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Abstract

In this paper we develop a two-factor continuous time model of stock

prices in order to study stock returns predictability and reappraise the volu-

minous empirical literature. Using an exact discretization method, we show

that focussing on the e¤ects of the “intrinsic” continuous time parameters,

in particular, the mean reversion parameter, produces pervasive support for

mean reversion in the G-7 countries even at low frequencies and relatively

short samples.
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1. Introduction

Mean reversion in stock prices still remains a rather controversial issue. Whereas

theoretical justi…cations for the departure from the random walk model of equity

prices have proliferated1, the empirical evidence remains mixed and confusing.

Fama and French (1988) and Poterba and Summers (1988) are the …rst to doc-

ument the existence of negative correlation2 between US equity portfolio returns

over “medium” to “long” investment horizons, while Lehmann (1990) …nds evi-

dence in favor of return reversals in “winner” and “loser” portfolios even at the

weekly frequency. On the contrary, Lo and MacKinlay (1988) report weak pos-

itive correlation between US portfolio returns over “short” investment horizons.

Kim, Nelson, and Startz (1991) argue that the mean reversion results of Fama

and French and Poterba and Summers are only detectable in prewar US data. In

1See, for example, the “fad variables” model of Shiller (1981, 1984) and Summers (1986), the
“bandwagon e¤ect” explanation of Poterba and Summers (1988), the “over-reaction” hypothesis
of De Bondt and Thaler (1985, 1987), the “time-varying risk premium” explanation of Conrad
and Kaul (1989), Conrad, Kaul and Nimalendran (1991), Fama and French (1988), and Keim
and Stambaugh (1986), the information related (Hasbrouck (1991)) or strategic trading (Admati
and P‡eiderer (1989)) market microstructure models, the “ institutional structures ” framework
of Bessembinder and Hertzel (1993), and the “over-reaction and/or partial adjustment to new
information” models of Brock, Lakonishok and LeBaron (1992), Jegadeesh (1990), Lehmann
(1990), and Lo and MacKinlay (1990).

2Mean reversion implies that shocks to prices are temporary, i.e., returns are negatively
autocorrelated at certain horizons.
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turn, Richardson and Stock (1989) and Richardson (1993) report that correcting

for small-sample bias problems could reverse the Fama and French and Poterba

and Summers results.

Another strand of the literature deals with relative mean reversion in stock

index data. Kasa (1992), in a multi-country study, reports that national stock

indices are cointegrated and share one common stochastic trend which implies

that the value of a properly weighted portfolio of shares in the markets of at

least two countries that he examines is stationary, and thus will display mean

reversion. Richards (1995) criticizes Kasa’s results on the grounds that the use of

asymptotic critical values in the cointegration tests is not appropriate. However,

he detects a stationary component in relative prices of 16 OECD countries which

implies relative mean reversion and reports that country speci…c returns relative

to a world index are predictable. Finally, Balvers, Wu, and Gilliland (2000) report

strong evidence of mean reversion over “long” investment horizons in relative stock

index prices of 18 countries. Campbell, Lo, and MacKinlay (1997) summarize the

debate concisely: “...we simply cannot tell ” (p. 80).

The main objective of this paper is to attempt to “tell” more con…dently

about the existence of mean reversion in stock prices: Whilst maintaining the

spirit and modeling assumptions of previous methodologies (in particular, Fama
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and French’s (1988) approach), we aim to show that if the “intrinsic” behavior of

stock prices is examined, which clearly was missing from earlier studies, then a

reconciliation of the mixed empirical evidence is possible. Our motivation stems

from a number of important points that emerge from the relevant literature: First,

in contrast with the interest rate literature, mean reversion in stock prices arises as

a result of the speci…cation of di¤erent investment horizons, rather as an intrinsic

property of the underlying stochastic model of equity prices. In their vast major-

ity, the methodologies employed to examine mean reversion involve the use of a

particular function of the sample autocorrelations between returns over di¤erent

investment horizons. However, the theoretical justi…cation of serial correlation in

stock returns rests upon a number of theories (see footnote 1) which try to explain

the various patterns in returns autocorrelations not in terms of the holding period,

but as a result of the interaction between underlying economic factors. Moreover,

the existing methodologies imply that the statistical properties of the underlying

time series are a function of the investment horizon, which makes the detection

of mean reversion a rather arbitrary issue. Second, a consequence of testing for

mean reversion by returns autocorrelation tests is that long time series need to

be employed. As Balvers, Wu, and Gilliland (2000) put it, “a serious obstacle

in detecting mean reversion is the absence of reliable long time series, especially
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because mean reversion, if it exists, is thought to be slow and can only be picked

up over long horizons.” (p. 746).

In order to overcome these shortcomings we develop a two-factor continuous

time model of stock prices that allows mean reversion and uncertainty in the

equilibrium level to which prices revert. On theoretical grounds, this model is

consistent with many of the proposed explanations of mean reversion in stock

prices, such as “ the over-reaction” hypothesis, the “bandwagon e¤ect”, the “time-

varying risk premium”, etc. (see Footnote 1). On empirical grounds, the choice

of a continuous time framework attempts to rescue the confusion in the literature

arising from the speci…cation of the “holding time period” in stocks, a notion

which becomes at least theoretically irrelevant in a continuous time setting. In

other words, we are able to detect mean reversion as an “intrinsic” property

of the underlying model for equity prices, that is, without explicit reference to

the investment horizon over which price changes are measured. This obviates

the need for employing long time series; in fact an advantage of our approach

is that the recovery of the continuous-time parameters from discrete data sets

can be achieved even from relatively small samples. Our continuous time model

is tested in the G-7 national stock markets, US, UK, Japan, France, Canada,

Germany, Italy, and is empirically supported. Finally, nesting mean reversion
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explicitly within the underlying stochastic process and thereby estimating the

continuous time parameters directly from observables could be used for the more

accurate valuation of equity derivatives in the spirit of Lo and Wang (1995), and

the development of new trading strategies (for capitalizing on mean reversion)

- possibly “contrarian”-, in the spirit of DeBondt and Thaler (1985), Richards

(1995, 1997), and Balvers, Wu, and Gilliland (2000).

