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Two related processes. . .

Often the applied researcher is interested in studying two longitu-
dinal dichotomous variables that are closely related and likely to
influence each other, y1it and y2it ; i = {1, . . .N}, t = {1, . . . ,Ti}.

I Ownership of Stocks and Mutual Funds (Alessie, Hochguertel,
and Van Soest, 2004)

I Spouses smoking (Clark and Etilé, 2006)

I Marital status and the decision to have children (Mosconi and
Seri, 2006)

I Migration and Education (Miranda, forthcoming 2011)

I Spouses obesity (Shigeki, 2008)

I Poverty and Social Exclusion (Devicienti and Poggi, 2007)
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The main interest is on the dynamics. . .

I Do past holdings of stocks affect present holdings of mutual
funds? Other way round?

I Does husband’s past smoking affect wife’s present smoking?
Other way round?

I Do father’s and siblings past migration affect an individuals’
chances of high school graduation today?

I Do past poverty affect today’s probability of employment?
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Two challenges

Problem 1

Unobserved individual heterogeneity affecting y1it may be correlated
with unobserved individual heterogeneity affecting y2it

Problem 2

Idiosyncratic shocks affecting y1it may be correlated with indiosyn-
cratic shocks affecting y2it

ADMIN node · Institute of Education · University of London c©Alfonso Miranda (p. 4 of 21)



Motivation The model Estimation Example Discussion References

Dynamic equations

y∗1it = x′1itβ1 + δ11y1it−1 + δ12y2it−1 + η1i + ζ1it (1)

y∗2it = x′2itβ2 + δ21y1it−1 + δ22y2it−1 + η2i + ζ2it (2)

with y1it = 1(y∗1it > 0) and y2it = 1(y∗2it > 0), x1it and x2it are K1 × 1
and K2 × 1 vectors of explanatory variables, β1 and β2 are vectors of
coefficients, ηi = {η1i , η2i} are random variables representing unobserved
individual heterogeneity (time-fixed), and ζ it = {ζ1it , ζ2it} are “idiosyn-
cratic” shocks. We suppose ηi are jointly distributed with mean vector
zero and covariance matrix,

Ση =

[
σ2

1 ρη σ1σ2

ρη σ1σ2 σ2
2

]
ζit are also jointly distributed with mean vector 0 and covariance,

Σζ =

[
1 ρζ

ρζ 1

]
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True vs spurious state dependence. . .

Take the case of y1it . Correlation between y1it and y1it−1 and
y2it−1 can be caused because of two different reasons:

True state dependence: y1it−1 and y2it−1 are genuine shifters
of the conditional distribution of y1it given ηi

D(y1it |y1it−1, y2it−1, η) 6= D(y1it |ηi )

Spurious state dependence: y1it−1 and y2it−1 are not genuine
shifters of the conditional distribution of y1it given ηi

D(y1it |y1it−1, y2it−1,ηi ) = D(y1it |ηi )

A similar argument applies to y2it .
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Initial conditions

Inconsistent estimators are obtained if y1i1 and y2i1 are treated as ex-
ogenous variables in the dynamic equations (initial cond. problem). A
reduced-form model for the marginal probability of y1i1 and y2i1 given ηi

is specified (Heckman 1981),

y∗1i1 = z′1γ1 + λ11η1i + λ12η2i + ξ1i (3)

y∗2i1 = z′2γ2 + λ21η1i + λ22η2i + ξ2i (4)

with y1i1 = 1(y∗1i1 > 0) and y2i1 = 1(y∗2i1 > 0), z1 and z2 are M1 × 1 and
M2 × 1 vectors of explanatory variables, and ξi = {ξ1i , ξ2i} are jointly
distributed with mean 0 and covariance Σξ

Σξ =

[
1 ρξ

ρξ 1

]
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Distributional assumptions

D(η|x, z, ζ, ξ) = D(η) (C1)

D(ζ|x, z,η) = D(ζ|η) (C2)

D(ξ|x, z,η) = D(ξ|η) (C3)

ζ ⊥ ξ | η (C4)

D(ζ it |ζ is ,η) = D(ζ it |η) ∀s 6= t (C5)

D(ξit |ξis ,η) = D(ξit |η) ∀s 6= t (C6)

Condition C1 is the usual random effects assumption. Conditions C1-C3
ensure that all explanatory variables are exogenous. Condition C4 ensures
that idiosyncratic shocks in dynamic equations and initial conditions are
independent given η. Finally, conditions C5-C6 rule out serial correlation
for the two pairs of idiosyncratic shocks. Given that we have a Probit
model we impose:

