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Abstract. When analyzing dynamic macroeconomic models, a commonly held
view is that assuming continuous or discrete time is a matter of convenience without any
economic importance. The aim of this paper is to challenge this view by demonstrating
that there is indeed a significant difference between a discrete and a continuous time
version of the same model, in terms of structure, solution and economic interpretation.
Specifically, we consider a general framework that incorporates many well known models,
and show that the Euler equations of the two setups are different in the following way.
While investment decisions in the continuous time setup depend on present rates of
return, in the discrete time setup they depend on expected future rates of return. The
reason for this is that in continuous time, the household’s decisions are allowed to adjust
continuously to possible changes in the economic environment, while in discrete time,
households are committed to their decision until the beginning of the following period.
Furthermore, we illustrate via some examples, that this fundamental difference between
the two modeling assumptions has important implications for the stability properties of
the steady state. In turn, this difference may imply contradicting macroeconomic policy
recommendations under the two setups.

JEL classification: E00, C62
Keywords: Discrete and continuous time, modeling, macroeconomic dynamics.

1. Introduction
When analyzing dynamic macroeconomic models, the decision of whether to model time as
continuous or discrete is often based upon the methodological needs of the researcher. Typi-
cally, a continuous time setting yields a set of equilibrium conditions that are easier to work
with compared to those deriving from a discrete time setting. On the other hand, when the
aim is to explore quantitative issues and the analysis needs to be done numerically, assuming
discrete time is more appropriate since computers cannot do exact representations of con-
tinua. Although occasionally some economic interpretation is put forth to justify the use of
one or the other, the general consensus is that there should not be any difference between
neither the qualitative nor the quantitative results deriving from the two assumptions.

In this paper, we challenge this view by demonstrating that there is indeed a significant
difference between a discrete and a continuous time version of the same model, in terms of
structure, solution and economic interpretation. This is shown in the framework of a generic
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model that incorporates a large class of well-known dynamic macroeconomic models. We
show that there are two sources of possible differences between the two setups. The first
is the mere fact that the stability properties of systems described by differential equations
(corresponding to the equilibrium conditions in continuous time) are different from those
of systems described by difference equations (corresponding to the equilibrium conditions
in discrete time). The second, and perhaps more important, is the fact that investment
decisions in the continuous time setup depend on present rates of return, whereas in the
discrete time setup they depend on expected future rates of return.

We begin by shortly describing the difference between systems of differential and dif-
ference equations. It is a well known mathematical result that the conditions required for
stability (in the mathematical sense) of a system of difference equations are stricter than
those required for stability of the corresponding system of differential equations. In terms of
systems of macroeconomic variables, this result is important for specifying whether a steady
state is locally indeterminate or not. In particular, even if there is no other difference between
the equilibrium conditions of a model in continuous and discrete time, this mathematical re-
sult is enough to render a steady state indeterminate in continuous time, while it might be
determinate under discrete time.

Next, we introduce a generic economy populated by a representative household that
maximizes lifetime utility, over a vector of state variables and a vector of control variables,
subject to its budget constraint. Time is modeled with discrete time intervals of length h.
We then derive the equilibrium conditions that come from the household’s maximization and
take the limits of these for h → 0 and h → 1, in order to get the corresponding continuous
and discrete time systems of equations. The second difference between the two settings
stems from the difference in the two Euler equations that describe the intertemporal decision
process of the households. Rewriting these in such a way that the time-preference discount
rate is equal to the total rate of return to the state variable, we then explain how, in discrete
time, households make investment decisions based on expected future rates of return while
in continuous time they base their decisions on current rates of return. This result further
implies that, even if the steady state of the economy is determinate under both modeling
assumptions, there are possibly differences between the equilibrium paths leading to the
steady state. Consequently, there might be differences in the volatility of the variables.