The maintained hypothesis in our paper is that the state variable, i.e., the (log)

stock price is a di¤erence stationary process in the spirit of Nelson and Plosser

(1982). This approach was used by Fama and French (1988) and Poterba and

Summers (1988) in their pioneering discrete-time models. Our continuous time

framework assumes that (log) stock prices are generated by the mix of a nonsta-

tionary component modeled as an Arithmetic Brownian motion, and a stationary

component modeled as an Ornstein-Uhlenbeck stochastic process. We recover the

continuous time parameters, assess their statistical signi…cance, and demonstrate

that the mean reversion of the stationary component causes predictability even

in daily stock returns which is opposed to the e¤ect of the nonstationary price

component which produces white noise in the continuously compounded returns.

The remainder of this paper is organized as follows. In section 2 we present our

two-factor continuous time stock price model, and develop reduced form expres-
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sions of the slope coe¢cients that embody the continuous time parameters without

relying on crude approximations of the continuous time stochastic processes, thus

avoiding temporal aggregation biases. In section 3 we show how the model can be

tested and we propose a simple way to identify the continuous time parameters.

Section 4 presents the data and our empirical results. Finally, Section 5 concludes

the paper.

2. The Continuous Time Stock Price Model

2.1. The Model

Let p (t) be the natural log of a stock price at time t. Following Fama and Frenh

(1988), among others, we model p (t) as the sum of a nonstationary component,

q (t), and a stationary component, z (t), i.e.

p (t) = q (t) + z (t) , (1)

We assume that the permanent component follows an Arithmetic Brownian
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Motion (ABM) process:

dq (t) = αdt + σdW1 (t) , (2)

where α and σ are constants, and dW1 (t) is a standard Wiener process with mean

zero and unit variance.

The temporary component is assumed to follow an Ornstein-Uhlenbeck sto-

chastic process:

dz (t) = β (γ ¡ z (t)) dt + ρdW2 (t) , (3)

where β is the speed-of-adjustment coe¢cient, γ is the long run mean of the

process, ρ is the di¤usion coe¢cient which allows the process to ‡uctuate around

its long-run mean in a continuous but erratic way, and dW2 (t) is a standard

Wiener process independent of dW1 (t).

The di¤usion process in expression (3) is also known as a mean reverting elastic

random walk; it is both Gaussian and Markovian but unlike the Wiener process,

it does not have independent increments. Furthermore, when t ! 1 we get an

equilibrium stationary distribution. Negative correlation between returns can be

explained intuitively as follows: for β > 0, and z (t) > γ, we would expect the

change in the temporary component of the (log) stock price to be negative. This is
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clearly because(γ ¡ z (t)) < 0 and hence the expected change, E (dz (t)), must be

negative. Similarly, if (γ ¡ z (t)) > 0, then we would expect that E (dz (t)) must

be positive. Thus, the process always reverts to the mean γ with speed β. Finally,

since dW1 (t) and dW2 (t) are independent Wiener processes, we assume (as in

Fama and French (1988)) no correlation between the permanent and stationary

components of the (log) stock price.

The general hypothesis in our continuous time stock price model in eq. (1)-(3)

is that stock prices are nonstationary processes in which the permanent gain from

each period’s price shock is less than 1.0; the temporary shock will be gradually

eliminated. However, a signi…cant temporary part of the shock implies predictabil-

ity of stock returns3.

The solution to eq. (2) for s > t is given by:

q (s) = q (t) + α (s ¡ t) + σ
Z s

t
dW1 (τ ) , s ¸ t. (4)

The scalar stochastic di¤erential equation in (3) is narrow-sense linear and au-

3 Schwartz and Smith (1997), independently to our work, develop a “Short-Term / Long-
Term Model” for commodity prices which appears similar to ours. Our model, however dates
earlier, see Hatgioannides (1995).
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tonomous; it’s solution is given (see Arnold (1973)) by:

z (s) = γ + e¡β(s¡t) (z (t) ¡ γ) + ρe¡β(s¡t)
Z s

t
eβ(τ¡t)dW2 (τ ) , s ¸ t. (5)

Taking ¢ as an arbitrary time step, expressions (4) and (5) can be written in the

following equivalent form:

q(t +¢) = q (t) + α¢+ σ
Z t+¢

t
dW1 (τ) , (6)

and

z (t +¢) = γ + e¡β¢ (z (t) ¡ γ) + ρe¡β¢
Z t+¢

t
eβ(τ¡t)dW2 (τ ) . (7)

If we interpret ¢ as the time discretization interval, expression (7) implies an

exact discrete time autoregressive process of order one (AR(1)):

z (t +¢) = θ + ϕz (t) + εt+¢, (8)

where

θ = γ
¡
1 ¡ e¡β¢¢

, (9)
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ϕ = e¡β¢, (10)

εt+¢ = ρe¡β¢
Z t+¢

t
eβ(τ¡t)dW2 (τ) . (11)

As in Fama and French (1988), the temporary component in expression (8) has

an autoregressive structure. The parameter ϕ captures mean reversion in the

temporary component and causes predictability in the form of negative correlation

of returns. It is important to note that ϕ is not a constant but instead varies with

any discrete investment horizon and depends explicitly on the intrinsic mean-

reverting parameter β.

