
Motivation

Agenda

Live
demostration

Strings and
Mata

The code

Appendix

Dealing with the cryptic survey: Processing
labels and value labels with Mata

Alfonso Miranda

Institute of Education, University of London
(A.Miranda@ioe.ac.uk)

ADMIN node · Institute of Education · University of London

Motivation

Agenda

Live
demostration

Strings and
Mata

The code

Appendix

Data Management

! Research is done on the basis of complex survey data

! Putting together data in a format that is ready for analysis
is often a non trivial exercise

! Researchers put lots of effort to solve their Data
Administration problems and often take the wrong
decisions and end up analysing badly build data

! This may lead to extrange results and significant bias

! However, most people would say that cleaning and
preparing data is a boring, mostly mechanical, and
undeserving activity

ADMIN node · Institute of Education · University of London

Motivation

Agenda

Live
demostration

Strings and
Mata

The code

Appendix

The problem

! Survey data comes often as a plain table containing
cryptic variable names, numbers, and letters

! To make sense of the data, the researcher is given a
questionnaire or a code book that contains a list of
variable names, their description, and an interpretation of
the values (either a number or a string) that each variable
can take

! Code books are commonly provided as plain text or in
PDF format. Hence, the researcher is left “free” to type
labels and value labels one by one

ADMIN node · Institute of Education · University of London

Motivation

Agenda

Live
demostration

Strings and
Mata

The code

Appendix

Bad research habits. . .

There are two things you are better off not watching in the
making: sausages and econometric estimates

Edward Leamer

ADMIN node · Institute of Education · University of London

Motivation

Agenda

Live
demostration

Strings and
Mata

The code

Appendix

Bad research habits. . .

! Cutting and processing the piece of the survey that is
needed in the short-run and leave the rest for future
processing

! Never fully understand how the survey is structured
! Reduce sample size more than strictly needed
! Create false missing values and/or item non-response
! Do not take into account sample design
! Introduce potential selection bias

! This leads to the creation of various versions of the
same data

! Inability to track changes
! Cannot reproduce research results

ADMIN node · Institute of Education · University of London

Motivation

Agenda

Live
demostration

Strings and
Mata

The code

Appendix

This talk. . .

! Here I discuss only one relatively small aspect that arise
when preparing data for analysis

! Namely, I will show how to recover the information that is
contained in questionnaires or code books that are in PDF
format (not copy protected) and how to process this
information in a clean, fast, and efficient way with Mata

ADMIN node · Institute of Education · University of London

Motivation

Agenda

Live
demostration

Strings and
Mata

The code

Appendix

The Agenda

We have two pieces of information:

! Data in Stata format with variable names but no
description (i.e., no variable labels)

storage display value

variable name type format label variable label

k3_ac str9 %9s
k3_pmr str18 %18s
k3_dob str19 %19s
k3_age byte %8.0g
k3_mth byte %8.0g
k3_schid long %12.0g
k3_land str1 %9s
k3_lang str1 %9s
k3_ma str1 %9s
k3_sc str1 %9s
k3_engta str1 %9s

! A list of variable names and their description in a PDF file

ADMIN node · Institute of Education · University of London

Motivation

Agenda

Live
demostration

Strings and
Mata

The code

Appendix

The Agenda

k3_ac Academic year

k3_bcref Matching candidate reference number

k3_pmr Pupil matching reference - Anonymous

k3_pmr Pupil matching reference - Non Anonymous

k3_pup Pupil matching reference

k3_cand Pupil serial number

k3_ncand NDCA reference number

k3_upn Unique Pupil Number

k3_sname Full legal surname

k3_fname forenames in full

k3_dob Date of birth

k3_age Age at start of the academic year

k3_mth Month part of age at start of the academic year

k3_yob year the pupil was born.

k3_mob month pupil was born.

k3_yrgrp Year group - derived from date of birth

k3_gend Gender

k3_refug Refugee Indicator

k3_la Local Authority (LA)

k3_estab Establishment number of the school

k3_laest LA and ESTAB together.

k3_urn School's Unique Reference Number

k3_stype Type of establishment

k3_nftyp Institution type

k3_land Source Country

k3_lang Language of School

k3_langm Language of Maths Teacher Assessment

k3_langs Language of Science Teacher Assessment

k3_en English examination year

k3_ma Maths examination year

k3_sc Science examination year

k3_schrs Pupil in school level averages

k3_lars Pupil in LA averages

k3_natrs Pupil in national averages

k3_elige Pupil in eligible pupil number English

k3_eligm Pupil in eligible pupil number Maths

k3_eligs Pupil in eligible pupil number Science

k3_vale Pupil in eligible pupil number English + no missing/unmatched/ lost results

k3_valm Pupil in eligible pupil number Maths + no missing/unmatched/ lost results

k3_vals Pupil in eligible pupil number Science + no missing/unmatched/ lost results

k3_cflag FFT Correction Flag for 2003/2004

k3_welta Overall level for Welsh Teacher Assessment Level

k3_levwe Overall Welsh Test Level

k3_tiere English paper sat by pupil.