There are two (equivalent) ways of interpreting the difference between the discrete and
continuous time models. Both derive from the fact that essentially, these are two different
models with different fundamental modeling assumptions, rather than two versions of the
same story. The first interpretation comes from realizing that in the discrete time model
there is an inherent time-to-build delay since current stock variables (e.g. capital) become
operative in the subsequent period, while in the continuous time model stock variables be-
come operative instantaneously. The second interpretation comes from understanding the
time line of events in the asset market (e.g. the market for capital goods). In the discrete
time model, agents formulate their market demand by looking ahead and anticipating their
optimal decision as of the end of the current period (basing their decisions on expected future
returns on the asset). Alternatively, one could assume that prices and rates of return adjust
so the agents optimize given the asset levels at the beginning of the period; the limit of such
behavior, as the time period shrinks, corresponds to the standard continuous time model. In
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Foley’s (1975) terminology, with discrete time we have an "end-of-period" equilibrium, while
with continuous time we have a "beginning-of-period" equilibrium, and these two have quite
different properties.

Finally, to illustrate the importance of the differences between the two modeling as-
sumptions, we present three examples of well known models that fit into our framework,
namely the real business cycle model of Hansen (1985), the model of balanced-budget rules
of Schmitt-Grohé and Uribe (1997) and the model with increasing returns of Benhabib and
Farmer (1994) and Farmer and Guo (1994). The first example is used to give a more detailed
and intuitive explanation for the differences between the two timing formulations. The last
two of examples have been shown to exhibit indeterminacies; exploring this fact, we then
demonstrate that for these models the difference between the two assumptions results in
different ranges of indeterminacies, for reasonable parameterizations of the models.

Related literature that explicitly addresses the importance of how time is modeled in
macroeconomics includes the following work. Foley (1975) considers a simple model with two
assets (capital and money) and shows that the "beginning-of-period" and "end-of-period"
specifications of a discrete time model are in general inconsistent with each other in the
limit (i.e. as time becomes continuous). Carlstrom and Fuerst (2003) point out the possi-
bility of the difference between discrete and continuous time modeling by studying the local
determinacy of a monetary model for interest rate rules. Hintermaier (2003) shows that
the existence of sunspot equilibria in discrete time dynamic stochastic general equilibrium
models may depend on the length of the time period considered. Finally, Bambi and Li-
candro (2004) consider an extension of the continuous time model of Benhabib and Farmer
(2004) with time-to-build delay and find that even small time-to-build delays rule out local
indeterminacy.

2. Stability of Dynamic Systems
We begin by exploring the differences in the stability of difference and differential equations.
Consider the difference equation

wt+1 = Dwt (1)

where w is an n× 1 vector of variables and D is a known n×n matrix. We can rewrite 1 as

∆wt+1 ≡ wt+1 −wt = (D − In)wt ≡ Cwt =⇒
∆wt+1 = Cwt

Therefore, the corresponding differential equation will be

ẇt = Cwt (2)

Stability and indeterminacy of a system. In physics, a problem of great importance
is that of determining the behavior of a system in the neighborhood of an equilibrium state.
For example, suppose that a physical system is described by the vector wt. If the system
returns to the equilibrium state after a small disturbance, it is called stable, if not it is called
unstable.

Similarly, in economics an important issue is to determine the behavior of a system in
the neighborhood of a steady state. Typically, wt corresponds to a vector that contains the
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predetermined (state) and the control (jump) variables. The steady state of the economic
system is then called indeterminate if, given the predetermined variables, there exists more
than one trajectory that leads to the steady state. The notion of indeterminacy of a steady
state for an economic system is equivalent to the notion of stability of a physical system.1

In this section we will use the term stability of a generic system wt in this sense.
Let λCi and λDi be the eigenvalues of C and D correspondingly. Then the conditions

for stability of the system defined by (1) is that
¯̄
λDi
¯̄
< 1, for all i, and the conditions for

stability of the system described by (2) is that ReλCi < 0, or equivalently that ReλDi < 1,
for all i.2 This means that the conditions for stability of a difference equation are stricter
than the conditions for stability of the corresponding differential equation.