Since ρ and β are constants and dW2 (τ ) is a standard Wiener process, it

follows directly from eq. (11) that εt+¢ is normally distributed, with mean

E (εt+¢) = 0,

and variance

V ar (εt+¢) =
ρ2

2β
¡
1 ¡ e¡2β¢¢

. (12)

It is important to observe that the variance of εt+¢ in eq. (12) is equal to the

conditional variance (as of a generic time t) of the temporary component of the
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(log) stock price process, z (t +¢), given by expression (7):

V art (z (t +¢)) =
ρ2

2β
¡
1 ¡ e¡2β¢

¢
. (13)

The conditional mean of z (t +¢) in eq. (7) is given by:

Et (z (t +¢)) = γ + e¡β¢ (z (t) ¡ γ) (14)

The unconditional mean of z (t +¢) in eq. (7) is given by:

E (z (t +¢)) = γ
¡
1 ¡ e¡β¢¢

+ e¡β¢E (z (t)) ,

which implies, given the stationarity of the z process, i.e. E (z (t +¢)) = E (z (t)) =

E (z), that:

E (z) = γ. (15)

Finally, the unconditional variance of z(t +¢) in eq. (7) is given by:

V ar (z (t +¢)) = e¡2β¢V ar (z (t)) + ρ2e¡2β¢
Z t+¢

t
e2β(τ¡t)dτ,
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which implies, forV ar (z (t +¢)) = V ar (z (t)) = V ar (z), that:

V ar (z) =
ρ2

2β
(16)

Expressions (6)-(16) provide a complete statistical description over any dis-

cretization interval ¢ of the continuous time stock price model in (1)-(3). Next,

we present some of the key results in our paper by demonstrating how the unob-

served continuous time parameters are embodied in the observed regression coe¢-

cients.

2.2. Investment Horizon and Autocorrelation Coe¢cients

In Fama and French’s (1988) study, a U-shaped pattern in autocorrelation coe¢-

cients over di¤erent investment horizons is expected theoretically when a tempo-

rary component exists. We show below that this is also a feature of our continuous

time model in which, indeed the autocorrelation coe¢cient varies with the invest-

ment horizon - as in Fama and French -, but most importantly depends on the

intrinsic continuous time parameters which we aim to recover.

The continuously compounded rate of return over a single holding period

¢, say from time t to (t +¢) , is r (t, t +¢) = p (t +¢) ¡ p (t), which can be
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written in view of eq. (1) as:

r (t, t +¢) = [q (t +¢) ¡ q (t)] + [z (t +¢) ¡ z (t)] . (17)

The correlation coe¢cient between r (t, t +¢) and r (t ¡ ¢, t) is de…ned as:

λ̂¢ =
Cov (r (t, t +¢) , r (t ¡ ¢, t))

V ar (r (t ¡ ¢, t))
. (18)

We show in Appendix 1 how the above covariance and variance terms can be

expressed in terms of the unobserved continuous time parameters of the model (1)

- (3) to obtain, after simple rearrangements, the following reduced-form expression

for the estimated slope coe¢cient λ̂¢ :

λ̂¢ =
¡

¡
e¡β¢ ¡ 1

¢2 ρ2
2β

¡ρ2
β (e¡β¢ ¡ 1) + σ2¢

. (19)

Similarly, the autocorrelation coe¤cient over n discrete periods is given by

λ̂n¢ =
¡

¡
e¡βn¢ ¡ 1

¢2 ρ2
2β

¡ρ2
β (e¡βn¢ ¡ 1) + σ2n¢

, (20)
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Thus the correlation between returns de…ned over di¤erent investment horizons

depends upon:

(a) the length of the investment horizon (n), and

(b) the properties of the stochastic process underlying stock returns, as expressed

in this case by the sign and magnitude of the parameters β, ρ, and σ.

In particular, the correlation coe¢cient λ̂¢ for given values of the parameters

of the underlying stochastic process tends to zero for very small or very large

investment horizons.

lim

n ! 1

λ̂n¢ = 0 (21)

and

lim

n ! 0

λ̂n¢ = 0 (22)

This implies that the maximum (negative) value of the autocorrelation coe¢cient

is attained at some point between the interval 0 < n < 1.4 The value of the

correlation coe¢cient for di¤erent values of β and over di¤erent investment hori-

zons is evaluated using expression (20) and is shown in Figure 1.5 To uncover the

4Partial di¤erentiation of λ̂¢ with respect to n yields the value of n at which λ̂¢ is minimized.
In turn, linearizing around n = 1 yields an expression for n in terms of β and ¢ only.

5Results for individual countries are available upon request
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importance of the mean reverting parameter in establishing the autocorrelation

patterns of equity returns we …x the volatility parameters σ and ρ at the values of

0.15 and 0.13 respectively, which is approximately the average annualized value

of each volatility coe¢cient across the stock markets and for the sample period

covered in this study (see Tables 3a and 3b).6

[Insert Figure 1]

Figure 1 shows that the autocorrelation coe¢cient between returns exhibits the

U-shaped pattern of Fama and French across investment horizons. The bigger

the mean-reverting parameter β, the bigger the autocorrelation coe¢cient is. Fur-

thermore, for di¤erent (theoretical) values of the mean reverting parameter β, the

(theoretical ) half-life of mean reversion ranges from one to three years. Note that

when β = 0, λ̂n¢ is also equal to zero, which implies that if there is no “intrin-

sic” mean reversion in the stock price process, then the returns autocorrelation

coe¢cient is zero irrespective of the investment horizon and the values of σ and

ρ. Wewill evaluatenext whether such apattern in stock returns can be found empir-

ically using the continuous time parameter estimates of the stock price model in

(1) - (3) in the context of the G-7 national stock markets.

6The relative variability of the random walk and mean reverting components (σ
ρ ) only a¤ects

the curvature of the U-shaped function.
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3. Empirical Methodology

The core of our empirical methodology lies in the recovery of the “intrinsic”

continuous-time parameters of our stock price model. It is well known that the

form of a continuous time model does not depend on the unit of time or the fre-

quency of observations. Therefore, the continuous time parameters will embody

the “intrinsic” properties of the returns generating mechanism.

