rft ) +
1

2
Vt(rt+1) =

1− γσ

1− γ
Covt(r

M
t+1, rt+1) +

1− σ

1− γ
Covt(∆ct+1, rt+1) (8)

1 Note that as rft is known at time t, Vt(rt+1− rft ) = Vt(rt+1) and Covt(mt+1, rt+1− rft ) = Covt(mt+1, rt+1).
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When rt+1 is the market return rMt+1

Et(r
M
t+1 − rft ) +

1

2
Vt(r

M
t+1) =

1− γσ

1− γ
V art(r

M
t+1) +

1− σ

1− γ
Covt(∆ct+1, r

M
t+1) (9)

see Smith, Sorensen and Wickens (2003). Thus, compared with the SDF model equation (4), the

coefficient on the volatility of the market return is no longer restricted. In order to obtain such

an unrestricted form from the SDF model we would need to assume that the market return is one

of the factors.

Scruggs (1998) and Scruggs and Glabadanidis (2001) are an exception in not using a model

related to the SDF model. They base their empirical work on the general equilibrium model of

Merton (1973), namely inter-temporal CAPM (ICAPM), derived from the continuous-time utility

of wealth function J(Wt, Ft, t) where Wt is wealth and Ft is a variable describing the state of

investment opportunities in the economy. In equilibrium, this gives the relation

Et(r
M
t+1 − rft ) = [

−JWWW

JW
]V art(r

M
t+1) + [

−JWF

JW
]Covt(Ft+1, r

M
t+1) (10)

where for risk averse investors, [−JWWW
JW

] > 0 is the coefficient of relative risk aversion. If the

coefficients are assumed to be constant then this is similar to the SDF model in which the market

return is used as a factor. It is not exactly the same as the SDF model as the coefficient on the

conditional variance is not −12 . We note, however, that the Epstein-Zin model also relaxes the
restriction on the coefficient on the volatility of the market return.

The SDF model may be written in a number of different ways. For example, equation (3) can

be re-written as

Et(rt+1 − rft ) +
1

2
Vt(rt+1 − rft ) = −SDt(rt+1 − rft )SDt(mt+1)Cort(mt+1, rt+1 − rft ) (11)

= SDt(rt+1)
Pn

i=1 βiSDt(zi,t+1)Cort(zi,t+1, rt+1)

where SDt(.) denotes the conditional standard deviation and Cort(.) the conditional correlation.

This is a non-linear relation between an asset’s return and its volatility which is attentuated by the

volatility of the factors and their conditional correlations with the asset return. The SDF model

satisfies the principle of no-arbitrage. It also shows the form in which additional variables should

be included in the asset pricing equation, i.e. as terms involving their conditional covariances with

the asset return. We also note that the coefficients βi are unrestricted; they can be positive or

negative as long as the overall risk premium is positive.

A different way of expressing the SDF model is in terms of the excess return per unit of

volatility, the Sharpe ratio:

Et(rt+1 − rft )

SDt(rt+1)
= −1

2
SDt(rt+1) +

Pn
i=1 βiSDt(zi,t+1)Cort(zi,t+1, rt+1) (12)
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This is the form of model used by Lettau and Ludvigson (2002). It is clear that the Sharpe

ratio will be small when macroeconomic volatility is low, the correlations between macroeconomic

variables and stock returns are close to zero, or the macroeconomic variables are not significantly

priced in the stock market. In the special case where the conditional correlations are constant

the Sharpe ratio becomes a linear function in the conditional standard deviations. The model

coefficients then measure the effect on the Sharpe ratio of a unit of volatility in the factors.

Another way of writing the SDF model brings out its connections with CAPM. This is

Et(rt+1 − rft ) = [−1
2
+
Pn

i=1 βiγi,t]Vt(rt+1) (13)

γi,t =
Covt(zi,t+1, rt+1)

Vt(rt+1)

This shows that CAPM is a special case of the SDF model in which the coefficient on the condi-

tional variance is constrained to be constant, rather than time varying and non-linearly dependent

on the factors. Moreover, in general, this coefficient cannot be interpreted as the coefficient of

relative risk aversion.

We conclude that a general representation of the market return that encompasses all of the

models above is given by

Et(r
M
t+1 − rft ) = β0Vt(r

M
t+1) +

Pn
i=1 βiCovt(zi,t+1, r

M
t+1)

and this can be written in several different ways. With two further modifications, this is the model

that we shall use in this paper.

The first modification is required because all of the models above assume the existence of a

real risk-free asset whereas, in practice, only a nominal risk-free asset is available.2 The SDF

pricing equation, equation (2), can be re-written using nominal returns as

1 = Et[Mt+1(1 + IMt+1)
P c
t

P c
t+1

]

where IMt is the nominal market rate of return and P c
t is the consumer price index. It can be

shown that the SDF asset-pricing equation for nominal returns is

Et(i
M
t+1 − ift ) +

1

2
Vt(i

M
t+1) = −Covt(mt+1, i

M
t+1) + Covt(πt+1, i

M
t+1).

where iMt = ln(1 + IMt ), i
f
t is the nominal risk-free rate and πt+1 = ln(P c

t+1/P
c
t ) defines the

inflation rate. Thus, if we work with nominal returns, we must also include inflation as a factor.

Our general model then becomes

2 The nearest to a real risk-free return is the one-period return on an index-linked bond. In the US, index linked
bonds are not available for one period (month) and are not perfectly indexed for inflation.
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Et(i
M
t+1 − ift ) = φ0Vt(i

M
t+1) + φ1Covt(πt+1, i

M
t+1) +

Pn
2 φiCovt(zi,t+1, i

M
t+1) (14)

We now have one further modification to make.