k3_pap1e English Paper 1 Test Mark

k3_pap2e English Paper 2 Test Mark

k3_erm Marks achieved in English reading test

k3_ersm Marks achieved in Shakespeare reading test

k3_ewm Marks awarded in English longer writing test

k3_ewsm Marks awarded in English shorter writing test

Variable Description NPD

AIM: To create variable labels using the information
contained in the PDF

ADMIN node · Institute of Education · University of London

Motivation

Agenda

Live
demostration

Strings and
Mata

The code

Appendix

Current Stata capabilities to deal with variable labels

! Can use Stata’s official label command

label variable varname ["label"]

For instance, we could type:

. label k3_ac ‘‘Academic year’’

. label k3_bcref ‘‘Matching candidate reference number’’

! But that will require to type one label at a time. . . Not
very efficient

! It would be nice if one could write a program that takes
two large strings, one containing variable names and the
other containing all variable descriptors, and process all
variable labels at the strike of a single return

ADMIN node · Institute of Education · University of London

Motivation

Agenda

Live
demostration

Strings and
Mata

The code

Appendix

The general idea

I seek to write a program that will be invoked as follows:

#delimit ;
local varnames "k3_ac # k3_bcref # k3_pmr # k3_pmr # k3_pup ";

local vardes "Academic year # Matching candidate reference number
Pupil matching reference - Anonymous
Pupil matching reference - Non Anonymous # Pupil matching reference";
#delimit cr

mata: Labelvar("varnames","vardes")

And will to exploit the ability, which I assume I have, of
copying the data from the PDF document as plain text into a
text editor (your favourite) and from the text editor into a
spreadsheet (your favourite)

ADMIN node · Institute of Education · University of London

Motivation

Agenda

Live
demostration

Strings and
Mata

The code

Appendix

Live demostration

Time for a live demonstration. Hope everything goes well. . .

ADMIN node · Institute of Education · University of London

Motivation

Agenda

Live
demostration

Strings and
Mata

The code

Appendix

Live demostration

! Now, in the rest of the talk I will give details on the
programming of Labelvar in Mata.

! So, those who are not that interested in the technical
details please bear with me. . .

ADMIN node · Institute of Education · University of London

Motivation

Agenda

Live
demostration

Strings and
Mata

The code

Appendix

Mata: An overview

Mata is a full-fledged matrix programming language. Mata can
be used interactively or called from Stata and a large number
of functions (matrix, scalar, mathematical, statistical, equation
solvers, optimiser) are provided. Mata can access Stata’s
variables and can work with virtual matrices (views) of the data
in memory. Mata code is automatically compiled into
byte-code and runs significantly faster than Stata

ADMIN node · Institute of Education · University of London

Motivation

Agenda

Live
demostration

Strings and
Mata

The code

Appendix

Mata can do strings. . .

Mata handles matrices that contain either numeric or string
elements, though a single matrix may not mix strings and
numbers. Here are some examples:

. mata
:
: A = (1,2 \ 3,4)

: A
1 2

+---------+
1 | 1 2 |
2 | 3 4 |

+---------+

: B = ("This","That" \ "These","Those")

: B
1 2

+-----------------+
1 | This That |
2 | These Those |

+-----------------+
: end

ADMIN node · Institute of Education · University of London

Motivation

Agenda

Live
demostration

Strings and
Mata

The code

Appendix

Mata can do strings. . .

The sum of two string matrices is defined as:

: B = ("This","That" \ "These","Those")

: C = ("Hola","Si" \ "NO","QUE")

1 2
+---------------+

1 | Hola Si |
2 | NO QUE |

+---------------+

: D = B + C

: D
1 2

+-----------------------+
1 | ThisHola ThatSi |
2 | TheseNO ThoseQUE |

+-----------------------+

Here I used an assignment operator (the equals sign = in the
code) to define a new matrix D. Notice the sum operator was
performed using the conformability rule that the usual numeric
sum operator will require

ADMIN node · Institute of Education · University of London

Motivation

Agenda

Live
demostration

Strings and
Mata

The code

Appendix

Mata can do strings. . .

