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Abstract

It is commonly asserted that inflation is a jump variable in the New Keynesian

Phillips curve, and thus wage-price inertia does not imply inflation inertia. We show

that this “inflation flexibility proposition” is highly misleading, relying on the assump-

tion that real variables are exogenous. In a general equilibrium setting (in which real

variables not only affect inflation, but are also influenced by it) the phenomenon of in-

flation inertia re-emerges. Under plausible parameter values, high degrees of inflation

persistence (prolonged after-effects of inflation in response to temporary money growth

shocks) and under-responsiveness (prolonged effects in response to permanent shocks)

can arise in the context of standard wage-price staggering models.
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1 Introduction

According to the path-breaking contributions associated primarily with Phelps (1978) and

Fuhrer and Moore (1995), staggered nominal contracts can account for price inertia, but not

inflation inertia. Specifically, the contracting model of Phelps (1978) and Taylor (1980a)

implies that inflation is jump variable, responding instantaneously to exogenous macroeco-

nomic shocks. This proposition - which may be called the “inflation flexibility proposition”

- implies that there is no inflation persistence (serial correlation in inflation) independent

of the persistence in the shocks. The implication is widely recognized as a deficiency of

the New Keynesian Phillips curve that rests on the contracting model; it cannot account

for the high degree of inflation persistence commonly described by the empirical evidence.

This insight has spawned a large literature that attempts to provide new explanations for

inflation persistence.1

In this paper we revisit this debate and argue that, under staggered nominal contracts,

inflation is generally not a jump variable after all. In fact, we show the standard versions of

the contract model may be compatible with high degrees of inflation persistence.

Our argument may summarized as follows. In the textbook version of New Keynesian

Phillips curve, current inflation (πt) depends on expected future inflation and some real

variable (xt), such as output, the output gap, real marginal costs, employment or unem-

ployment: πt = Etπt+1 + axt. From this, it is commonly inferred that there is no inflation

persistence independent of the persistence in xt. After all, a one-period shock to xt affects

inflation for only one period. For this argument to hold, the real variable xt must be viewed

as exogenous. But in the context of all reasonable macro models of the Phillips curve, xt is

not exogenous. Rather, inflation πt and, say, output xt are both endogenous. Commonly,

output (or employment, etc.) depends, among other things, on real money balances (or

some other relation between money and a nominal variable). And real money balances, in

turn, depend on prices, whose evolution is given by the inflation rate. Once the influence of

inflation on output is taken into account in a general equilibrium context, it can be shown

that, under plausible assumptions, inflation responds only gradually to shocks.

The paper is organized as follows. Section 2 presents a simple model of the NewKeynesian

Phillips curve and obtains the standard result that, when output is exogenous, inflation is a

jump variable. We then let output depend on real money balances and derive the resulting

inflation persistence. Section 3 extends this model in various standard ways. Section 4

concludes.
1See, for example, Christiano, Eichenbaum, and Evans (2001), Dotsey, King, and Wolman (1997), Estrella

and Fuhrer (1998), Fuhrer and Moore (1995), Galí, Gertler, and López-Salido (2001), Huang and Liu (2001),
Mankiw and Reis (2002), Roberts (1997), and many others.
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2 Inflation Persistence in a SimpleModel of the Phillips

Curve

We begin with a simple, standard model of staggered price setting:

Pt = αPt−1 + (1− α)EtPt+1 + γxt, (1)

where Pt is the price level, γ is the “demand sensitivity parameter” (a constant), α = 1
1+β
,

the discount factor β = 1
1+r

, and r is the discount rate. This equation clearly implies

price inertia: a one-period shock to output affects the price level for many periods. The

corresponding New Keynesian Phillips curve is

πt = βEtπt+1 + γ (1 + β)xt, (2)

where πt ≡ Pt −Pt−1 is the inflation rate.2 Note that when the interest rate is zero (so that

α = 1/2 and β = 1), this equation reduces to the standard textbook version of the Phillips

curve, for which there is no long-run tradeoff between inflation and output.

The New Keynesian Phillips curve (2) is commonly thought to imply the absence of

inflation persistence. Using recursive substitution, the Phillips curve can be expressed as

πt =
∞X
j=0

βjEtxt+j. (3)

Thus if output xt is exogenous, a one-period output shock in period t cannot affect inflation

beyond that period.