We propose a simple way to identify7 the continuous time parameters of in-

terest from: (i) the estimated slope coe¢cients in regressions of r (t, t +¢) on

r (t ¡ ¢, t) ,¢ being the discretization interval equal to the observation period,

(ii) the autocovariances, and (iii) the unconditional means of the returns.

We use non-overlapping data throughout our estimation procedures. Richard-

son and Stock (1989) point out that assessing the signi…cance of variance ratios and

autocorrelation statistics using standard asymptotic theory may provide a poor

approximation to the sampling distribution, especially with overlapping data. In

particular, Valkanov (2003) shows that in long-horizon regressions with overlap-

ping data the stochastic order of the variables is altered, resulting in unorthodox

7 Schwartz and Smith (1997) use Kalman …ltering procedures to estimate the continuous
time parameters. Alternatively, a Generalized Method of Moments estimation technique can be
employed.
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limiting distributions of the slope estimator and its t-statistic.8 More intuitively,

Richardson (1993) argues that the Fama and French (1988) autocorrelation esti-

mates and corresponding serial correlation patterns should be expected even if the

true underlying model is a random walk. Estimation with overlapping data causes

multiperiod autocorrelation estimators to have many sample autocovariances in

common, picking up much of the same spurious autocorrelation at “close” hori-

zons. If two coe¢cient estimates are far apart in terms of periods they refer to,

then they have very little in common, and they are close to their unconditional

average of zero. This may be a valid explanation for the observed by Fama and

French (1988) U-shaped pattern in stock-return data, consistent with a random

walk model in equity prices. Our estimation procedure obviates the need for long

time series, thus allowing us to use non-overlapping data and clarify whether the

regularities of equity returns documented by previous empirical studies exist, or

are merely induced by overlapping data series.

The continuous time unknown parameters in equation (19) are: (i) the speed-

of-adjustment coe¢cient of the temporary component β, (ii) the instantaneous

variance of the temporary component ρ2, and (iii) the instantaneous variance of the

8In a rolling summation of series integrated of order zero (or (I(0)), the new long-horizon
variable behaves asymptotically as a series integrated of order one (or I(1)). Thus long-horizon
regressions will always produce signi…cant results.
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permanent component σ2. It is obvious that none of these parameters is identi…able

from eq. (19) alone. However, we can identify the speed-of-adjustment coe¢cient,

β, by focusing on the unconditional covariance of non-overlapping returns: The

numerator of (19) is the covariance between r (t, t +¢) and r (t ¡ ¢, t), the sum

of expressions (A4) and (A8) in Appendix 1:

Cov (r (t, t +¢) , r (t ¡ ¢, t)) = ¡
¡
e¡β¢ ¡ 1

¢2 ρ2

2β
. (23)

Similarly, choosing 2¢ to be the discretization interval:

Cov (r (t, t + 2¢) , r (t ¡ 2¢, t)) = ¡
¡
e¡2β¢ ¡ 1

¢2 ρ2

2β
. (24)

Generally, it is straightforward to prove that for arbitrary non-overlapping dis-

cretization intervals the covariances between returns are given by the following

formula:

Cov (r (t, t + n¢) , r (t ¡ n¢, t)) = ¡
¡
e¡βn¢ ¡ 1

¢2 ρ2

2β
, for n = 1, 2, ... (25)

Dividing equation (23) by equation (24) we can identify β9. Substituting the value

9Call Cov (r (t, t + ¢) , r (t ¡ ¢, t)) = X, and Cov (r (t + 2¢) , r (t ¡ 2¢, t)) = Y . It follows
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of β back in (23) we can identify ρ2. In turn, using the values of β, ρ2,and λ̂¢ we

can identify σ2 from equation (19). Finally, the unconditional mean of r (t, t +¢)

was found in section 2 to be equal to:

E (r (t, t +¢)) = γ + α (26)

Similarly,

E (r (t, t + 2¢)) = γ + 2α. (27)

It is clear from expressions (26) and (27) that we can identify uniquely - for given

¢ - the remaining continuous time parameters of interest γ (i.e. the long run

mean of the temporary component) and α (i.e. the instantaneous mean of the

permanent component). Table 1 collects the formulae used for identi…cation of

the continuous-time parameters.

from eq.(23) and eq.(24) that X
Y = (e¡β¡1)2

(e¡2β¡1)2 . In turn,
¡X

Y

¢ 1
2 = e¡β¡1

e¡2β¡1 . Call z = e¡β; then

z2 = e¡2β. Therefore,
¡X

Y

¢ 1
2 = z¡1

z2¡1 , which implies that z2
p

X ¡ z
p

Y +
³p

Y ¡
p

X
´

= 0,

which implies that z1,2 =
p

Y §
p

Y ¨2
p

X
2
p

X
. Then, z1 =

q
Y
X ¡1, and z2 = 1. Finally, since z = e¡β,

it follows that β = ¡ ln z1.
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4. Data and Empirical Results

4.1. Description of the Data

Daily data are obtained from Datastream for stock market indices of the G-7

countries, i.e. US, UK, Japan, France, Canada, Germany, Italy. The sample covers

the period from 01/01/1983 to 01/01/2001, for a total of 4695 observations. The

data used are value-weighted indices constructed by Datastream. Closing index

prices are used which initially do not include dividends. The daily dividend yield

corresponding to each stock index is also obtained and added to closing prices to

generate another set of index prices including dividends.10

We generate continuously compounded daily returns (close-to-close) for all

indices, and by summing the daily returns over 5 trading days we generate weekly

returns (in the case of the United States). Since the primary objective of this

paper is to nest mean reversion within the underlying continuous time stochastic

process for equity indices, we use primarily “short” holding period returns - up to

1 week -, although our estimation methodology can be easily extended to “longer”

10The Datastream indices represent to a large extent the stock markets in the di¤erent coun-
tries and provide consistency, transparency, and international comparability. They also tend to
be highly correlated with other well-known indices. For instance, the Datastream index for the
London Stock Exchange has a correlation coe¢cient with the FTSE ALL SHARE of 0.99 over
our sample period.