Turning into a typical dynamic macroeconomic model, suppose for example that the
economy is described by a univariate state variable xt and a univariate control variable yt
and that after linearizing the system of equilibrium conditions around a steady state, we can
reduce the model in a system of two difference equations (if time is discrete)µ

xt+1
yt+1

¶
= D

µ
xt
yt

¶
(3)

or a system of differential equations (if time is continuous)µ
ẋt
ẏt

¶
= C

µ
xt
yt

¶
(4)

In these two cases, the conditions for indeterminacy are
¯̄
λDi
¯̄
< 1, for i = 1, 2 for the discrete

time system (3) and ReλCi < 0, for i = 1, 2 for the continuous time system (4).
Clearly, even if it is the case that C = D−I2, i.e. even if there is an exact correspondence

between the continuous and the discrete time setting, the conditions for indeterminacy are
not the same. Specifically, if the steady state is locally indeterminate for the discrete time
setting, it will also be locally indeterminate in the continuous time setting, but the opposite
is not true. In other words, if C = D − I2, indeterminacy would occur less often in the
discrete time setting than in the continuous time setting.

However, it is not always true that C = D − I2 (in a later section we will show that for
many well known models, this is indeed not true). When C 6= D − I2, there is an inherent
difference in the economic interpretation of the equilibrium conditions that reduce to the
systems (3) and (4). In this case, the conditions required for indeterminacy in the two
settings may, in principle, be completely unrelated.

1This is a somewhat unfortunate correspondence of terminologies, because in economics we use the term
stability to describe a system that is saddle-path stable, i.e. a system for which, given the predetermined
variables, there is a unique trajectory that leads to the steady state.

2This is because the eigenvalues of the two matrices C and D are related in the following way. If λCi are
the eigenvalues of C then

0 = det
³
C − λCi In

´
= det

³
D − In − λCi In

´
= det

³
D −

³
1 + λCi

´
In
´
=⇒

λDi = 1 + λCi
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3. A General Discrete Time Model

Foley (1975) asserts that "No substantive prediction or explanation in a well-defined macroe-
conomic [discrete time] model should depend on the real time length of the period. [...] If
the results of a [discrete time] model do not depend in any important way on the period, the
model can be formulated as a continuous model. The method used to accomplish this is to
retain the length of the period as an explicit variable in the mathematical formulation of a
[discrete time] model and to make sure that it is possible to find meaningful limiting forms
of the equations as the period goes to zero. [...] this procedure should be routinely applied
as a test that any [discrete time] model is consistent and well formed where no particular
calendar time is specified as a natural period".

Following this precept, we first consider a general discrete time model, with an arbitrary
period length h. The generic model is described by an n×1 vector of control (flow) variables,
yt and an m × 1 vector of state (stock) variables xt. The stock variables are measured at
the beginning of the period, i.e. at the beginning of the time interval. The model might also
contain other (flow) variables, summarized by an l×1 vector zt, that might be endogenously
determined but are not choice variables for the representative household. We consider the
following maximization problem

max
{yt,xt+h}

∞X
t=0

µ
1

1 + ρh

¶ t
h

u(yt)h (5)

s.t.
mX
i

(xi,t+h − xi,t) = hQ(yt, xt; zt) (6)

x0 given

This setup covers a wide range of standard dynamic macroeconomic models, such as varia-
tions of the real business cycle model (possibly with increasing returns to scale), as well as
many standard monetary models.

In the above maximization problem, yt is interpreted as the vector containing the rates of
flow of the control variables that are assumed constant over period t

h , while xt is interpreted
as the vector of the levels of the state variables that are measured at the beginning of period
t
h (i.e. at the beginning of the interval [t, (t + h)]). In (5) we have multiplied u(yt) with
h because the cumulative utility over a period is the product of the instantaneous rate of
change times the length of the period. A similar argument applies to multiplying the right-
hand-side of (6) with h. We also make the usual assumption for concavity of the utility
function, although such an assumption does not have any direct implication for the issue we
study here.