But, as noted, output is not exogenous. In the standard macro models, it usually depends

on real money balances. So, for simplicity, we write:

xt =Mt − Pt, (4)

whereMt denotes the money supply. Substituting this equation into equation (1), we obtain

the following price equation:3

Pt = φPt−1 + θEtPt+1 +

µ
γ

1 + γ

¶
Mt, (5)

2Subtract αPt from both sides of (1) to get (1− α)Pt = −α (Pt − Pt−1) + (1− α)EtPt+1 + γxt so that
απt = (1− α)Etπt+1 + γxt; this implies the New Keynesian Phillips curve above.

3To derive this equation, observe that Pt = αPt−1 + (1− α)EtPt+1 + γ (Mt − Pt) ⇒ Pt =
³

α
1+γ

´
Pt−1 +³

1−α
1+γ

´
EtPt+1 +

³
γ
1+γ

´
Mt.
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where φ = α
1+γ

, θ = 1−α
1+γ

. The corresponding inflation equation is4

πt = φπt−1 + θEtπt+1 +

µ
γ

1 + γ

¶
µt + θvt, (6)

where µt ≡ Mt −Mt−1 is the money growth rate and vt = Pt − Et−1Pt is an expectational

error.5

In this equation, current inflation depends on past inflation, as well as on expected future

inflation, and thus the possibility of inflation persistence reemerges. The degree of persistence

is of course related to the stochastic process generating the money supply. To analyze this

relation, it is convenient to rewrite the price equation (5) as6

Pt = λ1Pt−1 +
γ

λ2 (1− α)

∞X
j=0

µ
1

λ2

¶j

EtMt+j, (7)

where λ1 and λ2 are the roots of equation (5):

λ1,2 =
1∓√1− 4φθ

2θ
=
1∓

q
1− 4α(1−α)

(1+γ)2

2
³
1−α
1+γ

´ (8)

and 0 < λ1 < 1 and λ2 > 1. In words, prices depend on past prices and expected future

money supplies. Thus different stochastic monetary processes give rise to different price

dynamics. We now consider two such processes in turn:

• A temporary money growth shock: The persistent after-affects of inflation to this tem-
porary shock we refer to as inflation persistence. The greater the inflation effect after

the shock has disappeared, the greater is inflation persistence.

• A permanent money growth shock: Since this shock leads to a permanent change in
inflation, it is desirable to have a different name for the the inflation effects. Thus

the delayed inflation effects of a permanent monetary shock we call inflation under-

4To derive the inflation equation, lag eq. (5) once: Pt−1 = φPt−2+ θEt−1Pt+
³

γ
1+γ

´
Mt−1, and subtract

it from (5) to get πt = φπt−1+θEtPt+1−θEt−1Pt+
³

γ
1+γ

´
µt. Now add and subtract θPt on the right-hand

side of the above to obtain the inflation staggered equation in terms of the exogenous growth rate of money:

πt = φπt−1 + θEtπt+1 +
³

γ
1+γ

´
µt + θ (Pt − θEt−1Pt).

5The error term vt = Pt −Et−1Pt is included in Roberts (1995, 1997), but ignored by Fuhrer and Moore
(1995) and much of the subsequent literature. It can be shown that, in the above price staggering model, this
error term does not affect the dynamic structure of inflation; it only rescales its impulse response function
to a temporary monetary shock.

6To see this, write (5) as (1− λ1B) (1− λ2B)EtPt =
−γBMt

(1−α) , where B is the backshift operator. This

gives (1− λ1B)EtPt =
γ

λ2(1−α)
∞P
j=0

³
1
λ2

´j
EtMt+j which leads to (7) since EtPt = Pt.
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responsiveness. The more slowly inflation responds to a permanent shock, the more

under-responsive inflation is.

Although the persistent after-effects of a temporary money growth shock and the delayed

after-effects of a permanent money growth shock are two distinct phenomena, they are often,

rather confusingly, both denoted by the word “persistence” in the prevailing literature.