η ∼ BN(0,Ση); ζ|η ∼ BN(0,Σζ); ξ|η ∼ BN(0,Σξ)
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Estimation

The model is estimated by Maximum Simulated Likelihood (see, for
instance, Train 2003). The contribution of the ith individual to the
likelihood is,

Li =

∫ ∫
Φ2 (q1i0w11, q2i0w12, q1i0q2i0ρξ)

×
Ti∏

t=1

Φ2 (q1itw21, q2itw22, q1itq2itρζ) g (ηi ,Ση) dη1idη2i

where g(.) represents the bivariate normal density, q1it = 2y1it − 1,

q2it = 2y2it − 1. Finally, w11 and w12 are the right-hand side of (3) and

(4) excluding the idiosyncratic shocks. And w21 and w22 are defined in

the same fashion using (1) and (2).
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I Maximum simulated likelihood is asymptotically equivalent to
ML as long as the number of draws R grows faster than

√
N

(Gourieroux and Monfort 1993)

I Use Halton sequences for simulation instead of uniform
pseudo-random sequences

I Better coverage of the [0,1] interval
I Need less draws to achieve high precision

I Maximisation based on Stata’s Newton-Raphson algorithm
using either

I Analytical first derivatives and numerical second derivatives
(d1 method),

I Analytical first derivatives and OPG approximation of the
covariance matrix (BHHH algorithm implemented as a d2
method)

I Really fast!!!
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Let’s use some simulated data. . .

I 2000 individuals

I 4 observations per individual

I rho eta = 0.25

I rho zeta = 0.33

I rho xi = 0.25

I SEeta1 = sqrt(0.30)

I SEeta2 = sqrt(0.62)

I eta1 and eta2 jointly distributed as bivariate normal

I xi1 and x2 jointly distributed as bivariate normal

I zeta1 and zeta2 jointly distributed as bivariate normal

I x1, x2, x3, x4, xvar distributed as iid standard normal variates
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Initial contions

y1star = 0.35 + 0.5*x1 + 0.72*x2 + 0.55*x3 + 0.64*eta1 ///
+ 0.32*eta2 + xi1 + if n==1

y2star= 0.58 + 0.98*x1 - 0.67*x2 + 0.11*eta1 + 0.43*eta2 ///
+ xi2 if n==1

by ind: replace y1 = (y1star>0) if n==1
by ind: replace y2 = (y2star>0) if n==1
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Dynamic equations

#delimit ;
forval i = 2/4 {;
by ind: replace y1star = 0.42 + 0.93*x1 + 0.45*x2 - 0.64*x3 ///
+ 0.6*x4 + 0.43*y1[‘i’-1] - 0.55*y2[‘i’-1] + 0.21*xvar ///
+ 0.63*y1[‘i’-1]*xvar + eta1 + zeta1 if n==‘i’;

by ind: replace y2star = 0.65 + 0.27*x1 + 0.42*x4 ///
- 0.88*y1[‘i’-1] + 0.54*y2[‘i’-1] + 0.72*xvar ///
- 0.42*xvar*y1[‘i’-1] + 0.5*xvar*y2[‘i’-1] + eta2 ///
+ zeta2 if n==‘i’;

by ind: replace y1 = (y1star>0) if n==‘i’;
by ind: replace y2 = (y2star>0) if n==‘i’;
};
#delimit cr
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. #delimit ;

. bprinit_v2 (y1 = x1 x2 x3 x4 y1lag y2lag xvar y1lagxvar y2lagxvar) (y2 = x1
> x4 y1lag y2lag xvar y1lagxvar y2lagxvar),
> rep(200) id(ind) init1(x1 x2 x3) init2(x1 x2) hvec(2 1 2 100);

(output omitted )
Bivariate Dynamic RE Probit -- Maximum Simulated Likelihood
(# Halton draws = 200)

Number of level 2 obs = 2000
Number of level 1 obs = 8000
Log likelihood = -7256.8

OPG
Coef. Std. Err. z P>|z| [95% Conf. Interval]

init_y1
x1 .5409808 .0438411 12.34 0.000 .4550538 .6269077
x2 .7443919 .0457859 16.26 0.000 .6546533 .8341306
x3 .5972203 .0420895 14.19 0.000 .5147265 .6797142