22



investment horizons.

Table 2 presents summary statistics for our data set. Following the critique

by Richardson and Stock (1989) and Richardson (1993) we use non-overlapping

returns (See the discussion in Section 3 of the paper). As can be seen from Table 2

all equity indices are negatively skewed and leptokurtic. Application of standard

unit root tests indicates that our equity index series can be treated as integrated

of order one, I(1), processes.

4.2. Empirical Results

Section 3 demonstrates that we can test for mean reversion by identifying the

continuous-time parameters of the stochastic stock price model (1)-(3) using equa-

tions (23)-(27). Using the Ordinary Least Squares (OLS) estimation procedure,

we …rst estimate slope coe¢cients in regressions of r (t, t +¢) on r (t ¡ ¢, t) for

discretization intervals ¢ = 1 day for all the countries in our sample except for

the US (where we use ¢ = 1 week). Throughout we use non-overlapping data

on continuously compounded returns to avoid inducing spurious correlation and

serious biases in our continuous-time coe¢cient estimates. It should be noted

that in contrast to Fama and French (1988) and the other empirical literature ,

we do not assess the overall performance of our mean reverting stock price model
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by evaluating the return correlation coe¢cient across di¤erent investment hori-

zons. Rather, the important point in our testing methodology is to extract the

continuous time parameters from the estimated discrete time equations, notably,

the speed-of-adjustment coe¢cient of the temporary component β which induces

“intrinsic” mean reversion in the stock price process. Initial estimation of the

autocorrelation coe¢cients for the discretization intervals mentioned above serves

merely the purpose of recovering the volatility parameter σ and the standard er-

rors of the continuous-time parameters.

The statistical signi…cance of the continuous time parameters was evaluated by

invoking large sample theory and using a simple application of the log-linearization

process known as the delta method. The unknown parameters were expressed

as functions of the estimated autoregressive coe¢cients λ̂¢ - in particular, the

autocovariances of returns which appear in the identifying formulas for β, ρ,and σ

were formulated as the product of the estimated autocorrelation coe¢cients and

return variances -, and the standard errors obtained as log-linear functions of the

standard errors of λ̂¢. Asymptotic normality is assumed throughout and standard

errors are corrected for the heteroskedasticity observed in returns using White’s

correction (1980).

Tables 3a and 3b show the estimated continuous time parameters for the seven

24



national stock market indices together with their standard errors. Table 3a ignores

dividends while Table 3b presents results inclusive of dividends sampled at daily

frequencies. It is well known that by ignoring dividends a spurious pattern of mean

reversion may be generated, especially at the higher frequencies. If dividends are

paid out but ignored in the data, we may expect a sudden negative return at

the time that dividends are paid. Over time this negative return will be reversed

as the payment date for the next dividend comes nearer and becomes incorpo-

rated in prices. The positive point estimate and the t-ratio for the all-important

speed-of-adjustment coe¢cient β, both with and without dividends, demonstrate

strong and statistically signi…cant evidence for mean reversion even at the daily

frequency for …ve countries (Canada, France, Germany, Italy, UK) and at the

weekly frequency for the US. We had to change the discretization period for the

US since convergence in our numerical and statistical estimation procedures could

not be achieved for daily data. In particular, values for the dividend inclusive β

are smaller in magnitude (except for the UK and France, where they are mar-

ginally higher) than corresponding estimates from Table 3a, as expected, but only

marginally so. In the case of Japan, a negative, but insigni…cant, β is obtained

both with and without dividends.11

11Given the historical performance of the Japanese equity markets during the sample, with
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Naturally, given the maintained hypothesis of mean reversion at all horizons

according to the model of equations (1)-(3), it is appropriate to infer correlations

at long horizons from correlations at short horizons, as in …gure 1. It is true,

however, that our …ndings may be attributed to spurious mean reversion caused

by the bid-ask bounce, especially when one uses - as we do - daily observations.

Our indices for the G7 economies are constructed from the last recorded trade of

each day and one cannot assess whether it is a bid or ask price. We acknowledge

that closing prices, as compared, for example, to midpoints of bid-ask prices may

cast doubt on the intrinsic nature of our mean reverting results. We have experi-

mented, though, with index data for the UK alone for which the bid-ask price was

available, and with several individual stock series for the G7 countries for which

again we had access to bid and ask daily closing prices, and still found evidence

of statistically signi…cant mean reversion.12 Furthermore, since the indices are

value-weighted, the e¤ect of infrequent or non-synchronous trading (e.g. Lo and

Mackinlay (1988), Lehmann (1990)) on our results, which is concentrated in small

the prolonged boom period in the 1980s, and the bust period of the 1990s, it does not come as a
surprise that we report a negative and insigni…cant value for the mean reverting coe¢cient. Also
Table 4 shows that e¤ectively no temporary component exists in Japanese stock prices (around
1% of the variation in returns is accounted for by the stationary component).

12Results for bid-to-bid, ask-to-ask, and the midpoint of bid-ask closing returns are available
upon request. We have also investigated the e¤ect on our results of “dead stocks” in an index, by
using value-weighted recalculated index data which only account for the historical performance
of the index constituents at 01/01/2001 over the sample period. Results are quite similar to
Tables 3a and 3b and are not reported to conserve space.
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stocks, is mitigated. What’s more to the purpose, such e¤ects have been shown to

induce positive serial correlation in stock portfolios (e.g. Lo and Mackinlay (1988),

Bessembinder and Hertzel (1993)), and if anything, should bias our results against

mean reversion.