2.1 A Temporary Money Growth Shock

Let the money growth be stationary, fluctuating randomly around its mean (µ):

µt = µ+ εt, where εt ∼ iid
¡
0, σ2

¢
. (9)

A positive shock εt represents a temporary rise in money growth or, equivalently, a sudden,

permanent increase in the money supply. The money supply is a random walk: Mt =

µ+Mt−1 + εt, so that EtMt+j = Mt + jµ, for j ≥ 0. Substituting this last expression into
the price equation (7), we obtain

Pt = λ1Pt−1 + (1− λ1)Mt +
(1− λ1)

(λ2 − 1)µ. (10)

The first difference of this equation yields the closed form rational expectations solution

of inflation:

πt = λ1πt−1 + (1− λ1)µ+ (1− λ1) εt. (11)

(In the long-run π = µ, i.e. there is no money illusion, as for the other models below.)

A one-period shock to money growth εt = 1, εt+j = 0 for j > 0 (i.e. a permanent increase

in the level of money supply) is associated with the following impulse response function of

inflation:

R (πt+j) = λj1 (1− λ1) , j = 0, 1, 2, ... (12)

Observe that the responses die out geometrically, and the rate of decline is given by the

autoregressive parameter λ1. In this context, we measure inflation persistence (σ) as the

sum of the inflation effects for all periods after the shock has occurred (t+ j, j ≥ 1):

σ ≡
∞X
j=1

R (πt+j) = λ1 (13)

By equation (8), we see that the degree of persistence rises with the discount rate (and

α) and falls with the demand sensitivity parameter γ. It can be shown that inflation has

this qualitative pattern of persistence when money growth follows any stationary ARMA

process.
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2.2 A Permanent Money Growth Shock

Let money growth be a random walk:

µt = µt−1 + εt, where εt ∼ iid
¡
0, σ2

¢
. (14)

In this case a positive one-period shock (εt) represents a permanent increase in money growth

(the case of a negative shock represents a sudden disinflation).

By the price equation (7) and the random walk (14), we obtain the following price

dynamics:7

Pt = λ1Pt−1 + (1− λ1)Mt +

µ
1− λ1
λ2 − 1

¶
µt, (15)

The associated closed form rational expectations solution of inflation is

πt = λ1πt−1 + (1− λ1)µt +

µ
1− λ1
λ2 − 1

¶
εt. (16)

It can be shown that the corresponding impulse response function of inflation to the

permanent unit increase in money growth is:8

R (πt+j) = 1− λj1 (1− λ1)

µ
2α− 1

γ

¶
, j = 0, 1, 2, ... (17)

In this context, we measure the responsiveness of inflation as the cumulative inflation

effect of the money growth shock that arises because inflation does not adjust immediately to

the new long-run equilibrium. In particular, suppose that the economy, in an initial long-run

equilibrium, is perturbed by a one-period money growth shock εt = 1, εt+j = 0 for j > 0.

The inflation responsiveness is the sum of the differences through time between the actual

inflation rate and the new (post-shock) long-run equilibrium inflation rate:

ρ ≡
∞X
j=0

[R (πt+j)− 1]

= −2α− 1
γ

(18)

If inflation responds instantaneously to the shock, then ρ = 0, i.e. inflation is perfectly

responsive. If inflation responds only gradually, so that the short-run inflation effects of the

shock are less than the long-run effect, then inflation is under-responsive and ρ < 0. Finally,

7To see this, observe that
∞P
j=0

³
1
λ2

´j
EtMt+j =

³
λ2

λ2−1
´
Mt +

λ2
(λ2−1)2µt, and

γ
(λ2−1)(1−α) = 1− λ1.

8Since λ1 is positive and less than unity, the long-run response of inflation is limR (πt+j)
j→∞

≡ R (πLR) = 1,

i.e., in the long-run inflation stabilizes at the new level of money growth.
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if inflation overshoots its long-run equilibrium, then ρ may be positive, making inflation

over-responsive.

This impulse response function (17) has the following interesting implications for inflation

responsiveness:

• If the discount rate r is zero (i.e. β = 1, so that α = 1/2), then inflation is perfectly
responsive. In other words, it is a jump variable, along the same lines as in the recent

literature on “inflation persistence” under staggered nominal contracts.

• If the discount rate is positive (i.e. β < 1, so that α > 1/2), then inflation is under-

responsive. It gradually approaches its new equilibrium from below at a rate that

depends on the autoregressive parameter λ1.

As shown below, the first result holds only for staggered price setting, but not for stag-

gered wage setting.