To summarize,

! In Mata “This” + “Hola” returns “ThisHola”

! This definition of the sum operator for strings may not
sound that intuitive. . . But the operator does make sense
given that product operator is not defined for strings

! So, “This” * “Hola” produces an error message

! Usual conformability of the sum operator applies

Hence, the idea is to exploit these capabilities of Mata and its
ability to communicate with Stata to solve our labels problem

ADMIN node · Institute of Education · University of London

Motivation

Agenda

Live
demostration

Strings and
Mata

The code

Appendix

The code I

The code is written in a text editor into a do file
Labelvar.mata, which will be compiled once it is ready

The first thing we need to do is call Mata and define the function we are program-
ming

mata:
mata clear
void function Labelvar(string scalar listvar, string scalar listdes)
{

The void says Mata that the function returns nothing. There are two arguments,
one named listvar and the other named listdes. Both arguments are scalars
(i.e., a matrix with a single cell) that contain a string value

/* Parsing relevant strings */

t = tokeninit("", "#", (‘""""’, ‘"‘""’"’), 0, 0)

Tokeninit() defines advanced parsing. First argument defines the character that
will be treated as white space. Second argument defines the character that will
define where a word begins and where it ends, here # (this is what we are after
for parsing our label names and descriptors.) Remaining options control the way
qoute characters behave and how large numeric values are displayed. Here we do
not allow numbers and so the zeroes

ADMIN node · Institute of Education · University of London

Motivation

Agenda

Live
demostration

Strings and
Mata

The code

Appendix

The code II

Next tokenset() will be used to specify that our newly defined advanced parsing
t will be used for processing the contents of the Stata locals listvar and listdes

tokenset(t, st_local(listvar))
listvarT = tokengetall(t)
tokenset(t, st_local(listdes))
descriptorT = tokengetall(t)

Function tokengetall() will put all the elements of local listvar in the cells of
a row vector, including the parsing character #

/* get variables */

for (i=1;i<=cols(listvarT);i++) {
if (i==1) variables = strtrim(listvarT[i])
if (i>1 & listvarT[i]!="#") variables = (variables,strtrim(listvarT[i]))

}

The lines above loop over the columns of listvar to define a new matrix
variables that contains only the name of our variables, getting rid of the parsing
character that were still present in matrix listvar. We do the same with the
variable descriptors

/* get descriptors */

for (i=1;i<=cols(descriptorT);i++) {
if (i==1) descriptor = strtrim(descriptorT[i])
if (i>1 & descriptorT[i]!="#") descriptor = (descriptor,strtrim(descriptorT[i]))

}

ADMIN node · Institute of Education · University of London

Motivation

Agenda

Live
demostration

Strings and
Mata

The code

Appendix

The code III

And this is a trick to make the quotation symbols be part of the strings that are
deposited in descriptorT:

comma = ‘"""’
for (i=1;i<=cols(descriptor);i++) {
descriptor[i] = comma+descriptor[i]+comma

}

So, for instance, if we were to apply the same thick to matrix C we will get
something like this:

1 2
+-------------------+

1 | "Hola" "Si" |
2 | "NO" "QUE" |

+-------------------+

Now, matrix variables contains the variable names and matrix descriptors con-
tains the variable descriptors, with the quotation marks “ ” being part of the de-
scriptions. We are almost done. . . Now we only need to manipulate these matrices
to create our labels

ADMIN node · Institute of Education · University of London

Motivation

Agenda

Live
demostration

Strings and
Mata

The code

Appendix

The code IV

Next, we use the function Stata() to interact with Stata. Loop over the elements
of matrix variables and summarise variable by variable, keeping record in scalar
rc if the variable we are working with was found in data — in that case rc

will equal zero. Then I bring the result of this operation into Mata using the
st numscalar() function

/* Create labels definitions in Stata */

for (i=1;i<=cols(variables);i++) {
stata("capture su" + " " + variables[i])
stata("scalar inlist=_rc")
inlist=st_numscalar("inlist")
if (inlist==0) {
stata("label var" +" "+ variables[i]+" "+ descriptor[i])

}
}

Finally, if the variable is found on current data, we use Stata() to interact with
Stata and create the needed variable labels. Notice how the definition of the sum
operator in Mata is used to build up, in each iteration, a string that contains the
information in the relevant cell of variables and descriptor, and adds a set of
“fixed” strings — one of which is an empty space. The resulting string will make
sense as a command once it is issued to the Stata prompt

ADMIN node · Institute of Education · University of London

Motivation

Agenda

Live
demostration

Strings and
Mata

The code

Appendix

Last one on programming, I promise. . .