3.2 Including business cycle effects

Schwert (1989) conducted one of the first detailed studies of the effects of the business cycle on

stock returns.3 He investigated whether the volatility of real economic activity is a determinant

of stock return volatility on the grounds that common stocks reflect claims on the future profits

of corporations. The findings were, however, that the volatility of industrial production growth

did not help to predict stock market volatility; on the contrary, stock market volatility was able

to predict output volatility. Schwert concluded that stock market volatility and the volatility of

industrial production is higher during recessions. He also examined the relation between stock

market return and inflation using Producer Price Index (PPI) inflation as a factor but found that

inflation volatility does not help predict future stock return volatility as it is not much affected

by recessions. In addition, he considered the effect of volatility in the rate of growth of money.

He found this to be a little more volatile during recessions, but it too was unable to predict stock

market volatility. Taken together, Schwert’s results do not resolve the puzzle of why stock prices

are so highly volatile when macroeconomic variables are not.

The emphasis since Schwert’s work has been to examine stock market behaviour using C-

CAPM in which consumption is the sole factor of production. The focus of most of this research

has been the equity premium puzzle, see Campbell (2003) for a survey and also Smith, Sorensen

and Wickens (2003). The general finding, whether calibration analysis or conventional econometric

estimation is used, is that consumption does not vary enough to explain stock market volatility

and so requires an implausibly large value of the coefficient of relative risk aversion to match the

volatility of the equity premium. Among the new findings in Smith, Sorensen and Wickens (2003)

were the significance of both the consumption and inflation conditional covariances with the stock

return, implying that both are priced sources of risk.

Scruggs (1998) and Scruggs and Glabadanidis (2001) are also an exception to the general run

of results in the literature. Using ICAPM, their estimating equation is

rMt+1 = λ0 + λ1V art(r
M
t+1) + λ2Covt(Ft+1, r

M
t+1) + et+1 (15)

3 Earlier work by Campbell and Shiller (1988a, 1988b) showed that the log stock price reflects the expectation
of future cash flows, future interest rates and the future excess return. If macroeconomic data contains information
about expected future cash flows or expected future discount rates, potentially it can explain the time-variation in
monthly stock market returns.
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where rMt and Ft (they choose the return on long-term US Treasury bonds) are specified as

EGARCH(1,1) processes with constant correlation. Scruggs and Glabadanidis (2001) use an asym-

metric EGARCH model. λ0 is found to be insignificant, λ1 is generally positive and significant

and λ2 is negative and significant. These findings also suggest the presence of time-varying risk

factors.

In this paper we re-consider Schwert’s analysis of business cycle effects within a no-arbitrage

framework based on a generalisation of the SDF model through a suitable choice of the factors zt.

This generates two channels through which the business cycle may affect stock returns. First, if

the mean return is dependent on the conditional volatility of returns, as in CAPM and ICAPM,

and returns and the factors have a joint conditional distribution, then the conditional covariance

between returns and the factors allows volatility in the factors to affect volatility in the returns

and hence the returns themselves. Second, conditional covariation between the returns and the

factors affects returns through the risk premium. Asymmetries in the transmission mechanism

may also impact through these two channels.

We consider three macroeconomic factors: industrial production, inflation and money growth.

The risk premum is greatest when returns are expected to be low. Low returns occur during

recessions, hence we expect returns to have a positive correlation with output. This correlation

may also be time varying. The relation between returns and inflation is less clear-cut. Through

the Phillips curve relation, macroeconomic theory tends to associate recession with lower inflation.

This implies a positive correlation between returns and inflation. However, this is true only when

the recession is due to a demand shock. A recession due to a supply shock is more likely to have

higher than lower inflation, implying a negative correlation between returns and inflation. This

suggests that the correlation between returns and inflation is very likely to be time varying. This

is exactly what we find. Our third macroeconomic variable is the rate of growth of narrow money

which we expect to have a positive correlation with returns.

In addition to helping determine the risk premum, time-varying volatility in the macroeconomic

variables may have an impact on the volatility of returns. Higher output, inflation and money

growth volatility is likely to be associated with higher volatility in returns.

4 The econometric framework

We wish to estimate the joint distribution of the stock market return and the macroeconomic

factors subject to the restriction that the conditional mean of the returns equation satisfies the

no-arbitrage condition and to allowing business-cycle shocks to impact asymmetrically.

Consider first the multivariate GARCH-in-mean (MGM) model. The advantage of a mul-
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tivariate over the univariate GARCH model used by, for example, Glosten, Jagannathan and

Runkle (1993), is that the variance of each of the dependent variables can be predicted by lagged

values of conditional variances of all the variables and lagged covariances between all variables,

and lagged squared residuals and cross products of residuals (variance and covariance news). A

disadvantage of multivariate GARCH models is that they are highly parameterised. In an at-

tempt to reduce the number of parameters more restrictive formulations have been proposed. One

of these is the constant correlation model of Bollerslev-(1990). Assuming a constant correlation

structure over time is, however, a strong assumption and is normally unwarranted in asset pricing.

A second simpler alternative is the dynamic conditional correlation model of Engle (2002) which

allows for time-variation in the conditional correlations. This model is, however, less well suited

to multivariate GARCH-in-mean models due to estimation problems arising from the "in-mean"

effect. Moreover, the assumption of a constant conditional correlation does not seem plausible

for asset-pricing models. A third alternative is the Factor ARCH model of Engle and Ng (1990)

which allows the factors to drive the conditional covariance matrix.