It is important to note that the under-responsiveness of inflation is closely related to the

slope of the long-run Phillips curve. To see this, recall that output (or employment, etc.)

depends on real money balances (in equation (4)), which (by the price equation (15)) are

xt ≡Mt − Pt = λ1 (Mt−1 − Pt−1) + (1− λ1)

µ
2α− 1

γ

¶
µt. (19)

In the long run,

xt =

µ
2α− 1

γ

¶
πt (20)

since πt = µt in the long run. Observe that inflation responsiveness (18) is simply the inverse

of the slope of the long-run Phillips curve.

In the absence of time discounting (α = 1/2), the long-run Phillips curve is vertical and

inflation is a jump variable. This is an implausible, counter-factual special case, not just

because there is no time discounting, but also because - as equation (19) shows - it is not

just the long-run Phillips curve that is vertical; the short-run Phillips curve is vertical as

well.

By contrast, in the presence of time discounting (α > 1/2), as is well-known, the long-

run Phillips curve is downward-sloping and inflation is under-responsive. The flatter is the

long-run Phillips curve, the more under-responsive inflation becomes.

It is often casually asserted that, since the discount factor is close to unity in practice, the

long-run Phillips curve must be close to vertical. Inspection of the long-run Phillips curve

(20), however, shows this presumption to be false. As we can see, the slope of this Phillips

curve depends on both the discount parameter α and demand sensitivity parameter γ. Table
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1 presents the slope for various common values of α and commonly estimated values of γ:9

It is clear that for a range of plausible parameter values the long-run Phillips curve is quite

flat and, correspondingly, inflation is highly under-responsive.

Table 1: Slope of the long-run Phillips curve
slope

r (%) β α γ = 0.01 γ = 0.02 γ = 0.05 γ = 0.07 γ = 0.10
1.0 0.990 0.502 −2.01 −4.02 −10.1 −14.1 −20.1
2.0 0.980 0.505 −1.01 −2.02 −5.05 −7.07 −10.1
3.0 0.971 0.507 −0.68 −1.35 −3.38 −4.74 −6.77
4.0 0.962 0.510 −0.51 −1.02 −2.55 −3.57 −5.10
5.0 0.953 0.512 −0.41 −0.82 −2.05 −2.87 −4.10

3 Extensions

To gain some perspective on the determinants of inflation persistence and responsiveness,

we now examine these phenomena in the context of other forms of nominal staggering.

3.1 Price Staggering and Future Demand

Whereas the price setting equation (1) is common in the literature on inflation persistence,

microfoundations of staggered price setting suggest that current prices (set over periods t

and t+1) depend not only on current demand (xt) but also on future demand (xt+1). Thus,

let us consider the following price setting behavior:

Pt = αPt−1 + (1− α)EtPt+1 + γ [αxt + (1− α)Etxt+1] . (21)

Substituting real money balances (4) into this equation, we obtain

Pt = φpPt−1 + θpEtPt+1 +

µ
γ

1 + γα

¶
[αMt + (1− α)EtMt+1] , (22)

where φp =
α

1+γα
, and θp =

(1−γ)(1−α)
(1+γα)

. In this model the lead parameter is positive under

the plausible assumption that γ < 1. The sum of both the lag and lead parameters is less

than one.

Expressing this difference equation as

Pt = λ1pPt−1 +
γ

λ2p (1− γ) (1− α)

∞X
j=0

µ
1

λ2p

¶j

Et [αMt+j + (1− α)Mt+1+j] , (23)

9Taylor (1980b) estimates it to be between 0.05 and 0.1; Sachs (1980) finds it in the range 0.07 and 0.1;
Gali and Gertler (1999) estimate it to be between 0.007 and 0.047; calibration of microfounded models (e.g.
Huang and Liu, 2002) assigns higher values. The discount rate applies to a period of analysis which is half
the contract span.
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where10

λ1p,2p =
1∓p1− 4φpθp

2θp
=
1∓

q
1− 4α(1−γ)(1−α)

(1+γα)2

2 (1−γ)(1−α)
(1+γα)

, (24)

0 < λ1p < 1, and λ2p > 1, we find how price dynamics depend on the stochastic monetary

process. Once again, we examine inflation persistence arising from a temporary money

growth shock and inflation responsiveness arising from a permanent money growth shock.

