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A quick introduction to GMM
What is GMM?

@ The generalize method of moments (GMM) is a general
framework for deriving estimators

@ Maximum likelihood (ML) is another general framework for
deriving estimators.



A quick introduction to GMM

GMM and ML

@ ML estimators use assumptions about the specific families of
distributions for the random variables to derive an objective
function

@ We maximize this objective function to select the parameters
that are most likely to have generated the observed data

@ GMM estimators use assumptions about the moments of the
random variables to derive an objective function

@ The assumed moments of the random variables are known as
the population moments

@ The data provide the sample moments

@ We minimize the objective function to select the parameters
that yield the smallest differences between the population
moments and the sample moments

@ ML is a special case of GMM



A quick introduction to GMM
What is generalized about GMM?

@ For each assumed population moment, we obtain a population
moment condition

@ For each population moment condition, there is a sample
moment condition

@ In the method of moments (MM), we have the same number of
sample moment conditions as we have parameters

@ In the generalized method of moments (MM), we more sample
moment conditions than we have parameters
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Method of Moments (MM)

@ We estimate the mean of a distribution by the sample, the
variance by the sample variance, etc

@ We want to estimate 1 = E[y]
@ The population moment condition is E[y] — =0

@ The sample moment condition is

N

/M) i =0

i=1
@ Our estimator is obtained by solving the sample moment
condition for the parameter

@ Estimators that solve sample moment equations to produce
estimates are called method-of-moments (MM) estimators

@ This method dates back to Pearson (1895)
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Ordinary least squares (OLS) is an MM estimator

@ We know that OLS estimates the parameters of the condtional
expectation of y; = x;3 + ¢; under the assumption that

Ele|x] =0
@ Standard probability theory implies that
Ele|x] =0= E[xe] =0
So the population moment conditions for OLS are
Elx(y —xB3)] =0
@ The corresponding sample moment condtions are
(1/N) L xi(yi = xi8) = 0
Solving for 3 yields
~ -1
Bors = (Z,N:1 xj-x,-) Zf\lzl X;Yi
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Generalized method-of-moments (GMM)

@ The MM only works when the number of moment conditions
equals the number of parameters to estimate

o [f there are more moment conditions than parameters, the
system of equations is algebraically over identified and cannot
be solved

o Generalized method-of-moments (GMM) estimators choose the
estimates that minimize a quadratic form of the moment
conditions

@ GMM gets a close to solving the over-identified system as
possible

@ GMM reduces to MM when the number of parameters equals
the number of moment condtions



A quick introduction to GMM

Definition of GMM estimator

@ Our research question implies g population moment conditions
Elm(w;,0)] =0

@ mis g x 1 vector of functions whose expected values are zero in
the population
@ w; is the data on person i
@ 0 is k x 1 vector of parmeters, k < g
@ The sample moments that correspond to the population
moments are
m(6) = (1/N) /L, m(w;, 0)
@ When k < g, the GMM choses the parameters that are as close
as possible to solving the over-identified system of moment
equations

Ocum = arg min, m(0)'Wm(8)
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Some properties of the GMM estimator

Oy = arg min, m(6)Wm(6)

@ When k = g, the MM estimator solves m(8) exactly so
m(0)Wm(6) =0
@ W only affects the efficiency of the GMM estimator
o Setting W = | yields consistent, but inefficent estimates
o Setting W = Cov[m(6)]~! yields an efficient GMM estimator
o We can take multiple steps to get an efficient GMM estimator
© Let W=1and get
Ocumy = arg ming m(6)'m(6)

@ Use 0 crmi to get W, which is an estimate of Cov[m(0)]!

© Get
Ocnmmz = arg ming  m(0)Wm(0)
© Repeat steps 2 and 3 using 56/\///\//2 in place of 56/\///\//1
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Using the gmm command
The gmm command

@ The new command gmm estimates paramters by GMM

@ gmm is similar to nl, you specify the sample moment conditions
as substitutable expressions

@ Substitutable expressions enclose the model parameters in braces

{
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Using the gmm command
The syntax of gmm |

@ For many models, the population moment conditions have the
form
E[ze(B)] =0
where z is a g x 1 vector of instrumental variables and e() is a
scalar function of the data and the parameters 3

