A double-hurdle count model for completed fertility data from the developing world

Alfonso Miranda (alfonso.miranda@cide.edu)

Center for Research and Teaching in Economics \cdot CIDE \cdot México

Motivation

- Today its is well recognised that social norms induce special features to completed fertility data.
 - Melkersson y Rooth (2000) suggest that social norms are responsible for the relative excess of 0s and 2s on Swedish fertility data.
 - Santos Silva y Covas (2000) say that, among other reasons, social norms are a factor that make families of an only-child be a relatively rare event in Portugal.
- This creates count data that exhibit underdispersion (i.e. mean > variance).
- Various count data models have been developed to fit well fertility data generated in developed countries.
 - Hurdle count models
 - Zero inflated count models.

Motivation

- Data from developing countries, in contrast, exhibit overdispersion (variance > mean) and do not have an excess of 2s.
- These type of data pose other challenges.
 - An important % of women have many children and move from low to high parities without taking any action to limit their fertility.
 - Women with a large family may 'fall' into a regime where the opportunity cost of having an extra child is low.
 - Having 3 children may lead to a permanent exit from the labour market. Once out of work, having an extra child carries a relatively small cost.

Hurdle model

First I consider the standard Poisson hurdle model (Mullahy 1986),

$$P(y_i = j) = \begin{cases} \exp(-\mu_{0i}) & \text{si } j = 0\\ [1 - \exp(-\mu_{0i})] P(y_i | y_i > 0) & \text{en caso contrario,} \end{cases}$$
(1)

where $P(y_i|y_i > 0)$ is the conditional probability of y_i given that a positive count has been observed. In particular $P(y_i|y_i > 0)$ is a Poisson distribution truncated at 0.

$$P(y_{i} = j | y_{i} > 0) = [1 - \exp(-\mu_{1i})]^{-1} \frac{\exp(-\mu_{1i}) \mu_{1i}'}{j!}; \quad j = 1, 2, 3, ...$$

$$\mu_{0i} = \exp(\mathbf{x}_{0i}' \beta_{0})$$

$$\mu_{1i} = \exp(\mathbf{x}_{1i}' \beta_{1})$$
(2)

Double hurdle model

To allow a second hurdle I introduce modifications to $P(y_i|y_i > 0)$.

$$P(y_{i} = j | y_{i} > 0) = \begin{cases} [1 - \exp(-\mu_{1i})]^{-1} \frac{\exp(-\mu_{1i})\mu_{1i}^{j}}{j!} & \text{si } j = 1, 2, 3\\ \begin{bmatrix} 1 - \sum_{k=1}^{3} [1 - \exp(-\mu_{1i})]^{-1} & \\ \cdot \frac{\exp(-\mu_{1i})\mu_{1i}^{k}}{k!} \end{bmatrix} P(y_{i} | y_{i} \ge 4), \end{cases}$$
(3)

with

 $\mu_{1i} = \exp\left(\mathbf{x}_{1i}^{\prime}\beta_{1}\right).$

Center for Research and Teaching in Economics • CIDE • México

э

・ 同 ト ・ ヨ ト ・ ヨ ト

The probability of crossing the second hurdle given that the first hurdle was crossed is given by

$$P(y_i > 3 | y_i > 0) = \left[1 - \sum_{k=1}^{3} \left[1 - \exp(-\mu_{1i})\right]^{-1} \frac{\exp(-\mu_{1i}) \mu_{1i}^k}{k!}\right].$$

To close the model we need to specify a functional form for $P(y_i|y_i \ge 4)$. For convenience we select a Poisson distribution:

$$P(y_i|y_i \ge 4) = \left[1 - \sum_{k=0}^{3} \frac{\exp(-\mu_{2i}) \,\mu_{2i}^k}{k!}\right]^{-1} \frac{\exp(-\mu_{2i}) \,\mu_{2i}^j}{j!} \quad \text{si } j = 4, 5, 6, \dots$$
(4)

As usual,

$$\mu_{2i} = \exp\left(\mathbf{x}_{2i}^{\prime}\beta_{2}\right).$$

The model is estimated by Maximum likelihood. The likelihood function is given by

$$L = \prod_{y_i=0} \exp(-\mu_{0i}) \prod_{y_i>0} [1 - \exp(-\mu_{0i})]$$

$$\cdot \prod_{1 \le y_i \le 3} [1 - \exp(-\mu_{1i})]^{-1} \frac{\exp(-\mu_{1i}) \mu_{1i}^{y_i}}{y_i!}$$

$$\cdot \prod_{y_i \ge 4} \left[1 - \sum_{k=1}^3 [1 - \exp(-\mu_{1i})]^{-1} \frac{\exp(-\mu_{1i}) \mu_{1i}^k}{k!} \right]$$

$$\cdot \prod_{y_i \ge 4} \left[1 - \sum_{k=0}^3 \frac{\exp(-\mu_{2i}) \mu_{2i}^k}{k!} \right]^{-1} \frac{\exp(-\mu_{2i}) \mu_{2i}^{y_i}}{y_i!}$$
(5)

Center for Research and Teaching in Economics · CIDE · México

э

- ∢ ⊒ →

< 🗇 > < 🖃 >

. hurdlep fecundidad \$myvar, xb1(\$myvar) xb2(\$myvar) robust (información suprimida) Double Hurdle Poisson

	Number of obs	=	19477
	Wald chi2(9)	=	52.95
Log pseudolikelihood = -43980.423	Prob > chi2	=	0.0000