We begin with a temporary money growth shock. When money growth follows the
stationary process (9), the rational expectations solution of (23) is

Pt = λ1pPt−1 + (1− λ1p)Mt + κ (1− λ1p)µ, (25)

where κ = λ2p/ (λ2p − 1)− α. Consequently inflation is given by

πt = λ1pπt−1 + (1− λ1p)µ+ (1− λ1p) εt. (26)

Observe that this inflation dynamics equation has the same form as the corresponding

equation (11) in the previous model. Thus, the impulse response function R (πt+j) =

λj1p (1− λ1p) , j = 0, 1, 2, ..., has the same form as well. Inflation persistence now is simply

λ1p. The magnitude of this autoregressive parameter is all that differentiates the inflation

responses in the two models.

Now consider a permanent money growth shock. When money growth follows the
random walk process (14), the rational expectations solution of (23) is

Pt = λ1pPt−1 + (1− λ1p)Mt + κ (1− λ1p)µt, (27)

First differencing the above gives the following inflation equation:

πt = λ1pπt−1 + (1− λ1p)µt + κ (1− λ1p) εt. (28)

Once again, this equation has the same form as its counterpart (28) in the previous model. As

above, inflation is perfectly responsive when α = 1/2, it is under-responsive when α > 1/2,

and the degree of under-responsiveness is inversely related to the slope of the long-run Phillips

curve.
10It can be shown that (1− λ1p) =

γ
(λ2p−1)(1−γ)(1−α) .
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3.2 Wage Staggering

Consider the following common wage staggering model:

Wt = αWt−1 + (1− α)EtWt+1 + γxt. (29)

Assuming constant returns to labor, the price is a constant mark-up over the relevant wages:

Pt =
1

2
(Wt +Wt−1) . (30)

Substitution of the price mark-up (30) and real money balances (4) equations into the

wage setting equation (29) gives

Wt = φwWt−1 + θwEtWt+1 +

µ
2γ

2 + γ

¶
Mt, (31)

where φw =
2α−γ
2+γ

, θw =
2(1−α)
2+γ

. We can write the above second order difference equation as

Wt = λ1wWt−1 +
γ

λ2w (1− α)

∞X
j=0

µ
1

λ2w

¶j

EtMt+j, (32)

where λ1w,2w =
1∓
√
1−4φwθw
2θw

, 0 < λ1w < 1, and λ2w > 1.

In this context, consider the inflation effects of a temporary money growth shock.
We substitute the money growth stochastic process (9) into (32) to obtain the wage dynamics

equation:

Wt = λ1wWt−1 + (1− λ1w)Mt +

µ
1− λ1w
λ2w − 1

¶
µ. (33)

Insert this wage dynamics equation into the price mark-up eq. (30) to obtain the price

dynamics equation:

Pt = λ1wPt−1 +
1

2
(1− λ1w)Mt +

1

2
(1− λ1w)Mt−1 +

µ
1− λ1w
λ2w − 1

¶
µ. (34)

Therefore, inflation is given by

πt = λ1wπt−1 + (1− λ1w)µ+
1

2
(1− λ1w) εt +

1

2
(1− λ1w) εt−1. (35)
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The responses of inflation to a period-t unit money growth shock are:

R (πt) =
1

2
(1− λ1w) , (36)

R (πt+j) =
λj−11w

2

¡
1− λ21w

¢
, j = 1, 2, 3, ...

Thus inflation persistence is

σ =
1 + λ1w
2

. (37)

Now turning to the inflation effects of a permanent change in money growth, the
rational expectations solution of the model gives the following dynamics equation:

Wt = λ1wWt−1 + (1− λ1w)Mt +

µ
1− λ1w
λ2w − 1

¶
µt, (38)

Pt = λ1wPt−1 + (1− λ1w)Mt +
1

2
(1− λ1w)

µ
2− λ2w
λ2w − 1

¶
µt +

1

2

µ
1− λ1w
λ2w − 1

¶
µt−1, (39)

πt = λ1wπt−1 + (1− λ1w)µt +
1

2
(1− λ1w)

µ
2− λ2w
λ2w − 1

¶
εt +

1

2

µ
1− λ1w
λ2w − 1

¶
εt−1. (40)

It can be shown that the responses through time of inflation to a period-t permanent

unit money growth shock are:

R (πt) = 1− 1
2

·
(1− λ1w)

µ
2α− 1

γ

¶
+
1 + λ1w
2

¸
< 1, (41)

R (πt+j) = 1− λj−11w

¡
1− λ21w

¢
2

µ
2α− 1

γ
− 1
2

¶
, j = 1, 2, ...,

lim
j→∞

R (πt+j) = 1.