Now, just need to close the initial curly bracket and save the compiled file into a
mo-file:

}
mata mosave Labelvar(), dir(PERSONAL) replace
mata clear
end

Ok, the do-file with the source code is ready. The only thing we still must do is
to runLabelvar.doto compile the code. Now the new mata function Labelvar()
will be available for use.

! Very similar code will deal with the problem of defining
label values. The code is written in the appendix

! This code is also available at the ssc:

. ssc install labelutil

! Many thanks!

! The End

ADMIN node · Institute of Education · University of London

Motivation

Agenda

Live
demostration

Strings and
Mata

The code

Appendix

Labels v2() Function

mata:
mata clear
void function Labels_v2(string scalar labelsS, string scalar valuesS,
string scalar lname, string scalar vtype)
{

/* declarations */

string matrix labels, values
string scalar comma

/* Parsing relevant strings */

t = tokeninit("", "#", (‘""""’, ‘"‘""’"’), 0, 0)
tokenset(t, st_local(labelsS))
labelsT = tokengetall(t)
tokenset(t, st_local(valuesS))
valuesT = tokengetall(t)

/* get labels */

labels = J(1,1,"")
for (i=1;i<=cols(labelsT);i++) {
if (i==2) labels = strtrim(labelsT[i])
if (i>2 & labelsT[i]!="#") labels = (labels,strtrim(labelsT[i]))

}
comma = ‘"""’
for (i=1;i<=cols(labels);i++) {
labels[i] = comma+labels[i]+comma

}

ADMIN node · Institute of Education · University of London

Motivation

Agenda

Live
demostration

Strings and
Mata

The code

Appendix

Labels Function II

/* get values */

valuesR = J(1,1,"")
for (i=1;i<=cols(valuesT);i++) {
if (i==2) valuesR = strtrim(valuesT[i])
if (i>2 & valuesT[i]!="#") valuesR = (valuesR,strtrim(valuesT[i]))

}
values = strtoreal(valuesR)
for (i=1;i<=cols(valuesR);i++) {
if (values[i]==.) values[i] = J(1,1,8800)+J(1,1,i)
}
for (i=1;i<=cols(valuesR);i++) {
valuesR[i] = comma+valuesR[i]+comma

}

/* Create a verctor with new values as strings */

valuesNS = strofreal(values)
for (i=1;i<=cols(valuesNS);i++) {
valuesNS[i] = comma+valuesNS[i]+comma

}

/* Replace values in data */

if (vtype=="s") {
/* trim string values in data */
stata("qui replace "+lname+" = "+"rtrim("+lname+")")
/* deal with blank records */
stata("qui replace "+lname+" = "+comma+"9985"+comma+" if "+lname+"=="+comma+comma)
stata("label def "+" "+lname+" "+"9985"+" "+comma+"Blank in data"+comma+", add")

ADMIN node · Institute of Education · University of London

Motivation

Agenda

Live
demostration

Strings and
Mata

The code

Appendix

Labels Function III

/* replace new values in data */
for (i=1;i<=cols(valuesR);i++) {
stata("qui replace"+" "+lname+"="+valuesNS[i]+" if "+" "+lname+"=="+valuesR[i])

}
stata("qui destring "+lname+ ", replace")

}

/* reverse substitution --- variable is writen in data as label string description */

if (vtype=="rev") {
/* trim string values in data */
stata("qui replace "+lname+" = "+"rtrim("+lname+")")
/* deal with blank records */
stata("qui replace "+lname+" = "+comma+"9985"+comma+" if "+lname+"=="+comma+comma)
stata("label def "+" "+lname+" "+"9985"+" "+comma+"Blank in data"+comma+", add")
/* replace new values in data */
for (i=1;i<=cols(valuesR);i++) {
stata("qui replace"+" "+lname+"="+valuesNS[i]+" if "+" "+lname+"=="+labels[i])

}
stata("qui destring "+lname+ ", replace")

}

/* Create labels definitions in Stata */

for (i=1;i<=cols(labels);i++) {
stata("label def" +" "+lname+" "+strofreal(values[i])+" "+ labels[i]+", add")

}

ADMIN node · Institute of Education · University of London

Motivation

Agenda

Live
demostration

Strings and
Mata

The code

Appendix

Labels v2() Function IV

/* label values */
stata("label val "+lname+" "+lname)

}
mata mosave Labels(), dir(PERSONAL) replace
mata clear
end

! NB. Labels v2() will code all blank records as 9985. This can changed as
needed/preferred

ADMIN node · Institute of Education · University of London

	Motivation
	Agenda
	Live demostration
	Strings and Mata
	The code
	Appendix