@ The corresponding syntax of gmm is

gnm (eb_expression) |[if |[in][ weight],

instruments (instrument_varlist) [ options|

where some options are
onestep use one-step estimator (default is two-step estimator)

winitial(wmtype) initial weight-matrix W
wmatrix(witype)  weight-matrix W computation after first step
vce(veetype) vcetype may be robust, cluster, bootstrap, hac
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Modeling crime data |

@ We have data

. use cscrime, clear

. describe
Contains data from cscrime.dta

obs: 10,000

vars: 5 24 May 2008 17:01

size: 440,000 (95.8% of memory free) (_dta has notes)

storage display value

variable name  type format label variable label
policepc double %10.0g police officers per thousand
arrestp double %10.0g arrests/crimes
convictp double %10.0g convictions/arrests
legalwage double %10.0g legal wage index 0-20 scale
crime double %10.0g property-crime index 0-50 scale

Sorted by:
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Modeling crime data I

@ We specify that

crime; = [y + policepc,;; + legalwage; 3, + ¢€;
@ We want to model
E[crime|policepc, legalwage| = [y + policepc/3; + legalwage 3,

o If E[e|policepc,legalwage| = 0, the population moment

conditions

policepc (O
£ {(1ega1wage) 6} N (O)
hold
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OLS by GMM |

. gmm (crime - policepc*{bl} - legalwagex{b2} - {b3}), 77/
> instruments(policepc legalwage) nolog

Final GMM criterion Q(b) = 6.61e-32

GMM estimation

Number of parameters = 3
Number of moments = 3
Initial weight matrix: Unadjusted Number of obs = 10000
GMM weight matrix: Robust
Robust
Coef.  Std. Err. z P>|z| [95% Conf. Intervall
/bl -.4203287 .0053645 -78.35  0.000 -.4308431  -.4098144
/b2 -7.365905 .2411545 -30.54  0.000 -7.838559  -6.893251
/b3 27.75419 .0311028 892.34  0.000 27.69323 27.81515

Instruments for equation 1: policepc legalwage _cons




Using the gmm command

OLS by GMM |

. regress crime policepc legalwage, robust

Linear regression Number of obs = 10000
F( 2, 9997) = 4422.19
Prob > F = 0.0000
R-squared = 0.6092
Root MSE = 1.8032

Robust
crime Coef. Std. Err. t P>t [95% Conf. Intervall
policepc -.4203287 .0053653 -78.34  0.000 -.4308459  -.4098116
legalwage -7.365905 .2411907 -30.54  0.000 -7.838688 -6.893123
_cons 27.75419 .0311075  892.20  0.000 27.69321 27.81517




Using the gmm command
IV and 25LS

@ For some variables, the assumption E[e|x] = 0 is too strong and
we need to allow for Efe|x] # 0

@ If we have q variables z for which E[e|z] = 0 and the correlation
between z and x is sufficiently strong, we can estimate 3 from
the population moment conditions

Elz2(y —x3)] = 0

@ z are known as instrumental variables

@ If the number of variables in z and x is the same (g = k),
solving the the sample moment contions yield the MM estimator
known as the instrumental variables (IV) estimator

@ If there are more variables in z than in x (¢ > k) and we let

W = (vazl zf-z,-) in our GMM estimator, we obtain the
two-stage least-squares (2SLS) estimator



Using the gmm command
25SLS on crime data |

@ The assumption that E[e|policepc| = 0 is false if communities
increase policepc in response an increase in crime (an increase
in E,‘)

@ The variables arrestp and convictp are valid instruments, if
they measure some components of communities’ toughness-on
crime that are unrelated to € but are related to policepc

@ We will continue to maintain that E[e|legalwage] =0
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Using the gmm command

2SLS by GMM |

. gmm (crime - policepc*{bl} - legalwagex{b2} - {b3}), /17

> instruments(arrestp convictp legalwage ) nolog onestep

Final GMM criterion Q(b) = .001454

GMM estimation

Number of parameters = 3

Number of moments = 4

Initial weight matrix: Unadjusted Number of obs = 10000

Robust
Coef.  Std. Err. z P>|z| [95% Conf. Intervall

/bl -1.002431 .0455469 -22.01  0.000 -1.091701  -.9131606
/b2 -1.281091 .5890977 -2.17  0.030 -2.435702 -.1264811
/b3 30.0494 .1830541 164.16  0.000 29.69062 30.40818