The results suggest a half-life of mean reversion for all markets involved of

between one-half and two years (the minimum of the U-shaped curve, see …gure

1). Note that markets seem to react faster to temporary shocks than other studies

have suggested. For example, Balvers et al (2000) in their multi-country study

report a speed of mean-reversion with a half-life of three to three and one-half

years. However, we use more recent data at higher frequencies than previous

studies to …nd that the speed of mean reversion towards the speci…ed stochastic

trend path of stock prices has risen, which implies lower degree of persistence

in the temporary component of stock prices. It seems that stock markets are

becoming more e¢cient over time, reaping the bene…ts of globalization.

4.3. Dynamic Simulations

Dynamic simulations for equity returns are carried out in order to evaluate our

theoretical mean-reverting model using the estimated continuous time parameters

for all countries. To start the simulations, we need an initial value for the tempo-
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rary component, z (t). Following Poterba and Summers (1988), this is estimated

as the share of return variation over the sample period due to the transitory

component (see Table 4) multiplied by the initial sample price. One thousand

replications of equations (2) and (3) are carried out and the Mean-Squared-Error

(MSE) was calculated by comparing the average return path from the simulations

to the actual returns of the seven stock market indices. For all markets, the low

MSE values indicate that the proposed theoretical model is consistent with the

empirical behavior of stock returns.

5. Conclusion

In this paper we develop a continuous time stock price model with the intension

to study stock returns predictability and reappraise the voluminous empirical

literature. Mean reversion in stock returns is better examined within a continuous

time framework since most of the con‡icting results in the literature arise from

the speci…cation of the “holding time period” in stocks, a notion which becomes

at least theoretically irrelevant in a continuous time setting. Our theoretical

framework nests with the modeling philosophies of earlier studies and assumes that

stock returns are generated by the joint e¤ect of a stationary component, modelled
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as an Ornstein-Uhlenbeck process, and a nonstationary component, modelled by

an Arithmetic Brownian motion process. The general hypothesis in our model

is that stock prices are nonstationary processes in which the permanent gain

from each period’s shock is less than 1.0; the temporary shock will be gradually

eliminated.

Using conventional return autocorrelation tests, we develop reduced form ex-

pressions of the slope coe¢cient that embodies the continuous time parame-

ters without relying on crude approximations of the continuous time stochastic

processes that typically lead to temporal aggregation biases. In turn, we develop

a methodology for the identi…cation of the continuous-time parameters of interest

from unconditional covariances over non-overlapping intervals, slope coe¢cients,

and unconditional means of stock returns. Finally, we use the identi…ed para-

meters to examine how they cause the autocorrelation coe¢cient between stock

returns to vary with the investment horizon. Not surprisingly, we are able to con-

…rm that the famous U-shaped pattern in returns autocorrelations is an empirical

phenomenon.

For the …rst time in the literature we report statistically signi…cant evidence

of mean reversion in daily data for Canada, France, Germany, Italy, and the UK,

and in weekly data for the US. Dynamic simulation experiments suggest that our
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theoretical model is consistent with the empirical behavior of stock returns.

An obvious extension of our work is to utilize Lo and Wang’s (1995) frame-

work for pricing index options in a mean reverting framework. This is easily

accomplished since we estimate the continuous time volatility parameters.

Up to now, the common wisdom in the literature was that mean reversion, if

it exists, is thought to be slow and can only be picked up over long horizons. We

believe that our paper contributes to the …nance literature through our …ndings

in the context of seven national stock markets. To paraphrase Campbell, Lo,

andMacKinlay(1997), we “can tell” that mean reversion exists in stock prices.
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APPENDIX 1

Substituting expression (17) into (18) in the main text we obtain the one-period

autocorrelation coe¢cient.

λ̂¢ =
Cov [q (t +¢) ¡ q(t)) + (z (t +¢) ¡ z (t)) , (q (t) ¡ q (t ¡ ¢)) + (z (t) ¡ z (t ¡ ¢))]

V ar[(q(t) ¡ q(t ¡ ¢)) + (z(t) ¡ z(t ¡ ¢))]

=
Cov [q (t +¢) ¡ q (t) , q (t) ¡ q (t ¡ ¢)] + Cov [z (t +¢) ¡ z (t) , z (t) ¡ z (t ¡ ¢)]

V ar (q (t) ¡ q (t ¡ ¢)) + V ar (z (t) ¡ z (t ¡ ¢))
,

(A1)

where the last equality follows from the assumption that the q and z processes are

uncorrelated.

We …rst evaluate the covariance and variance terms of the temporary component

in expression (A1). Expression (7), using the de…nitions in (9) and (11), implies

that:

z (t +¢) ¡ z (t) = θ + z (t)
¡
e¡β¢ ¡ 1

¢
+ εt+¢.