The Lagrangian of this problem is

L =
∞X
t=0

µ
1

1 + ρh

¶ t
h

"
u(yt)h− λt

Ã
mX
i

(xi,t+h − xi,t)− hQ(yt, xt; zt)

!#
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and the first order conditions are

uyj (yt) = −λtQyj (yt, xt; zt), for all j = 1, ..., n (7)

λt =
1

1 + ρh
(1 + hQxi(yt+h, xt+h; zt+h))λt+h, for all i = 1, ...,m (8)

mX
i

(xi,t+h − xi,t) = hQ(yt, xt; zt) (9)

Note that substituting (7) into (8) yields the usual Euler equations. Rearranging (8), we
obtain3

λt+h − λt
h

=
(ρ−Qxi(yt+h, xt+h; zt+h))λt
1 + hQxi(yt+h, xt+h; zt+h)

(10)

Finally, the equilibrium conditions are summarized by the following set of equations

uyj (yt) = −λtQyj (yt, xt; zt) (11)

λt+h − λt
h

=
(ρ−Qxi(yt+h, xt+h; zt+h))λt
1 + hQxi(yt+h, xt+h; zt+h)

(12)

mX
i

xi,t+h − xi,t
h

= Q(yt, xt; zt) (13)

The model closes with l additional equations that determine the evolution of zt.
Note that to obtain the equilibrium conditions for the usual discrete time setup with a

unit length time period, we set h = 1 in (11) - (13) to get

uyj (yt) = −λtQyj (yt, xt; zt) (14)

∆λt+1 =
(ρ−Qxi(yt+1, xt+1; zt+1))λt
1 +Qxi(yt+1, xt+1; zt+1)

(15)

mX
i

∆xi,t+1 = Q(yt, xt; zt) (16)

where ∆denotes the difference operator.

4. The Standard Continuous Time Model
Our next step is work out the continuous time analogue of the discrete time model. To
obtain the equilibrium conditions for the continuous time setup we let h→ 0 in (11) - (13)
to get

uyj (yt) = −λtQyj (yt, xt; zt) (17)

λ̇t = (ρ−Qxi(yt, xt; zt))λt (18)
mX
i

ẋt = Q(yt, xt; zt) (19)

3For the derivation, see appendix A.
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The difference between the continuous and discrete time boils down to understanding
the difference between (15) and (18). To work out the intuition for this, it is convenient to
assume that there is only one (asset) stock variable x. We rewrite (12) as follows4

ρ =
λt+h − λt

hλt
+

λt+h
λt

Qx (yt+h, xt+h; zt+h)

Then, for h→ 1 we get

ρ =
∆λt+1
λt

+
λt+1
λt

Qx (yt+1, xt+1; zt+1) (20)

and for h→ 0 we get

ρ =
λ̇t
λt
+Qx (yt, xt; zt) (21)

The multiplier λ corresponds to the shadow price of the asset x. In equilibrium, this asset
price adjusts such that the asset’s total rate of return balances out the time-preference
(discount) rate ρ. This is exactly the interpretation of equations (20) and (21). The right
hand side of both relations represents the total rate of return to holding one unit of the
asset x, decomposed into two components. The first term in both expressions represents the
rate of change of asset gains. Turning into the second term, in the continuous time setting
it represents the rate of change of the asset. In the discrete time setting, it represents the
future rate of change of the asset, in terms of the current period’s price λt.

The difference between the discrete and continuous time setup is thus the fact that the
rate Qx (that influences investment decisions) is known to the households at every instance
when time is continuous, while when time is discrete, the households get a return on their
investment based on next period’s rate. In other words, in continuous time, if the rate Qx

changes, households may adjust their investment decisions instantaneously, while in discrete
time they are "committed" to their decision until the beginning of the next period.

To understand better the intuition behind this difference, it is useful to closely look at
the time line of events within one period (for the discrete time model) and then compare it
with analogue continuous time setting. We do this in the next section, in the context of a
familiar simple model which will facilitate the comparison.

5. A First Example: the Real Business Cycle Model
We start by briefly describing the model, which is along the lines of Hansen (1985). We
set up the model in the general discrete time setting, i.e. with time periods of length h.
The representative household maximizes lifetime discounted utility, subject to its budget
constraint:

max
∞X
t=0

(
1

1 + ρh
)
t
h [log ct −Ant]h

s.t. cth+ kt+h − kt = h(rt − δ)kt + hwtnt

k0 given

4The discussion follows the arguments of Obstfeld (1992).
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where ρ is the preference discount rate. Capital depreciates at rate 0 < δ < 1. Consumption,
instantaneous utility, labor income and capital income are flow variables. Therefore, at period
t
h defined by the interval [t, (t+h)], the cumulative flow of any of these variable is the (fixed)
rate of flow of the variable, i.e. ct, log ct − Ant, wtnt, and (rt − δ)kt respectively, times the
period’s length h, where rt and wt denote the rates of return on capital and labor. Finally,
the total capital over the same interval is kt+h − kt.5 The firm has a production a Cobb-
Douglas production function with constant returns to scale F (kt, nt) = kskt nsnt , sk + sn = 1,
and maximizes profits period by period. Since firm profits are a flow variable as well, the
firm’s problem is

maxh [F (kt, nt)− rtkt − wtnt]

which implies the first order conditions rt = Fk(kt, nt) and wt = Fn(kt, nt).
To write this example in the general form (5) - (6) we rewrite the households budget

constraint as
kt+h − kt = ((rt − δ)kt + wtnt − ct)h

So that the state variable is xt ≡ kt and the control variables are yt ≡ (ct, nt). Also,
zt ≡ (rt, wt, τ t). Furthermore,

Q(ct, nt, kt; rt, wt, τ t) ≡ (rt − δ)kt + wtnt − ct

u(ct, nt) ≡ log ct −Ant

Therefore, the equilibrium conditions are

1

ct
= λt

A = λtwt

λt+h − λt
h

=
ρ− (rt+h − δ)

1 + h(rt+h − δ)
λt

kt+h − kt
h

= (rt − δ)kt + wtnt − ct

rt = Fk(kt, nt)

wt = Fn(kt, nt)

5Note that when h = 1 this is the typical disrete time model. The continuous time version can be obtained
by taking limits as h→ 0.

lim
h→0

(
1

1 + ρh
)
t
h = exp(−ρt)

so the objective becomes

Ut =

Z ∞

t=0

exp(−ρt)(u(ct)− υ(nt))dt

and the budget constraint

ct +
kt+h − kt

h
= (rt − δ)kt +wtnt ⇒

kt+h − kt
h

= (rt − δ)kt +wtnt − ct ⇒

k̇t = lim
h→0

kt+h − kt
h

= (rt − δ)kt +wtnt − ct
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Concentrating on the Euler equation we have that for h = 1 and h→ 0

ρ =
∆λt+1
λt

+
λt+1
λt

(rt+1 − δ)

ρ =
λ̇t
λt
+ (rt − δ)

To understand the key difference between discrete and continuous time let’s consider the
timeline of events within a period [t, t + h]. Since all the variables apart from capital are
flows, the households work, receive income, save and consume continuously over the period,
at fixed rates. On the other hand, while capital is being produced and accumulates during
the current period, new additions to the capital stock only become operative (i.e. put into
production) in the next period. In particular, capital kt is being rented out once at the
beginning of the period; whatever is saved throughout the period remains inoperative in the
possession of consumers. At the end of the period, the rented (depreciated) capital returns
to the possession of the households and is added to the newly accumulated capital. This
new capital stock kt+h remains in the possession of the households until the beginning of
next period, when it is rented out again. For this reason, the households are interested in
the return they will get for their capital once all of it becomes operative. Therefore, when
optimizing in the current period, they choose how much to invest so that their subjective
discount rate ρ is balanced out by the growth rate of capital gains, plus the next period’s
rental rate (in terms of this period’s capital shadow price). This argument implies that in
the discrete time model, there is a inherent time-to-build delay of one period, since it takes
one period for capital to become operative and agents make their decisions based on this
fact. Turning to the limiting case of h → 0 (continuous time), capital is made operative at
the very instance that it is produced (i.e. there is no time-to-build delay), so that at each
instance, households decide how much of this capital to rent out according on the current
rental rate they get.

To summarize, the two modeling assumptions (discrete or continuous time) essentially
imply two different models with different dynamics and possibly different predictions. The
next section provides two more examples where indeed the two models provide different
conclusions regarding the local determinacy of the steady state.