Robust Std. Err. [95% Conf. Interval] fecundidad | Coef z P>|z| xb0 catolico | -.0525424.0341243 -1.54 0.124 -.1194247 .0143399 lenguaind | -.0728384.0378947 -1.920.055 -.1471107.0014339 edu12 | -.0313502.0048588 -6.45 0.000 -.0408733-.021827c4549 | .0229784 .0380156 0.60 0.546 -.0515309.0974876 c5054 | .0493672 .0373468 1.32 0.186 -.0238311 .1225655 c5559 | .0224527 .0388909 0.58 0.564 -.053772.0986774 norte | .055761 .0487709 1.14 0.253 -.0398283 .1513502 .0001234 .0467254 0.00 0.998 -.0914568 .0917035 centro | sur | .0460232 .0520179 0.88 0.376 -.0559301.1479765 1.154666 .0661379 17.46 0.000 1.025038 1,284294 _cons |

3

(日)

YDI	1					
catolico	050893	.015718	-3.24	0.001	0816997	0200863
lenguaind	.0408203	.0193155	2.11	0.035	.0029627	.078678
edu12	0842011	.002328	-36.17	0.000	0887639	0796383
c4549	0535419	.0191292	-2.80	0.005	0910344	0160495
c5054	1325749	.0185702	-7.14	0.000	1689718	096178
c5559	1769705	.0192836	-9.18	0.000	2147656	1391754
norte	.2523125	.0219407	11.50	0.000	.2093095	.2953156
centro	.2616377	.0211541	12.37	0.000	.2201765	.3030989
sur	.1597381	.0236188	6.76	0.000	.1134461	.2060302
_cons	1.71422	.0314022	54.59	0.000	1.652673	1.775767
	+					
xb2	I					
catolico	0347861	.016696	-2.08	0.037	0675097	0020625
lenguaind	.0128803	.0159809	0.81	0.420	0184417	.0442023
edu12	0753265	.002399	-31.40	0.000	0800285	0706245
c4549	0911024	.0156799	-5.81	0.000	1218344	0603704
c5054	2024501	.0163141	-12.41	0.000	2344252	170475
c5559	3029522	.0192311	-15.75	0.000	3406444	26526
norte	.2831148	.0572145	4.95	0.000	.1709765	.3952532
centro	.3570204	.0563981	6.33	0.000	.2464822	.4675587
sur	.2787026	.0575915	4.84	0.000	.1658253	.3915799
_cons	1.775248	.0597473	29.71	0.000	1.658146	1.892351

The model can be extended to allow unobserved heterogeneity and endogenous fertility change (details in the book).

-- 1- 1

т

Conclusions

- Catholic religion is associated with a reduction on the probability of transiting from low to high parities on Mexican fertility data.
 - This result may be explained by a relatively weak opposition by the Catholic church to the use and diffusion of contraceptives in Mexico.
- As expected, women's education reduces the probability of transiting to counts higher than 3.

The end, thanks!

Center for Research and Teaching in Economics \cdot CIDE \cdot México

æ

'문▶' ★ 문▶

< 17 >

References

- Arulampalam, W.; Booth, A. (2001). Learning and Earning: Do Multiple Training Events Pay? A Decade of Evidence from a Cohort of Young British Men, Economica 68(271):379-400.
- Cameron, C.; Trivedi, P. (1986). Econometric Models Based on Count Data: Comparisons and Applications of Some Estimators and Tests, Journal of Applied Econometrics, vol. 1(1):29-53.
- Kohler, Hans-Peter (2000). Fertility decline as a coordination problem, Journal of Development Economics, 63(2):231-263.
- Covas, F.; Santos Silva, J.M.C. (2000). A modified hurdle model for completed fertility, Journal of Population Economics13(2):173-188.
- Labeaga, JM. (1999). A double-hurdle rational addiction model with heterogeneity: Estimating the demand for tobacco, Journal of Econometrics 93(1):49-72.
- Miranda, A. (2013). Un modelo de doble valla para datos de conteo y su aplicación en el estudio de la fecundidad en México. En: Aplicaciones en Economía y Ciencias Sociales con Stata, Stata Press.
- Miranda, A. (2010). A double-hurdle count model for completed fertility data from the developing world. DoQSS Working Papers 10-11.
- Melkersson, M. and Rooth, D. (2000). Modeling female fertility using inflated count data models, Journal of Population Economics, 13(2):189-203. < ⊒ >

3

- Mukesh, E. 2002. The empowerment of women, fertility, and child mortality: Towards a theoretical analysis, *Journal of Population Economics*15(3):433-454.
- Mullahy, J. (1986). Specification and testing of some modified count data models, *Journal of Econometrics* 33(3):341-365.
- Terza, J. (1985). A Tobit-type estimator for the censored Poisson regression model, *Economics Letters* 18(4):361-365.
- Willis, R. (1973). A New Approach to the Economic Theory of Fertility Behavior, *Journal of Political Economy* vol. 81(2):S14-64, Part II.
- Yen, S.; Tang, Chao-Hsiun; Su, Shew-Jiuan. (2001). Demand for traditional medicine in Taiwan: a mixed Gaussian-Poisson model approach, *Health Economics*, 10(3):221-232.
- Yen, S.; Jensen, H. (1996). Determinants of Household Expenditures on Alcohol. Staff General Research Papers 927, Iowa State University, Department of Economics.
- Terza, J. (1985). A Tobit-type estimator for the censored Poisson regression model, *Economics Letters* 18(4):361-365.
- Willis, R. (1973). A New Approach to the Economic Theory of Fertility Behavior, *Journal of Political Economy* vol. 81(2):S14-64, Part II.
- Yen, S.; Tang, Chao-Hsiun; Su, Shew-Jiuan. (2001). Demand for traditional medicine in Taiwan: a mixed Gaussian-Poisson model approach, *Health Economics*, 10(3):221-232.
- Yen, S.; Jensen, H. (1996). Determinants of Household Expenditures on Alcohol. Staff General Research Papers 927, Iowa State University, Department of Economics.