Therefore, the second covariance term in the numerator of expression (20) becomes

after substitutions:
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Cov (z (t +¢) ¡ z (t) , z (t) ¡ z (t ¡ ¢)) =

= Cov(θ + z (t)
¡
e¡β¢ ¡ 1

¢
+ εt+¢, z (t) ¡ z(t ¡ ¢))

=
¡
e¡β¢ ¡ 1

¢
V ar (z (t)) ¡

¡
e¡β¢ ¡ 1

¢
Cov (z (t) , z (t ¡ ¢)) . (A2)

We evaluate next the Cov (z (t) , z (t ¡ ¢)) term in the last equality of expres-

sion (A2): First, due to the (weak) stationarity of the z (t) process, it follows

that Cov (z (t) , z (t ¡ ¢)) = Cov (z (t) , z (t +¢)), which in turn is equal to:

Cov (z (t) , z (t +¢)) = E (z (t) z (t +¢)) ¡ E (z (t))E (z (t +¢)). Second, sub-

stituting in the last equation the solution for z (t +¢) in eq.(7) after multiplying

it by z (t), using the de…nition for εt+¢ in eq. (11), and observing that the uncon-

ditional mean E (z (t)) = E (z (t +¢)) = γ from eq.(15), we obtain:

Cov (z (t) , z (t +¢)) =

= E
£
γ

¡
1 ¡ e¡β¢¢

z (t) + e¡β¢ (z (t))2 + z (t) εt+¢
¤
¡ γ2

= γ2 ¡
1 ¡ e¡β¢¢

+ e¡β¢
µ

ρ2

2β
+ γ2

¶
¡ γ2

= eβ¢ ρ2

2β
, (A3)

where in the second equality above we used the simple result: E
¡
z (t)2

¢
=

V ar (z (t)) + [E (z (t))]2, and we substituted for the unconditional variance of
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z (t) given by expression (16). Wealso used the fact that E (εt+¢) = 0.

Substituting expressions (16) and (A3) for V ar (z (t)) and Cov (z (t) , z (t ¡ ¢))

respectively, in the last equality of eq. (A2) we obtain:

Cov (z (t +¢) ¡ z (t) , z(t) ¡ z (t ¡ ¢)) =

= (e¡β¢ ¡ 1)
ρ2

2β
¡

¡
e¡β¢ ¡ 1

¢
e¡β¢ ρ2

2β

= ¡
¡
e¡β¢ ¡ 1

¢2 ρ2

2β
, (A4)

which is the second covariance term of the numerator in expression (A1).

The second variance term in the denominator of expression (A1) is evaluated

as follows: First, due to the stationarity of the z (t) process, it follows that:

V ar (z (t) ¡ z (t ¡ ¢)) = V ar (z (t +¢) ¡ z(t)), which after substitution from ex-

pression (7) and using the de…nition of εt+¢ in (11) becomes

V ar (z (t +¢) ¡ z (t)) =
¡
e¡β¢ ¡ 1

¢2 V ar (z (t)) + V ar (εt+¢) .

Second, substituting in the equation above the expressions for V ar (z (t)) and
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V ar (εt+¢) given by eq. (16) and (12) respectively, we obtain:

V ar (z (t +¢) ¡ z (t)) =
¡
e¡β¢ ¡ 1

¢2 ρ2

2β
+

ρ2

2β
¡
1 ¡ e¡β¢¢

= ¡ρ2

β
¡
e¡β¢ ¡ 1

¢
. (A5)

Now we concentrate on the evaluation of the terms

Cov (q (t +¢) ¡ q (t) , q (t) ¡ q (t ¡ ¢)) and V ar(q (t) ¡ q (t ¡ ¢)) which are re-

lated to the random walk (permanent) component of the returns process. Using

expression (6) we obtain:

q (t +¢) ¡ q (t) = α¢+ σ
Z t+¢

t
dW1 (τ ) (A6)

and

q (t) ¡ q (t ¡¢) = α¢+ σ
Z t

t¡¢
dW1 (τ ) . (A7)

Substituting expressions (A6) and (A7) in Cov (q (t +¢) ¡ q (t) , q (t) ¡ q (t ¡ ¢))
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it follows that:

Cov (q(t +¢) ¡ q (t) , q (t) ¡ q (t ¡ ¢))

= Cov
µ

α¢+ σ
Z t+¢

t
dW1 (τ ) , α¢+ σ

Z t

t¡¢
dW1 (τ )

¶

= Cov
µ

σ
Z t+¢

t
dW1 (τ ) , σ

Z t

t¡¢
dW1 (τ )

¶
= 0, (A8)

since non-overlapping increments of standard Brownian motion are independent.

Next, using expression (A7) we have

V ar (q (t) ¡ q (t ¡ ¢)) = V ar
µ

α¢+ σ
Z t

t¡¢
dW1 (τ )

¶
= σ2¢ (A9)

Substituting expressions (A4), (A5), (A8), and (A9) in eq. (A1), we obtain after

simple rearrangements:

λ̂¢ =
¡

¡
e¡β¢ ¡ 1

¢2 ρ2
2β

¡ρ2
β (e¡β¢ ¡ 1) + σ2¢
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Figure 1: This …gure depicts the e¤ect of the mean reverting parameter on the

autocorrelation coe¢cient as the latter varies with the investment horizon
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Table 1: Formulae for the Recovery of the Continuous Time Parameters

The continuous time parameters of the model (1)-(3) are reported below together

with their descriptions and the formulae used for their identi…cation and recovery.

Parameter Description Identifying Formula

β
adjustment speed of

temporary component
¡ ln

½£Cov(r (t, t+2¢), r(t¡2¢,t))
Cov(r(t, t+¢), r(t¡¢,t))

¤ 1
2 ¡ 1

¾

ρ
instantaneous stdev of

temporary component

½h
2βCov(r (t, t+¢), r(t¡¢,t))

(e¡β¢¡ 1)2

i1
2
¾

σ
instantaneous stdev of

permanent component

n
Cov(r (t, t+¢), r(t¡¢,t))

λ̂¢
+ ρ2

β (e
¡β¢ ¡ 1)

o 1
2

α
instantaneous mean of

permanent component
E (r (t, t + 2¢)) ¡ E (r (t, t +¢))

γ
long-run mean of

temporary component
E (r (t, t +¢)) ¡ α
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TABLE 2: Summary Statistics

Summary statistics are reported for non-overlapping continuously compunded re-

turns for all equity indices included in our sample. Daily data are used for all

countries from 01/01/1983 to 01/01/2001 except for the US where weekly returns

are employed.