6. More Examples: Local Indeterminacy
In this section, we present two examples of dynamic macroeconomic models, namely the
model of balanced-budget fiscal policy of Schmitt-Grohé and Uribe (1997) and the model
with increasing returns to scale as in Benhabib and Farmer (1994) and Farmer and Guo
(1994). Both these models are well known for exhibiting local indeterminacies. By studying
the dynamics of the continuous and discrete time versions we illustrate how there are certain
(empirically plausible) parameter regions for which the predictions of the two models are
contradicting.

6.1. A model with balanced-budget fiscal policy. We consider the model of Schmitt-
Grohe and Uribe (1997), where time is measured in increments of length h. This model is
an extension of the model of Hansen (1985) with a government which maintains a balanced
budget and finances its expenditures by taxing labour income.
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The economy is populated by a continuum of households, a firm and a government.
The representative household maximizes lifetime discounted utility, subject to its budget
constraint:

max
∞X
t=0

(
1

1 + ρh
)
t
h [log ct −Ant]h (22)

s.t. cth+ kt+h − kt = h(rt − δ)kt + h(1− τ t)wtnt

k0 given

The notation and description of the model is identical to our previous example, with the
added constraint for the government: in period t defined by the interval [t, (t + h)] the
government has a constant rate of flow of expenditures G (which is time invariant). The
cumulative flow of government expenditures hG is financed by taxing labor income, i.e.
hG = hτ twtnt, where τ t is the labor tax rate.

To write this example in the general form (5) - (6) we rewrite the households budget
constraint, using the first order conditions from the firm’s maximization, as

kt+1 − kt = ((rt − δ)kt + (1− τ t)wtnt − ct)h

So that the state variable is xt ≡ kt and the control variables are yt ≡ (ct, nt). Also,
zt ≡ (rt, wt, τ t). Furthermore,

Q(ct, nt, kt; rt, wt, τ t) ≡ (rt − δ)kt + (1− τ t)wtnt − ct

u(ct, nt) ≡ log ct −Ant

Therefore, the equilibrium conditions for the discrete time setting are

1

ct
= λt

A = λt(1− τ t)wt

∆λt+1 =
ρ− (rt+1 − δ)

1 + (rt+1 − δ)
λt

∆kt+1 = (rt − δ)kt + (1− τ t)wtnt − ct

rt = Fk(kt, nt)

wt = Fn(kt, nt)

G = τ twtnt

while in continuous time (as in Schmitt-Grohé and Uribe (1997)), the equilibrium conditions
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are

1

ct
= λt

A = λt(1− τ t)wt

λ̇t = (ρ− (rt − δ))λt

k̇t = (rt − δ)kt + (1− τ t)wtnt − ct

rt = Fk(kt, nt)

wt = Fn(kt, nt)

G = τ twtnt

Let lower case letters denote the steady state values of variables and denote with si =
δk/F (k, n), sc = c/F (k, n). Log-linearizing the two systems around the steady state and
eliminating all variables apart from the state variable and the Lagrange multiplier, we obtain
for the continuous time setting µ

k̇t
λ̇t

¶
= C

µ
kt
λt

¶
(23)

where

C ≡
µ

c11 c12
c21 c22

¶
=

Ã
(ρ+ δ) 1−τsk−τ − δ δ

si

h
sn(1−τ)
sk−τ + sc

i
−(ρ+ δ) snτ

sk−τ −(ρ+ δ) sn(1−τ)sk−τ

!
(24)

and for the discrete time setting µ
∆kt+1
∆λt+1

¶
= B

µ
kt
λt

¶
(25)

where6

B ≡
µ

b11 b12
b21 b22

¶
=

µ
c11 c12

c21+c21c11
1+ρ−c22

c22+c21c12
1+ρ−c22

¶
(26)

It is apparent from the previous expression that B 6= C, i.e. the discrete time system
(25) is not the direct analogue of the continuous time system (23). In other words the
stability dynamics of the two models will be different. The conditions for indeterminacy of
the continuous time system are that ReλCi < 0, while the conditions for indeterminacy of
the discrete time system are that −2 < λBi < 0.