Instruments for equation 1: arrestp convictp legalwage _cons




Using the gmm command

2SLS by GMM II

. ivregress 2sls crime legalwage (policepc = arrestp convictp) , robust

Instrumental variables (2SLS) regression Number of obs = 10000
Wald chi2(2) = 1891.83
Prob > chi2 = 0.0000
R-squared = .
Root MSE = 3.216

Robust
crime Coef. Std. Err. z P>|z| [95% Conf. Intervall
policepc -1.002431 .0455469  -22.01  0.000 -1.091701 -.9131606
legalwage -1.281091 .5890977 -2.17 0.030 -2.435702 -.1264811
_cons 30.0494 .1830541 164.16  0.000 29.69062 30.40818

Instrumented: policepc
Instruments: legalwage arrestp convictp




Using the gmm command
More complicated moment conditions

@ The structure of the moment conditions for some model is too
complicated to fit into the interactive syntax used thus far

@ For example, Wooldridge (1999, 2002); Blundell, Griffith, and
Windmeijer (2002) discuss estimating the fixed-effects Poisson
model for panel data by GMM.

@ In the Poisson panel-data model we are modeling

Elyie|xie, ni] = exp(xie8 + ;)

@ Hausman, Hall, and Griliches (1984) derived a conditional
log-likelihood function when the outcome is assumed to come
from a Poisson distribution with mean exp(x;:3 + 7;) and 7; is
an observed component that is correlated with the x;;
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@ Wooldridge (1999) showed that you could estimate the
parameters of this model by solving the sample moment
equations

D0 D¢ Xit ()/it - Mit%) =0
@ These moment conditions do not fit into the interactive syntax
because the term 7i; depends on the parameters

@ Need to use moment-evaluator program syntax
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Moment-evaluator program syntax

@ An abreviated form of the syntax for gmm is

gnm moment_progam [ if |[in][ weight],
equations (moment_cond-names)
parameters (parameter_names)

[ instruments () options]
@ The moment_program is an ado-file of the form

program gmm_eval
version 11
syntax varlist if, at(name)
quietly {
<replace elements of varlist with error
part of moment conditions>

end
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program xtfe
version 11
syntax varlist if, at(name)
quietly {
tempvar mu mubar ybar
generate double ‘mu’ = exp(kids*‘at’[1,1] ///
+ cvaluex‘at’[1,2] /1/
+ tickets*‘at’[1,3]) ‘if’
egen double ‘mubar’ mean(‘mu’) ‘if’, by(id)
egen double ‘ybar’ mean(accidents) ‘if’, by(id)
replace ‘varlist’ accidents ///
- ‘mu’*‘ybar’/‘mubar’ ‘if’

end
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FE Poisson by gmm

. use xtaccidents

. by id: egen max_a = max(accidents )
. drop if max_a ==

(3750 observations deleted)

. gmm xtfe , equations(accidents) parameters(kids cvalue tickets) /17
> instruments(kids cvalue tickets, noconstant) /17
> vce(cluster id) onestep nolog

Final GMM criterion Q(b) = 1.50e-16
GMM estimation

Number of parameters = 3

Number of moments = 3
Initial weight matrix: Unadjusted Number of obs = 1250
(Std. Err. adjusted for 250 clusters in id)

Robust

Coef. Std. Err. z P>|z| [95% Conf. Intervall
/kids -.4506245 .0969133 -4.65 0.000 -.6405711  -.2606779
/cvalue -.5079946 .0615506 -8.25  0.000 -.6286315  -.3873577
/tickets .151354 .0873677 1.73 0.083 -.0198835 .3225914

Instruments for equation 1: kids cvalue tickets
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FE Poisson by xtpoisson, fe

. xtpoisson accidents kids cvalue tickets, fe nolog

Conditional fixed-effects Poisson regression Number of obs = 1250
Group variable: id Number of groups = 250
Obs per group: min = 5

avg = 5.0

max = 5

Wald chi2(3) = 104.31

Log likelihood = -351.11739 Prob > chi2 = 0.0000
accidents Coef. Std. Err. z P>|z| [95% Conf. Intervall
kids -.4506245 .0981448 -4.59 0.000 -.6429848  -.2582642

cvalue -.5079949 .0549888 -9.24 0.000 -.615771  -.4002188
tickets .151354 .0825006 1.83 0.067 -.0103442 .3130521
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