Rather than use any of these more restictive models, we prefer the more general BEKK model

proposed by Engle and Kroner (1995). This allows unrestricted time-varying variances and cor-

relations, and the inclusion of observable macroeconomic factors, see Smith and Wickens (2002)

and Smith, Sorensen and Wickens (2003). The BEKK model can also be modified to include

asymmetries - see Kroner and Ng (1998) - and allows second moment in-mean effects to represent

the risk premium. As a result we obtain the econometric model

Yt+1 = A +

pX
i=1

BiYt+1−i +
N1X
j=1

ΦjH[1:N,j],t+1 + ²t+1, (16)

where Yt+1 is an N × 1 vector of dependent variables in which the first N1 elements are assumed

to be the excess returns, A is an N × 1 vector, the Bi and Φj and Ψ matrices are N × N ,

H[1:N,j],t+1 is the N × 1 jth column of the conditional variance covariance matrix. The first N1

equations satisfy the restrictions imposed by no arbitrage. The risk premia are given by the first

N1 columns of
PN1

j=1ΦjH[1:N,j],t+1. Thus, the associated Φj matrices are unrestricted except for

the jth element which is −12 . The corresponding rows of Bj are restricted to zero. The remaining

equations have no "in-mean" effect but otherwise are unrestricted. Υk,t+1 is an indicator variable

taking the value of 1 in specified periods and zero otherwise.

We define Yt+1 =
©
ies,t+1 πt+1 ∆mt+1 ∆yt+1

ª
. Thus, there is a single return ies,t+1 (the excess

return of the stock market), and there are three macroeconomic factors: πt+1 is the inflation rate,

∆mt+1 is the rate of growth of narrow money M1 and ∆yt+1 is the growth rate of industrial

production. Consequently, the first row of Φ1 must satisfy the no-arbitrage condition. The other
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elements of Φ1 are restricted to equal zeros. We use a vector auto-regression of order 1 (p=1)

implying that the model can be written

Yt+1 = A + BYt + ΦH[1:N,1],t+1 +ΘΥ1987:10,t+1 + ²t+1 (17)

Only the first row of B is restricted to be zero; the remaining elements of B are unrestricted.

Υ1987:10,t+1 is a dummy variable which is included to take account of the stock market crash

of October 1987. The excess return in this month is clearly an outlier and is almost certainly not

explicable by our theory of asset pricing, see Schwert (1998). Thus it takes the value of 1 for t+1

corresponding to October 1987 and zero otherwise.

We examine whether business-cycle shocks impact on stock returns asymmetrically through

the specification of the error term �t+1. We assume that the error term displays conditional

heteroskedasticity. In other words, the covariance matrix of �t+1, and hence the volatility of

returns, is partly forecastable and may respond differently to positive and negative business cycle

shocks.

We specify the error term as

²t+1 = H
1
2
t+1ut+1, ut+1 ∼ D(0, I4)

where, in order to allow for excess kurtosis in the error term, we assume the data have a joint

t-distribution (see, for instance, Hafner (2001)). I4 is the identity matrix of dimension four. We

assume that the conditional covariance matrix Ht+1 is an asymmetric version of the BEKK model

(ABEKK) defined by

Ht+1 = CC
| +D(Ht −CC|)D| +E(²t²

|
t −CC|)E| +G(ηtη|t −CC

|
)G| , (18)

where the asymmetry is due to the term in ηt = min[�t, 0]. The bar over CC| indicates that the

appropriate correction is made since Et(ηtη
|
t ) 6= CC| .4 The eigenvalues of

(D⊗D) + (E⊗E) + (G⊗G), (19)

must lie inside the unit circle for the BEKK system to be stationary. ⊗ is the Kronecker product.
Equation (17) is estimated using the Quasi-Maximum Likelihood estimator proposed by Boller-

slev and Wooldridge (1992). For numerical reasons, we may want to scale our variables so that

the variables have the same sample variances. The scaled version can be written

Y∗t+1 = A∗ + B∗Y∗t + Φ
∗H∗[1:N,1],t+1 +Θ

∗Υt+1 + ²∗t+1, (20)

4 CC
|
is obtained by multiplying the diagonal elements of CC| by 1

2
and the off-diagonal elements by 1

4
.
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with Y ∗t+1 = ΓYt+1, �∗t+1 = Γ�t+1 and H∗t+1 = ΓHt+1Γ
| . The original coefficient matrices

can be recovered as A = Γ−1A∗ and B = Γ−1B∗Γ. Since we are interested in matching the

variances of the data, Γ will be diagonal. For example, the first dependent variable is the excess

return on the stock market and we scale inflation so that it has the same variance. As result, the

element in the diagonal of Γ takes the value
q

Var(ies,t+1)
Var(πt+1)

, where Var(·) is the sample variance.5
The conditional covariance matrix in the scaled model can be written

H∗t+1 = C
∗C∗| +D∗(H∗t −C∗C∗|)D∗| +E∗(²∗t ²∗|t −C∗C∗|)E∗| +G∗(η∗tη∗|t −C∗C∗|)G∗|

where η∗t = min[�∗t , 0]. It follows directly that C = Γ−1C∗, D = Γ−1D∗Γ, E = Γ−1E∗Γ

and G = Γ−1G∗Γ. All of the results reported below are the original coefficients obtained by

transforming back to the unscaled model.

The risk premium is given by the first row of

φt = ΦH[1:N,1],t+1

This can be decomposed in different ways. One decomposition is into the components associated

with each of the factors. Thus we can write the total risk premium as

φt = φexcess return,t + φinflation,t + φmoney,t + φoutput,t (21)

A second decomposition allows us to determine the importance of asymmetries. Ht+1, as defined

by equation (18), has four components, and hence can be re-written as

Ht+1 =H0 + H1,t+1 + H2,t+1 + H3,t+1

Pre-multiplying by Φ gives the decomposition

φt = φ0 + φ1t + φ2t + φ3t (22)

where φ3t is the component of the risk premium due to asymmetries. φ1t is the component due

to autoregressive effects and φ2t is the component due to ARCH effects.