Fixing all the parameters of the model apart from the steady state level of labor tax rate
τ , as in Schmitt-Grohé and Uribe (1997), i.e. setting sk = 0.3, δ = 0.1, ρ = 0.04, we find
(numerically) that the discrete time model is indeterminate for the range τ ∈ (0.38, 0.75),
while the continuous time model is indeterminate for τ ∈ (0.3, 0.75). In other words, there
is no common prediction of the two models for the range (0.3, 0.38).

6For the derivation see appendix B.
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6.2. A model with increasing returns. In this section, we describe the economy of
Benhabib and Farmer (1994) and Farmer and Guo (1994). It is very similar in structure
to the standard real business cycle model. The difference lies in the aggregate production
function that exhibits increasing returns to scale

F (kt, nt) = kαt n
β
t

where α+ β > 1. This can be interpreted as a setup where competitive firms face constant
returns technologies but the economy wide technology has increasing returns due to produc-
tion externalities. A second interpretation assumes monopolistic competition with increasing
returns to scale technologies in the intermediate goods sector. But these goods are combined
to produce a final good in a perfectly competitive sector7. When calibrating the model’s
parameters, we follow Farmer and Guo (1994) in adopting the second interpretation.

The consumer problem and the resulting equilibrium conditions are invariant to the
choice of production structure. The representative consumer faces a standard maximization
problem as follows

max
∞X
t=0

(
1

1 + ρh
)
t
h

"
log ct −A

n1−γt

1− γ

#
h

s.t. cth+ kt+h − kt = h(rt − δ)kt + hwtnt + πth

k0 given

where the only differences compared to the previous example are that utility is now non-
linear in labour and that firm profits πt are also present in the consumer’s budget constraint.
The correspondence to the general form (5) - (6) is straightforward. The state variable is
xt ≡ kt, the control variables are yt ≡ (ct, nt) and zt ≡ (rt, wt, πt) are additional endogenously
determined variables. The rate of change in the state variable Q is given by

Q(ct, nt, kt;πt, rt, wt) ≡ (rt − δ)kt + wtnt − ct

and the utility function

u(ct, nt) ≡ log ct −A
n1−γt

1− γ

depends only on the control variables. Equilibrium conditions in discrete time are given by

1

ct
= λt

An−γt = λtwt

∆λt+1 =
ρ− (rt+1 − δ)

1 + (rt+1 − δ)
λt

∆kt+1 = (rt − δ)kt + wtnt + πt − ct

7For a detailed discussion of the model with increasing returns and the alternative production structures,
see Benhabib and Farmer (1994).
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and in continuous
1

ct
= λt

An−γt = λtwt

λ̇t = (ρ− (rt − δ))λt

k̇t = (rt − δ)kt + wtnt + πt − ct

Additional restrictions are provided by the firm’s maximization problem (these are the same
for the two cases) and specify that factors are paid their shares in national income

rt = sk
F (kt, nt)

kt

wt = sn
F (kt, nt)

nt

and profits are
πt = F (kt, nt)−wtnt − rtkt

Let si = δk/F (k, n) and sc = c/F (k, n). Log-linearizing the two systems around the
steady state and eliminating all variables apart from the state variable and the Lagrange
multiplier, we obtain for the continuous time settingµ

k̇t
λ̇t

¶
= C

µ
kt
λt

¶
where

C ≡
µ

c11 c12
c21 c22

¶
=

Ã
ρ+δ
sk
(α+ αβ

1−β−γ )− δ δ
si

h
β

1−β−γ + sc

i
−(ρ+ δ)(α− 1 + αβ

1−β−γ ) −(ρ+ δ) β
1−β−γ

!
and for the discrete time setting µ

∆kt+1
∆λt+1

¶
= B

µ
kt
λt

¶
where

B ≡
µ

b11 b12
b21 b22

¶
=

µ
c11 c12

c21+c21c11
1+ρ−c22

c22+c21c12
1+ρ−c22

¶
Note that this relationship between B and C, the matrices describing equilibrium dynamics
in discrete and in continuous time respectively, is common in both the examples considered.