As for the price staggering model, inflation responsiveness is ρ ≡ −2α−1
γ
. By this measure,

again, inflation is perfectly responsive when the discount rate is zero (α = 1/2) and under-

responsive when the discount rate is positive (α > 1/2). However, in neither case does

inflation jump immediately to its long-run equilibrium value. Specifically, the instantaneous

(period-t) response of inflation is to undershoot both when α > 1/2 and α = 1/2. In period-

1 inflation can either remain below its new equilibrium level, if 2α−1
γ

> 1
2
, or overshoot if

2α−1
γ

< 1
2
. Since 0 < λ1w < 1, period-2 onwards inflation converges to its equilibrium in a

geometric fashion.11

Finally, we consider a wage staggering model in which the nominal wage depends not only

11It can be shown that this model can generate inflation undershooting when the interest rate is greater
than 5% and/or the demand sensitivity parameter γ is lower than 0.05.
The reason why our measure of inflation responsiveness, ρ, is zero when α = 1/2, even though inflation

does not jump to its long-run equilibrium value, is that the inflation effects sum to zero through time.
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on current demand (xt) but also on future demand (xt), along the lines originally proposed

by Taylor (1980a):

Wt = αWt−1 + (1− α)EtWt+1 + γ [αxt + (1− α)Etxt+1] , (42)

It is straightfoward to show that the associated impulse response functions of inflation to

a temporary and permanent money growth shock have the same functional forms as in the

previous model. The only difference between the impulse response functions of the two wage

staggering models (29) and (42) lies in the autoregressive root of their rational expectations

dynamic equations.12

4 Concluding Remarks

It is commonly asserted that inflation is a jump variable in the New Keynesian Phillips

curve, and thus wage-price inertia does not imply inflation inertia. We have shown that this

“inflation flexibility proposition” is a partial equilibrium result, relying on the assumption

that real variables are exogenous. In a general equilibrium setting (in which real variables

not only affect inflation, but are also influenced by it) the phenomenon of inflation inertia

re-emerges.

To avoid confusion, we have used the term “inflation persistence” to denote inflation iner-

tia in the presence of a temporary money growth shock; whereas inflation inertia in the pres-

ence of a permanent money growth shock we have called “inflation under-responsiveness”.

Table 2 summarizes our results on inflation persistence, over the four macro models. PS-

(xt) stands for the price staggering model in which prices depend only on current demand;

PS-(xt, xt+1) is the model in which prices also depend on future demand. WS-(xt) andWS-

(xt, xt+1) represent the corresponding wage staggering models. The responses to a temporary

money growth shock are divided into a “current” response (the impact effect, R (πt)), a “fu-

ture” response (the sum of the future effects, which is our measure of inflation persistence σ),

and the the “total” response (the sum of the current and future responses, τ ≡ R (πt) + σ).

We see that a temporary money growth shock always has prolonged after-effects on inflation

(regardless of whether the discount rate is zero or positive, or whether there is price or wage

staggering).

12For the above Taylor model, it can be shown that λ1w =
1−
√
1−4φwθw
2θw

, φw = α
³
2−γ
2+γ

´
, θw =

(1− α)
³
2−γ
2+γ

´
, and 0 < λ1w < 1. For a detailed analysis of this model see Karanassou, Sala and Snower

(2004).
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Table 2: Inflation persistence after a shift in the money supply
autoregressive coefficient λ responses

Models λ = 1−√1−4φθ
2θ

φ θ
Current
R (πt) :

Future
σ :

Total
τ :

PS-(xt) α
1+γ

1−α
1+γ

1− λ λ 1

PS-(xt, xt+1) α
(1+γα)

(1−γ)(1−α)
(1+γα)