In estimating this model we make an assumption regarding the initial value of the conditional

covariance matrix. One possibility is to set the starting value equal to the unconditional covariance

matrix of the dependent variables. Another is to perform the unrestricted vector auto-regression

from equation (20) and use the estimated covariance matrix of the residuals. A third possibility

5 Note that scaling the variables may affect the correction terms. We do not scale the excess return and so
the Jensen term should still equal 1

2
Vt(ies,t+1).However, we scale inflation and so the correction for working with

nominal returns should not be Covt(ies,t+1, πt+1) but
√
Var(πt+1)

Var(ies,t+1)
Covt(ies,t+1, πt+1).
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is to estimate the starting values, noting from equation (18), that E(Ht+1) = CC| .6 All

estimations were carried out using each of the starting values, but the final values were virtually

identical.

5 The results

5.1 Models estimated

The general model to be estimated can be written

Et(i
e
s,t+1) +

1

2
Vt(i

e
s,t+1) = b|Covt(i

e
s,t+1,Yt+1) + θΥ1987:10,t+1

The individual models differ in their choice of Yt+1. Model 1 is CAPM and takes the form

Et(i
e
s,t+1) +

1

2
Vt(i

e
s,t+1) = γVt(i

e
s,t+1)+Covt(πt+1,i

e
s,t+1)+θΥ1987:10,t+1

Model 7 removes the restriction that the conditional covariance with inflation has a unit coefficient

and is used to test CAPM. Model 2 and Model 3 are more general than Model 1 but are not

associated with any particular theory. Model 2 is a version of ICAPM with three macroeconomic

variables. If any of these macroeconomic variables are significantly priced then this would serve

as a rejection of CAPM. Model 3 prices only the macroeconomic variables and excludes the

conditional variance of the market return. Model 4, Model 5 and Model 6 price each of the

macroeconomic variables individually and enable us to evaluate the total contribution of each

individual macroeconomic variable.

5.2 The data

The data are monthly for the US over the period 1960:01 to 2003:12. The stock market returns

are the value-weighted return on all NYSE, AMEX and NASDAQ stocks. The risk-free rate is

the one-month US Treasury Bill rate.7 The macroeconomic data are the index of industrial

production, CPI inflation and the rate of growth of M1. These data are obtained from the Federal

Reserve Bank of St. Louis.

In Table 1 we report descriptive statistics for these data. The excess stock market return has

little autocorrelation but displays negative skewness, excess kurtosis, non-normality and autocor-

relation both in the squared returns and in the absolute returns. This indicates that the volatility

6 This starting value is consistent.

7 This is available from the homepage of Kenneth French, http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/.
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of returns is partly predictable and there is evidence of asymmetries in the volatility process. It

suggests that an ARCH process with asymmetries may be able to represent these data.

Inflation has substantial autocorrelation, has positive skewness, does not show excess kurtosis,

but is non-normal. There is autocorrelation in squared inflation and in the absolute value of infla-

tion. Money growth is very like inflation except that its absolute values have less autocorrrelation.

Industrial production closely resembles stock-market returns except that it has stronger first-order

autocorrelation in its squares and absolute values. This uni-variate evidence supports the use of

a multi-variate asymmetric ARCH model.

5.3 Model estimates

The estimates of the various no-arbitrage models with asymmetric effects are reported in Table 2.

Model 1 (CAPM) has the lowest explanatory power as measured both by the log-likelihood and

by the percentage of the variation in the excess return (adjusted for the Jensen effect and 1987

outlier) explained by variations in the risk premium. The mean residual is significantly differently

from zero. CAPM constrains the coefficient of the conditional covariance with inflation to be

unity. Model 7 shows that this restriction is invalid and suggests that inflation has a stronger

impact on returns than CAPM allows.

Model 2 (ICAPM/Epstein-Zin) and Model 3 (SDF) fit almost equally well as Models 1 and

7. In Model 2 three variables are significantly priced: the market return, and two macroeconomic

variables, inflation and industrial production. The variability of the implied risk premium for

Model 2 is more than 11 times higher than that of Model 1, moreover, its residuals are considerably

closer to zero than those of Model 1. The 1987 dummy is only significant in Model 1.

In Model 3 (SDF) all three macroeconomic variables are significantly priced. The significance of

money growth in Model 3 but not in Model 2 is a reflection of the effects of correlation between the

explanatory variables, the conditional covariance terms. The unconditional correlation between

the conditional covariance of money growth with the market return and the conditional variance

of the market return is 0.65. This suggests that money growth may only be significant due to

omitting the market return, which is a more significant variable. Nonetheless, Model 3 explains a

larger share of the variation in the excess return than Model 2 and its mean residual is closer to

zero.

Models 4-6 are SDF models with only a single macroeconomic factor. Inflation is the most

significantly priced, followed by industrial production; money growth on its own is not significantly

priced. This is a further sign of the effects of correlation between the conditional covariance terms.

These results support previous findings that the volatility of the US stock market return
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significantly explains the return - or, put another way, the market return is a priced factor. They

also show clearly that CAPM can be rejected in favour of a more general asset-pricing model

that includes additional macroeconomic factors. It appears that both inflation and output growth

are significantly priced, but money growth does not seem to have further useful information. We

therefore omit the asset-pricing models involving money growth from our subsequent analysis and

concentrate mainly on Model 2. Money growth is not, however, eliminated entirely from the

model; it is retained as part of the information set and so has its own equation. In this way,

money is still a conditioning variable and so is able to help forecast the conditional covariance

matrix of the other variables. This is justified by the significance of money in the multivariate

GARCH process.