We examine the presence of indeterminacies in the solution of the model under the two
timing conventions. We fix all parameters to the values used by Farmer and Guo (1994)
except for the parameter λ, which measures the degree of monopoly power in the markets
for intermediate goods. Thus we set δ = 0.025, ρ = 0.01, γ = 0. For factor shares we adopt
the Baxter and King (1994) choices of sk = 0.3 and sn = 0.63. Finally, we let λ vary in the
range (0, 1) and set α = sk

λ and β = sn
λ .

Steady states are found to be determinate under both timing conventions for λ < sk or
λ > sn. When sk < λ < sn, the continuous time steady state is always indeterminate whereas
the discrete time one can be either determinate or indeterminate. Obviously, whatever the
choice of λ, the solutions are different, as can be seen by inspection of the matrices C and
D.
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7. Closing Comments

In this paper, we have explored the differences arising from modeling time as discrete or
continuous in a wide class of dynamic macroeconomic models. We have shown that there
two ways in which the analysis under the two setups might differ. The first is due to the
differences arising from studying a set of variables described by a system of differential or
difference equations. The second is due to the fact that in continuous time, investment
decisions are made based on present rates of return and are allowed to adjust continuously,
while in discrete time, investment decisions are made based on future rates of return, so that
the households are committed to their decision until the next period when the new rate of
return is realized. The differences between the two setups have important implications for
the stability properties of steady states, as well as for the equilibrium paths leading to these
steady states.

In further work on this issue, we are exploring whether it is possible to have a general
framework which will nest a discrete and continuous time model that give the same qualitative
and quantitative economic predictions. A possible direction for this is to construct a discrete
time model with a generic period length h, which will also incorporate a time-to-build delay
parameter, so that when taking appropriate limits, we can obtain a continuous time model
which is equivalent to the discrete time model.
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Appendix

A. Derivations for the General Case

A.1. Expression (10).

λt =
1

1 + ρh
(1 + hQxi(yt+h, xt+h))λt+h =⇒

λt+h =
1 + ρh

1 + hQxi(yt+h, xt+h)
λt =⇒

λt+h − λt =
1 + ρh

1 + hQxi(yt+h, xt+h)
λt − λt =⇒

=
(1 + ρh)λt − λt (1 + hQxi(yt+h, xt+h))

1 + hQxi(yt+h, xt+h)

=
λt − λt − hλtQxi(yt+h, xt+h) + hρλt

1 + hQxi(yt+h, xt+h)

= h
−λtQxi(yt+h, xt+h) + ρλt
1 + hQxi(yt+h, xt+h)

=⇒
λt+h − λt

h
=
−λtQxi(yt+h, xt+h) + ρλt
1 + hQxi(yt+h, xt+h)

=⇒
λt+h − λt

h
=

(ρ−Qxi(yt+h, xt+h))

1 + hQxi(yt+h, xt+h)
λt

B. Derivations for Examples

B.1. Example 2. The first reduced equation of the log-linearized equation for the dis-
crete time setting is

∆kt+1 = c11kt + c12λt

The second reduced log-linearized equation for the discrete time setting is

λt+1 − λt =
c21
1 + ρ

kt+1 +
c22
1 + ρ

λt+1

which simplifies to

− c21
1 + ρ

∆kt+1 + (1− c22
1 + ρ

)∆λt+1

= − c21
1 + ρ

kt − c22
1 + ρ

λt
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Thus. µ − c21
1+ρ (1− c22

1+ρ)

1 0

¶µ
∆kt+1
∆λt+1

¶
=

µ − c21
1+ρ − c22

1+ρ

c11 c12

¶µ
kt
λt

¶
=⇒µ

∆kt+1
∆λt+1

¶
=

µ − c21
1+ρ (1− c22

1+ρ)

1 0

¶−1µ c21
1+ρ

c22
1+ρ

c11 c12

¶µ
kt
λt

¶
=

1

(1− c22
1+ρ)

Ã
0 (1− c22

1+ρ)

1 c21
1+ρ

!µ c21
1+ρ

c22
1+ρ

c11 c12

¶µ
kt
λt

¶

=

Ã
c11 c12

c21(1+c11)
1+ρ−c22

c21c12+c22
1+ρ−c22

!µ
kt
λt

¶
≡

µ
b11 b12
b21 b22

¶µ
kt
λt

¶
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