1− λ λ 1

WS-(xt)
2α−γ
2+γ

2(1−α)
2+γ

1
2
(1− λ) 1

2
(1 + λ) 1

WS-(xt, xt+1)
α(2−γ)
2+γ

(1−α)(2−γ)
2+γ

1
2
(1− λ) 1

2
(1 + λ) 1

The dependence of inflation persistence on the discount rate r and the demand sensitivity

parameter γ, for our four macro models, are pictured in Figures 1. Observe that, for given

values of r and γ, there is more inflation persistence (a) under wage staggering than under

price staggering and (b) when nominal variables depend on both present and future demands

than when they depend on present demands alone. Furthermore, note that variations in the

demand sensitivity parameter over the frequently estimated range have a strong effect on

inflation persistence, whereas the discount rate (over the standard range) has a relatively

weak effect.13

.72

.76

.80

.84

.88

.92

pe
rs

is
te

nc
e

interest rate, r%

a. Inflation persistence and interest rate
(gamma=0.05)

PS-[x(t), x(t+1)]

PS-[x(t)]

WS-[x(t)]

WS-[x(t), x(t+1)]

0.0     0.5     1.0             2.0              3.0            4.0             5.0

0.68

0.72

0.76

0.80

0.84

0.88

0.92

0.96

1.00

pe
rs

is
te

nc
e

0.0 0.01

gamma

b. Inflation persistence and gamma
(r=2%)

0.05 0.07 0.10

PS-[x(t)]

WS-[x(t), x(t+1)]

WS-[x(t)]

PS-[x(t), x(t+1)]

Figures 1

Tables 3a and 3b summarize our results on inflation responsiveness for the four macro

models. The impact effect of a permanent money growth shock is denoted by R (πt) and the

future effects by R (πt+j) , j ≥ 1. The degree of inflation responsiveness ρ has been shown to
be the inverse of the slope of the long-run Phillips curve. This measure of responsiveness is

zero (denoting perfect responsiveness) when the discount rate is zero (α = 1/2) and negative

(denoting under-responsiveness) when the discount rate is positive (α > 1/2). However, this

13Since the demand sensitivity parameter (γ) is assumed positive and non zero, the unit value of persistence

in Figure 1b for γ = 0 represents a limiting case
µ
i.e., lim

γ→0
σ = 1

¶
.
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does not imply that inflation necessarily jumps to its long-run value whenever the discount

rate is zero. On the contrary, we have seen that under staggered wage setting inflation is

never a jump variable, regardless of the discount rate.

Table 3a: Inflation responsiveness , α > 1/2
Models R (πt) R (πt+j)

j=1,2,...

ρ

PS-(xt) < 1 < 1 −
³
2α−1
γ

´
PS-(xt, xt+1) < 1 < 1 −

³
2α−1
γ

´
WS-(xt) < 1 ? −

³
2α−1
γ

´
WS-(xt, xt+1) < 1 ? −

³
2α−1
γ

´
In all models, when α > 1/2, the immediate response of inflation is to undershoot

(R (πt) < 1). In the wage staggering (the bottom two rows in Table 3a), inflation will

continue to undershoot its equilibrium after period-t if 2α−1
γ

> 1
2
. Otherwise, inflation

overshoots in period 1 and then gradually converges (from above) to its new equilibrium.

When α = 1/2 (see Table 3b), the inflation generated by the price staggering models

is a jump variable and both the short- and long-run Phillips curves are vertical. In other

words, there is no inflation “persistence” and the monetary policy has no real effects in the

economy. With wage staggering, when α = 1/2, inflation responsiveness remains zero but

inflation does not immediately jump to its new value. Initially inflation undershoots, and

then it overshoots before it starts approaching its new equilibrium. The net effect is zero

and so ρ = 0. Thus, the Phillips curve is downwards sloping in the short-run and becomes

vertical in the long-run.

Table 3b: Inflation responsiveness , α = 1/2
Models R (πt) R (πt+j)

j=1,2,...

ρ PC
(short-run)

PS-(xt) 1 1 0 vertical
PS-(xt, xt+1) 1 1 0 vertical
WS-(xt) < 1 > 1 0 non-vertical
WS-(xt, xt+1) < 1 > 1 0 non-vertical

Figure 2a pictures the relation between inflation under-responsiveness (in absolute value

terms) and the interest rate; Figure 2b is the corresponding relation between the slope of

the long-run Phillips curve and the interest rate. Along the same lines, Figures 2c and 2d

show how inflation under-responsiveness and the slope of the long-run Phillips curve depend

on the demand sensitivity parameter γ.

These results have one common thrust: the inflation flexibility proposition is highly mis-

leading. Under plausible parameter values, high degrees of inflation persistence and under-

responsiveness may arise in the context of standard wage-price staggering models.
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