5.4 Estimates for Model 2

The full set of estimates of Model 2 are reported in Table 3. There are four equations in the model.

The first equation is for the excess return and is restricted to satisfy the condition of no-arbitrage.

The other three equations have no "in-mean" effects, but do have VAR effects. These are captured

in the matrix B. Apart from significant own lags, the lagged excess return is strongly significant

in the money equation, and lagged inflation is significant in the output equation.

Turning to the GARCH process, the matrices D and E are highly significant. Although the

diagonal terms are the most significant, there are significant off-diagonal effects too so that each

variable seems to significantly explain all of the others. For example, an increase in the variance of

output growth in the previous period predicts there will be an increase in the variance of the excess

return on the stock market in the following period, and vice-versa. There is, therefore, a strong

interaction between the stock market and business cycle volatility. There are similar interactions

between the stock market and inflation and, interestingly, between output and inflation. A higher

inflation variance predicts higher future output variability.

We are particularly interested in the results on asymmetry, which is captured by matrix G.

We find that the variances of both stock market returns and industrial production growth show

strong asymmetries, and is greatest for output. The negative signs imply that negative own shocks

have a greater impact on the variance than positive shocks. In particular, negative business cycle

shocks have a larger impact on output than positive shocks. There is also strong evidence of the

business cycle impacting asymmetrically on the stock market as negative output shocks are found

to have a larger impact on stock returns than positive shocks. In other words, business-cycle

downturns affect the stock market more than upturns.

There is also evidence of negative shocks to stock returns increasing inflation volatility but
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positive shocks having no effect. And we find that negative shocks to money growth tend to have

an extra affect on the variance of excess returns. Similar results are obtained for Model 3.

5.5 The equity risk premium

5.5.1 Estimates

In Figure 1 we plot the risk premia for Models 1 and 2, together with the excess stock market

return. The shaded areas are recessions as defined by the NBER. The risk premium for Model

2 clearly varies over time much more than that of Model 1. We note that the risk premium for

Model 1 is positive in each period. This is because in CAPM the risk premium is proportional

to the conditional variance of the market return. Whilst the risk premium for Model 2 is mainly

positive, from time to time it is negative, as in 1973-4 when it is significantly negative. We note

from Figure 2 that the risk premia for Models 4-6 display many more periods when the risk

premium is negative. The fact that the risk premium for Model 2 is less prone to being negative

indicates that the conditional covariances are negatively correlated and offset each other. This

demonstrates that the simplifying assumption of a constant correlation over time is not appropriate

for modelling the joint distribution of the excess return and the macroeconomic variables.

Table 4, which reports the autocorrelation coefficients of the risk premia for the six models,

shows that Model 1 has the most persistent risk premium, and Models 4-6 have the least persistent

and most volatile. The persistence of the risk premia for Models 2 and 3 are similar, and similar

to that for Model 6 for which output is the sole factor. This suggests that the business cycle is

the dominant factor determining equity risk.

For most of the time the periods when the risk premium in Model 2 is largest tend to be periods

of recession. This is further support for the importance of asymmetries. Model 3 is similar. A

notable exception is the recession of 1973-4 when, as already mentioned, the risk premium is

negative. The explanation for this is particularly interesting and we discuss this below.

In Figure 3 we plot the risk premium for Model 2 together with the conditional volatilities

for returns and the three macroeconomic factors. The highest correlation is that between the

risk premium and the volatility of output. This is evidence in support of the importance of the

business cycle in explaining the equity risk premium. We also note that the correlation between

the risk premium and the volatility of returns is much lower, suggesting that a simple model

relating returns to their volatility does not perform well.

The asymmetric effects on the risk pemium of good and bad news may be judged from Figure

4 where the three time-varying components of the risk premium φ1t, φ2t and φ3t are plotted. The

contribution of asymmetries to the risk premium is given by φ3t in equation (22). It is clear that
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φ1t, the autoregressive component, is the most important, but next is φ3t. Asymmetries seem to

have their greatest effect on the risk premium in recessions. This is consistent with the notion

that risk averse investors are more concerned about recessions than booms.

5.5.2 Macroeconomic sources of risk

In Table 5 we report the recession dates and in Table 6 we provide some summary statistics

comparing recessions with periods not in recesssion. The most striking findings are the mean

stock returns and output growth rates during recession and elsewhere. These suggest a strong

business cycle effect on stock returns. In contrast, we note that the correlations between returns

and the macroeconomic variables are not very different in recessions from non-recessions. The

interest in this result is that we find that the conditional correlation coefficient of returns and

output is strongly time varying, suggesting that this is masked using unconditional correlations.

A necessary condition for the macroeconomic factors to be priced sources of time-varying risk

is that they display time-varying volatility. In Figure 4 the conditional volatility of each factor

is plotted together with the risk total premium. The volatility of the macroeconomic variables

clearly varies through time and tends to be greatest during recessions when the risk premium

is also at its height. Inflation and output volatility seem to have been lower in the last twenty

years than in the more turbulent 1970’s, whereas money growth volatility has recently returned

to the high levels of 1970’s after a period of tranquility. Maccini and Pagan (2003) have suggested

that the decline in output volatility is a reflection of volatility following a square root process. A

contributing factor is that there has been a reduction in negative shocks to output in the most

recent period.

Another necessary condition for the macroeconomic factors to be priced is that they are corre-

lated with the excess return. In Figure 5 we plot the time-varying correlations between the market

excess return and the macroeconomic factors. This shows the strength of the correlations and the

fact that they vary over time. The conditional correlation between the excess market return and

inflation is predominantly negative, unlike the correlations with output and money growth.