Mean Min Max Stdev. Skew. Kurt. DF

CANADA 0.0004 ¡0.1165 0.0876 0.0079 ¡1.1824 22.274 ¡45.68¤

FRANCE 0.0007 ¡0.0986 0.0806 0.0111 ¡0.5431 6.1185 ¡61.62¤

GERMANY 0.0005 ¡0.1264 0.0670 0.0118 ¡0.6840 7.9162 ¡65.00¤

ITALY 0.0005 ¡0.0843 0.0840 0.0127 ¡0.2054 3.8559 ¡60.44¤

JAPAN 0.0001 ¡0.1614 0.1243 0.0128 ¡0.1933 10.862 ¡60.51¤

SINGAP. 0.0002 ¡0.2640 0.1399 0.0125 ¡2.4456 58.685 ¡56.63¤

SPAIN 0.0006 ¡0.0973 0.0694 0.0111 ¡0.4304 6.4243 ¡55.96¤

SWITZ. 0.0005 ¡0.1231 0.0662 0.0091 ¡1.6377 21.221 ¡62.36¤

UK 0.0005 ¡0.1301 0.0649 0.0088 ¡1.1416 16.099 ¡59.78¤

US 0.0028 ¡0.3049 0.1158 0.0242 ¡2.3588 28.942 ¡49.73¤

Note: The DF statistic in the last collumn refers to the Augmented Dickey Fuller

statistic which tests for stationarity of equity index returns. ¤ indicates rejection of the

null hypothesis of non-stationarity at the 1% signi…cance level.
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TABLE 3a: Continuous-Time Parameters (dividend exclusive)

The continuous-time parameters for the seven national stock indices when index

returns do not include dividends are reported below. T-ratios are given in paren-

thesis below the estimated coe¢cients. Standard errors were calculated using the

Delta Method and are adjusted for heteroscedasticity.

¯ ½ ¾ ® °

CANADA
2.2319¤¤¤

(4.718)
0.0074¤¤¤

(4.841)
0.0064¤¤¤

(15.56)
0.0003 0.0000

FRANCE
2.6839¤¤

(3.577)
0.0082¤

(1.810)
0.0093¤¤¤

(19.45)
0.0007 0.0000

GERMANY
1.9308¤¤

(2.124)
0.0052¤

(1.747)
0.0113¤¤¤

(19.85)
0.0005 0.0000

ITALY
3.7051¤¤¤

(6.596)
0.0116
(0.804)

0.0114¤¤¤

(25.51)
0.0004 0.0000

JAPAN
¡0.8432
(¡0.082)

0.0009
(1.300)

0.0128¤¤¤

(3.792)
0.0002

0.0000

UK
2.0539¤¤¤

(2.734)
0.0063¤¤¤

(3.998)
0.0078¤¤¤

(18.93)
0.0003 0.0000

US
1.5325¤¤¤

(3.408)
0.0171
(0.594)

0.0217¤¤¤

(18.92)
0.0028 0.0000

Note: ¤¤¤, ¤¤, and ¤ denote signi…ance at the 1, 5, and 10 percent levels respectively.
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TABLE 3b: Continuous-Time Parameters (dividend inclusive)

The continuous-time parameters for the seven national stock indices when index

returns include dividends are reported below. T-ratios are given in parenthesis

below the estimated coe¢cients. Standard errors were calculated using the Delta

Method and are adjusted for heteroscedasticity.

¯ ½ ¾ ® °

CANADA
2.1964¤¤¤

(4.638)
0.0072¤¤¤

(5.090)
0.0062¤¤¤

(15.47)
0.0003 0.0000

FRANCE
2.7021¤¤¤

(3.542)
0.0080¤

(1.924)
0.0110¤¤¤

(19.57)
0.0007 0.0000

GERMANY
1.8608¤¤

(2.080)
0.0051¤

(1.741)
0.0111¤¤¤

(19.80)
0.0005 0.0000

ITALY
3.6010¤¤¤

(6.390)
0.0112
(0.898)

0.0110¤¤¤

(25.51)
0.0004

0.0000

JAPAN
¡0.7627
(¡0.084)

0.0011
(1.219)

0.0127¤¤¤

(4.080)
0.0002

0.0000

UK
2.1600¤¤¤

(2.880)
0.0061¤¤¤

(3.391)
0.0075¤¤¤

(19.24)
0.0003 0.0000

US
1.4927¤¤¤

(3.410)
0.0169
(0.594)

0.0219¤¤¤

(18.93)
0.0028 0.0000

Note: ¤¤¤, ¤¤, and ¤ denote signi…ance at the 1, 5, and 10 percent levels respectively.
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TABLE 4: Dynamic Simulations

Dynamic Simulation Results for the seven national stock indices are reported be-

low. The percentage of return variation attributable to the stationary component

for the relevant countries is reported, as well as the mean squared error when

actual returns are compared with returns simulated using the model (1) ¡ (3).

%of return variation due

to stationary component
Mean Squared Error

CANADA 34.8 0.0018

FRANCE 21.3 0.0002

GERMANY 8.57 0.0012

ITALY 21.4 0.0014

JAPAN 0.01 0.0003

UK 21.7 0.0009

US 24.3 0.0001

Note: Since r(t, t+¢ =) [q (t +¢) ¡ q (t)]+ [z (t +¢) ¡ z (t)] (see expression (17)),

thenV ar [r (t, t +¢)] = V ar [q (t +¢) ¡ q (t)] + V ar [z (t +¢) ¡ z (t)] = σ2¢ ¡

ρ2
β

¡
e¡β¢ ¡ 1

¢

from expressions (A4) and (A9) respectively. Therefore, the share of return variation

due to the stationary component is equal to 1¡ σ2¢
σ2¢ ¡ ρ2

β (e¡β¢¡1)
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