_cons .3529803 .0381407 9.25 0.000 .2782259 .4277348

y1
x1 .8837039 .0360177 24.54 0.000 .8131106 .9542972
x2 .4222031 .0264601 15.96 0.000 .3703423 .4740638
x3 -.6762835 .0305998 -22.10 0.000 -.736258 -.616309
x4 .6189321 .0308011 20.09 0.000 .558563 .6793011

y1lag .4368135 .0566347 7.71 0.000 .3258116 .5478154
y2lag -.5646897 .0610486 -9.25 0.000 -.6843427 -.4450367
xvar .2562871 .0416498 6.15 0.000 .174655 .3379192

y1lagxvar .5829502 .0527182 11.06 0.000 .4796244 .686276
y2lagxvar -.0370886 .0518627 -0.72 0.475 -.1387377 .0645605

_cons .3648562 .0524913 6.95 0.000 .261975 .4677373
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init_y2
x1 1.016066 .0522946 19.43 0.000 .9135701 1.118561
x2 -.6425204 .0415074 -15.48 0.000 -.7238733 -.5611675

_cons .602965 .0404014 14.92 0.000 .5237798 .6821502

y2
x1 .262682 .0244236 10.76 0.000 .2148126 .3105514
x4 .4210255 .0265955 15.83 0.000 .3688992 .4731518

y1lag -.8462671 .0599055 -14.13 0.000 -.9636798 -.7288544
y2lag .4303569 .0637957 6.75 0.000 .3053198 .5553941
xvar .7336143 .049089 14.94 0.000 .6374016 .8298269

y1lagxvar -.4455717 .0576863 -7.72 0.000 -.5586348 -.3325087
y2lagxvar .5443257 .0571247 9.53 0.000 .4323633 .6562881

_cons .7657639 .0650256 11.78 0.000 .638316 .8932118

lambda_11 .602882 .186313 3.24 0.001 .2377153 .9680487
lambda_12 .2849407 .0793151 3.59 0.000 .1294859 .4403954
lambda_21 .0515264 .156512 0.33 0.742 -.2552316 .3582843
lambda_22 .3900766 .0747893 5.22 0.000 .2434922 .5366609

SE(eta1) .5496802 .0618331 8.89 0.000 .4409193 .6852691
SE(eta2) .8959895 .0620171 14.45 0.000 .7823225 1.026172
rho_eta .2993541 .0909566 3.29 0.001 .1125119 .4657503

rho_xi .3069255 .0561037 5.47 0.000 .1932879 .4124374
rho_zeta .354956 .0428158 8.29 0.000 .268353 .4358675

Likelihood ratio test for rho_eta=rho_xi=rho_zeta=0: chi2=444.90 pval = 0.000

. \#delimit cr
delimiter now cr
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I The h() option deals with the Halton draws

I first number sets the number of columns in the vector h

I second and third number sets the columns that will be used for
the MSL algorithm (first and second columns in this case)

I third number sets the number of rows of vector h that will be
discarded

I number of rows of h = number of repetitions + last argument
of the h() option
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I Lagged dependent variables are just added as additional
explanatory variables

I Can naturally interact lagged dependent variables with other
controls

I Can add any function of the lagged explanatory variables —
Will be OK as long as all the distributional assumptions are
met
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Discussion

Main advantage: Correlated time-fixed (individual specific)
and time varying (idiosincratic shocks) unobserved heterogeneity
affecting y1it and y2it are explicity modelled

Main disadvantage: Model is complex (4 equations). For-
mally identified by functional form but may suffer from tenous
identification problems (Keane 1992)

I Need to nominate a number of credible exclusion restrictions.
Using time varying variables to specify exclusion restrictions is,
when possible, the way forward

ADMIN node · Institute of Education · University of London c©Alfonso Miranda (p. 18 of 21)



Motivation The model Estimation Example Discussion References

Extensions

With minor modfifications to this model one can deal with:

I Sample selection model for panel data that corrects for
selectivity issues due to:

I Correlated individual specific unobserved heterogeneity
I Correlatated idyosincratic shocks

I Endogenous Treatment Effects for panel data
I 1 treatment dummy, 1 main response variable. Main response

can be continous or ordinal.

I Ordinal dependent variables

ADMIN node · Institute of Education · University of London c©Alfonso Miranda (p. 19 of 21)



Motivation The model Estimation Example Discussion References

References

I Alessie, R., Hochguertel, S., Van Soest, A., 2004. Ownership of Stocks and
Mutual Funds: A Panel Data Analysis. The Review of Economics And Statistics
86, 783-796.
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