Combining this information gives the contribution of each factor to the total risk premium.

This is plotted in Figure 6. We find that the contribution of the market return is positive, but

that of inflation is nearly always negative, whilst the contribution of output fluctuates in sign,

being largely negative in the 1970’s and positive in the 1980’s, but becoming negative again

during the late 1990’s recession. To gain more understanding of what is happening, in Figure 7

we show for Model 2 the time-varying correlations between certain macroeconomic factors and

the correlation with the risk premium. During the 1973-1975 recession, when the risk premium
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is strongly negative, Figure 3 shows that inflation volatility was high. Figure 6 reveals that

its contribution to the risk premium was then at its most negative, and Figure 7 shows that

the correlation between returns and inflation was significantly negative. Figure 7 also reveals that

during this recession, the correlation between inflation and output are strongly negative, reflecting

the fact that the recession was caused by a supply shock - the rise in oil and other commodity

prices - and not a demand shock. There is another strong negative correlation in 1979 when there

was a second oil price shock. During later recessions inflation and output are positively correlated

which is consistent with the recessions being due instead to negative demand shocks.

Two alternative conclusions are suggested by this evidence. The first is that the 1973-4 reces-

sion was a period of risk taking. This is, however, implausible. If we rule out a preference for

risk and assume that risk premia are strictly non-negative, then a second explanation is that the

theory is unable to cope with risk arising from negative supply shocks. It appears that during

these recessions the stock market return was driven so low that, even if the risk premium did

increase, it is obscured by the abnormal severity of the fall in returns.

These findings reveal many other things too. For example, periods with high risk premia

are associated with periods of very low correlation between money and output suggesting that

negative correlation between money and output shocks coincide with more risky stock market

returns. At the end of the recessions and shortly after, the risk premium tends to decline implying

that unfavourable economic conditions that make the stock market more risky. The recessions of

1973-75 and 1979-81 had a negative correlation between inflation and output and so were started

by a supply shock, but were followed by a strong positive correlation between inflation and output,

suggesting a demand stimulus was given to the economy to counteract the recession.

It is also worth observing that this evidence undermines an assumption that underlies a lot

of work in macroeconomics that inflation and output are always positively related and so can be

modelled through a Phillips curve.

5.5.3 Implications for CAPM

We began this study by observing that the key to understanding how an asset is priced is the

relation between its return and its volatility. As a result, it seems obvious to use of CAPM to

study the relation. We have shown, however, that the standard formulation of CAPM is not

general enough and that the evidence provides strong support for the SDF model. We have also

noted in equation (13) that we can interpret the SDF model as a more general version of CAPM

in which the coefficient on the conditional volatility of returns is time varying.

In Figure 8 we plot this coefficient, unsmoothed and smoothed. It is very striking how volatile
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the coefficient is. This reveals how inadequate standard CAPM is in explaining the relation

between returns and volatility. We also note that although the coefficient is positive most of

the time, in the 1973-75 recession it is highly negative. This shows once more the problem that

standard asset pricing models have in explaining the behaviour of stock returns during that period.

6 Conclusion

The main finding in this paper is a strong asymmetric relation between the US business cycle and

the US stock market over the period 1960 to 2003. Downturns in the business cycle have a greater

negative impact on stock returns than the positive effect of upturns.

In contrast to the pioneering work of Schwert and later purely empirically-based approaches in

the literature, our analysis was conducted within an explicit no-arbitrage framework of the relation

between returns and their volatility that was derived from the SDF model of asset pricing. This

enabled us to derive a formal relation between returns and the business cycle via the equity risk

premium. We showed that the SDF model is capable of encompassing a number of different

asset-pricing theories, including CAPM, consumption CAPM with either time separable or time

non-separable preferences, and Merton’s inter-temporal CAPM in which the market return is a

factor. Our model also embraces that of Lettau and Ludvigson. An advantage of the SDF model

over general equilibrium models is that we can relate the equity risk premium to the business

cycle rather than to consumption. We are also able to investigate the potential effects of other

macroeconomic variables such as inflation and money growth. Our results support an SDF model

with three priced factors: output, inflation and the stock market return.

Another feature of our analysis is that we model the joint distribution of stock returns and

observable macroeconomic variables using a multivariate GARCH model with conditional covari-

ance “in-mean” effects to represent the risk premium. This is a more general approach than that

used hitherto in the literature as it neither excludes conditional covariance effects in the mean,

nor does it restrict the conditional correlation structure to be constant over time. Further, the

conditional covariances are not restricted to be linear functions of the factors as in the Vasicek

model. These generalisations strongly influence our new findings. In addition to the three priced

factors, we find that money growth should also be included in the joint distribution.

In our model, there are two channels through which the business cycle may affect stock returns.

There is a mean effect coming via the equity risk premium, and there is a volatility effect coming

through the conditional covariance matrix. All three macroeconomic variables operate significantly

through the volatility of returns, but only output and inflation have a significant effect on the mean

return.
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As a result of allowing for time-varying correlation we discovered a difference in the effects on

stock returns between a recession caused by negative supply shocks and one caused by negative

demand shocks. We found that the correlation between output and inflation was negative during

the recessions caused by the two oil price shocks of the 1970’s, thereby indicating negative supply

shocks. In contrast, the earlier and later recessions were associated with a positive correlation

between output and inflation, suggesting that these recessions were caused by negative demand

shocks. Such a time-varying correlation between output and inflation raises doubts about the large

body of evidence on the Phillips curve which typically assumes a constant positive correlation.

We also draw attention to a finding that casts doubt on our version of the SDF model of the

equity risk premium. In 1974, during the recession caused by the first oil price shock, the fall in

stock returns is so large that the estimated risk premium becomes negative in order to explain

such extremely negative returns. This indicates that although our model of the equity premium

gives a reasonably satisfactory account of the equity risk premium in normal times, it is unable to

deal with an extreme event such as this. It is common in modelling asset prices to suppose that a

mixture of distributions is required to account for all of the observations. In effect, it is assumed

that certain extreme values are generated by a different distribution. This is the logic behind the

inclusion of jump variables. Our results provide new evidence supporting this practice.

We began this study by observing that the key to understanding how an asset is priced is

the relation between its return and its volatility. Our results have shown that CAPM, the model

mainly used in empirical work on this issue, is strongly rejected by the data in favour of one in

which, in effect, the coefficient on the conditional volatility of returns is highly time varying and

may be explained by macroeconomic factors via an SDF model.
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Table1 : Descriptive Statistics

ies,t+1 πt+1 ∆mt+1 ∆yt+1

Mean 4.46 4.27 5.02 3.04

Std. Dev 53.46 3.62 6.02 9.00

Skewness -0.71 1.03 0.12 -0.59

Kurtosis 5.79 4.70 4.08 5.92

Normality 59.91∗∗ 90.10∗∗ 21.52∗∗ 72.36∗∗

ρ(xt, xt−1) 0.07 0.66 0.52 0.37

ρ(xt, xt−2) -0.05 0.60 0.33 0.29

ρ(xt, xt−3) -0.01 0.56 0.33 0.26

ρ(xt, xt−4) -0.01 0.54 0.31 0.21

ρ(xt, xt−5) 0.07 0.54 0.33 0.08

ρ(xt, xt−6) -0.03 0.54 0.34 0.10

ρ(x2t , x
2
t−1) 0.05 0.66 0.53 0.27

ρ(x2t , x
2
t−2) 0.12 0.62 0.34 0.14

ρ(x2t , x
2
t−3) 0.15 0.59 0.31 0.14

ρ(x2t , x
2
t−4) 0.08 0.56 0.23 0.05

ρ(x2t , x
2
t−5) 0.10 0.57 0.22 -0.04

ρ(x2t , x
2
t−6) 0.09 0.58 0.26 0.07

ρ(|x|t, |x|t−1) 0.05 0.63 0.44 0.31

ρ(|x|t, |x|t−2) 0.06 0.61 0.26 0.13

ρ(|x|t, |x|t−3) 0.07 0.54 0.22 0.10

ρ(|x|t, |x|t−4) 0.03 0.52 0.23 0.05

ρ(|x|t, |x|t−5) 0.02 0.55 0.20 -0.04

ρ(|x|t, |x|t−6) 0.02 0.52 0.21 0.04

ρ(.) is the correlation and xt is the relevant column variable

Note: Two stars as superscipt indicates that normality is rejected using 0.99 CV. x refers to variable
in first row of table.
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Table 2. Estimates of Models 1 to 7
M1 M2 M3 M4 M5 M6 M7

Vt(i
e
t+1) 3.57

(3.75)
11.14
(2.53)

10.49
(3.15)

Covt(i
e
t+1, πt+1) 1 780.28

(2.98)
533.99
(2.10)

−663.67
(4.10)

1 1 1093.17
(3.95)

Covt(i
e
t+1,∆mt+1) −18.49

(0.16)
496.42
(2.51)

1342.50
(2.82)

Covt(i
e
t+1,∆yt+1) −312.09

(3.71)
−341.34
(3.38)

−353.60
(4.33)

Υ1987:10,t+1 −0.27
(2.39)

−0.27
(0.82)

−0.2791
(0.84)

−0.29
(1.13)

−0.29
(1.90)

−0.26
(1.28)

−0.28
(1.00)

ν 10.83
(4.83)

9.90
(5.36)

10.05
(5.38)

9.61
(5.27)

9.47
(5.24)

9.84
(5.36)

8.92
(5.57)

Log Likelihood −2130.5 −2109.2 −2112.0 −2120.5 −2124.2 −2117.5 −2118.8
LR Risk Premium 8.60 7.54 6.79 9.02 7.58 5.69 8.79

Average Residual −2.27 −1.34 −0.60 −2.74 −1.41 0.46 −2.60
Risk Share (%) 0.59 11.90 12.11 8.70 11.60 11.80 11.20

Note: Share of risk = 100·V ar(φt)/V ar(iet+1 + 1
2Vt(i

e
t+1)− bθΥ1987:10,t+1)

ν = degrees of freedom. LR: Long Run or average. Absolute t-statistics in parenthesis.
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Table 3. Estimates of Model 2

Yt+1 = A + BYt + ΦH[1:N,1],t+1 +ΘΥ1987:10,t+1 + ²t+1

²t+1 = H
1
2
t+1ut+1, ut+1 ∼ D(0, I4)

Ht+1 = CC| +D(Ht −CC|)D| +E(²t²
|
t −CC|)E| +G(ηtη|t −CC

|
)G|

bA =



0

0.0967
(5.85)

0.1306
(4.42)

0.2792
(5.80)


, cΦ =



11.14
(2.53)

780.28
(3.02)

−18.49
(0.16)

−312.09
(3.71)

0 0 0 0

0 0 0 0

0 0 0 0



bB =



0 0 0 0

0.0016
(0.70)

0.6621
(20.44)

0.0193
(1.19)

−0.0107
(0.87)

0.0142
(4.22)

0.0535
(0.86)

0.6007
(15.78)

−0.0062
(0.26)

0.0009
(0.16)

−0.2150
(2.24)

0.0475
(0.92)

0.2793
(6.83)



bD =



0.5589
(4.46)

2.4030
(1.67)

3.5705
(3.29)

2.7721
(3.87)

0.0233
(3.12)

0.7501
(8.58)

−0.1550
(2.08)

−0.1349
(2.50)

0.0362
(1.88)

−0.1029
(0.32)

−0.5781
(6.07)

0.1246
(1.95)

0.1483
(4.26)

−1.1940
(2.57)

0.2977
(1.68)

−0.3907
(3.07)



bE =



−0.0085
(0.24)

−0.4953
(1.13)

−0.7441
(1.49)

0.0315
(0.15)

−0.0029
(1.09)

0.3002
(6.55)

−0.0100
(0.30)

−0.0290
(1.85)

−0.0035
(0.72)

−0.0568
(0.53)

0.5315
(7.27)

−0.1017
(2.65)

−0.0170
(2.12)

−0.0489
(0.33)

−0.2386
(2.46)

0.0131
(0.20)



bG =



−0.0661
(1.91)

−1.5521
(1.66)

−1.3589
(3.24)

0.0762
(0.34)

−0.0119
(3.76)

0.0736
(0.80)

−0.0202
(0.80)

0.0575
(2.27)

−0.0021
(0.19)

−0.2081
(0.97)

0.0060
(0.04)

−0.0347
(0.55)

−0.0117
(0.92)

0.2254
(0.74)

−0.1171
(0.96)

0.5432
(6.66)


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100· bC =



4.8236
(6.74)

0 0 0

0.0017
(0.07)

0.2369
(8.30)

0 0

0.0435
(1.08)

0.0469
(1.15)

0.4657
(6.88)

0

0.1404
(1.57)

0.0458
(0.58)

−0.0382
(0.64)

0.7290
(6.99)



12002· bC bC0 =

3350.40 1.18 30.24 97.50

1.18 8.08 1.61 1.58

30.24 1.61 31.82 −1.38
97.50 1.58 −1.38 79.87



Table 4. Autocorrelation coefficients for risk premia

ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ12

φModel 1
t 0.98 0.96 0.93 0.91 0.88 0.85 0.65

φModel 2
t 0.43 0.59 0.31 0.30 0.09 0.09 −0.10

φModel 3
t 0.33 0.58 0.26 0.27 0.11 0.07 −0.12

φModel 4
t 0.73 0.61 0.42 0.23 0.09 −0.03 −0.23

φModel 5
t 0.57 0.58 0.41 0.32 0.20 0.17 −0.13

φModel 6
t 0.26 0.60 0.18 0.35 0.05 0.20 −0.07

φModel 7
t 0.64 0.70 0.50 0.47 0.28 0.26 −0.09

Note: Absolute t-statistics in parenthesis.
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Table 5: Recession dates and number of observations

60:03-61:05 69:11-70:10 73:11-75:03 80:01-80:07 81:07-82:11 90:07-91:03 01:03-01:11

15 12 17 7 17 9 9

Total no. obs. = 86

Table 6. Summary statistics comparing periods of recession with other periods

log return inflation money ind. prod.

Mean in recessions −6.5147 5.9593 5.0598 −7.3957
Mean elsewhere 6.4664 3.8649 5.0537 4.9132

Correlation with log returns in recessions 1 −0.1417 0.0920 0.0190

Correlation with log returns elsewhere 1 −0.1394 0.0723 0.0480

Mean conditional SD during recessions 54.9312 3.4322 5.7111 10.6250

Mean conditional SD deviation elsewhere 48.9321 2.4689 4.9801 7.4919

Mean contributions to risk prem. in recessions 28.6471 −16.7822 −0.2983 −0.6827
Mean contributions to risk prem. elsewhere 22.7963 −9.2757 −0.1772 −6.3054
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Figure 1: Risk premia for Models 1-2 and excess return
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Notes: The excess return is net of the Jensen effect and the October 1987 dummy. The data are

measured in annualised percentages. Shaded areas are recessions as defined by the NBER.
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Figure 2: Risk premia for Models 4-6

1960 1965 1970 1975 1980 1985 1990 1995 2000

-50

-25

0

25

50

75

100

125

150 Model 6 
Model 5 
Model 4 

Notes: see Figure 1.
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Figure 3: The risk premium and the conditional variances of the factors
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Notes: the scale for the risk premium is on the left axis and that for the correlations is on the right.

All are measured in annualised percentages. The unconditional correlations are ρ(φt, σt(i
e
t+1)) = 0.19,

ρ(φt, σt(πt+1)) = 0.04, ρ(φt, σt(∆mt+1)) = 0.07, ρ(φt, σt(∆yt+1)) = 0.31. Shaded are recessions as

defined by the NBER.
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Figure 4: The contribution to risk of asymmetries
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Notes: See figure 1.

32



Figure 5: Time-varying correlations between the excess return and the factors

1960 1965 1970 1975 1980 1985 1990 1995 2000

-0.4

-0.2

0.0

0.2

0.4

ρt(is,t+1
e ,πt+1) 

ρt(is,t+1
e ,∆mt+1) 

ρt(is,t+1
e ,∆yt+1) 

Notes: see Figure 1.
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Figure 6: The contribution to risk of the macroeconomic factors
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Notes: see Figure 1.
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Figure 7: The risk premium and time-varying correlation between the factors
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Figure 8: The risk premium per unit of variance

1960 1965 1970 1975 1980 1985 1990 1995 2000

-20

-10

0

10

20

30

γt-Smooth 
γt 

Notes: see Figure 1 γt is the risk premium divided by the conditional variance of stock returns in

Model 2.
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