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Longitudinal Data

e Longitudinal Studies: studies in which the
outcome variable is measured repeatedly over
time. We do not necessarily require the same
number of observations on each subject or that
measurements be taken at the same times.

y;; = value of j*" observation on the i*" subject

measures at time ¢;;.

e Repeated measures: Older term used for a
special set of longitudinal designs with
measurements at a common set of occasions,
usually in an experimental design.

e Models for the analysis of longitudinal data can
be considered a special case of generalized linear
models, with the peculiar feature that the
residuals terms are correlated, as the
observations at different time points in a
longitudinal study are taken on the same subject.
Any of the model being proposed must take this
dependence into account.
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Potential Advantages of Longitudinal
Studies

e Allow investigation of events that occur in time;
essential to the study of normal growth and

ageing.

e Essential to the study of temporal patterns of
response to treatments.

e Permit more complete ascertainment of exposure
histories in epidemiological studies.

e Reduce unexplained variability in the response by
using subject as his or her own control.
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Normally Distributed Data - Marginal
Models

With longitudinal data, we can consider models of
the form

Yij = Bo + 51X145 + B2Xoij + ... + BoXqij + €j

where the €;; are correlated within individuals (i.e.
Cov(€;j, €;) # 0) and the covariates

(X14j, ---» XQij) include time, t;; (or indicators of
time trends), treatment/exposure indicators and
their interactions.

Recall that the “compound symmetry” assumption
is unrealistic for longitudinal studies, instead we
need to consider alternative models for

CO’U(E@j, Ez’k)-
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Models for the Covariance

Note that with p repeated measures, there are

1 - - i
p—(p; ) parameters in the covariance matrix.

In selecting a model for the covariance matrix, a
balance must be struck:

e With too little structure (e.g., unstructured).
there may be too many parameters to be
estimated with a limited amount of data
(information) available = weaker inferences
concerning (3

e With too much structure (e.g., compound
symmetry), there is more information available
for estimating 3 but the potential risk of model
misspecification = apparently stronger, but
potentially biased, inferences concerning (3
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Other models

A number of additional models for the covariance
that may be suitable for longitudinal data are

1. Autoregressive: The first-order autoregressive
model, AR(1), has covariances of the form,
Cov(Yi;,Yir) = o2pli =+,

i.e., homogeneous variances and correlations that
decline over time.

occasion

1 2 3 4
L [ 1 p p* p]

- 2 p 1 p p?
occasion 2 o 1
4 | op 1

Autoregressive models are appropriate for
equally-spaced measurement.

2. Exponential correlation models can handle
unequally-spaced measurements.

Suppose that measurements are made at times
t;, then the covariances are of the form,

Cov(Y;;,Yik) = 02,0|tj_t’f|.
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STATA

xtgee fits generalized linear models of Y;;, with
covariates X;;. Main components of a model:

1. family - assumed distribution of the response
variables

2. link - link between response and its linear
predictor

3. corr - structure of the working correlation
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Stata-xtgee
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%

* Sample program for NASUG 2001

* Data set: depress.dat from Hasbekt & Everitt

* Rino Bellocco

3K 3K 3K KK KKK KK K K R oK oK oK oK ok ok oK oK ok ok oK oK oK oK K K K K K K K K K K K K K K
infile subj group pre depl dep2 dep3 dep4 depb depb
using c:\rino\nasug\depress.dat, clear

(61 observations read)

subj group pre depl dep2 dep3 dep4 depb5 dep6
1 0 18 17 18 15 17 14 15
2 0 27 26 23 18 17 12 10

Observations are correlated!

|
_____ o e
pre | 1.0000
depl | 0.2027 1.0000
dep2 | 0.2292 0.1937 1.0000
dep3 | 0.1683 0.0700 0.5645 1.0000
dep4 | 0.0561 0.0594 0.5125 0.9015 1.0000
dep5 | 0.1160 0.0654 0.5256 0.9160 0.9606 1.0000
dep6 | 0.1037 0.0184 0.5045 0.9035 0.9499 0.9743 1.0000
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Stata-xtgee

First step is to reshape the data so that we can use models.

reshape long dep, i(subj) j(visit) (note: j =123 4 5 6)

subj visit group pre dep
1 1 0 18 17
1 2 0 18 18
1 3 0 18 15
1 4 0 18 17
1 5 0 18 14
1 6 0 18 15
2 1 0 27 26
2 2 0 27 23
2 3 0 27 18
2 4 0 27 17
2 5 0 27 12
2 6 0 27 10
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Stata-xtgee

First, | run a model with independence structure

xtgee dep group pre visit, i(subj) t(visit) corr(indep) link(iden) fam(normal) nmp

GEE population-averaged model Number of obs = 295
Group variable: subj Number of groups = 61
Link: identity Obs per group: min = 1
Family: Gaussian avg = 4.8
Correlation: independent max = 6
Wald chi2(3) = 144 .15

Scale parameter: 25.80052 Prob > chi2 = 0.0000
Pearson chi2(291): 7507 .95 Deviance = 7507.95
Dispersion (Pearson): 25.80052 Dispersion = 25.80052
dep | Coef Std. Err z P>|z]| [95% Conf. Intervall
_____________ o
group | -4.290664 .6072954 -7.07 0.000 -5.480941  -3.100387

pre | .4769071 .0798565 5.97 0.000 .3203913 .633423

visit | -1.307841 .169842 -7.70  0.000 -1.640725  -.9749569

_cons | 8.233577  1.803945 4.56 0.000 4.697909 11.76924
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Stata-xtgee

Then | fit a GLM with an exchangeable structure

. xtgee dep group pre visit, i(subj) t(visit) corr(exc) link(iden) fam(normal)

Iteration 1: tolerance = .04984936
Iteration 2: tolerance = .0004433
Iteration 3: tolerance = 4.602e-06
Iteration 4: tolerance = 4.782e-08

GEE population-averaged model Number of obs = 295
Group variable: subj Number of groups = 61
Link: identity Obs per group: min = 1
Family: Gaussian avg = 4.8
Correlation: exchangeable max = 6
Wald chi2(3) = 135.08

Scale parameter: 25.56569 Prob > chi2 = 0.0000
dep | Coef Std. Err z P>|z| [95% Conf. Intervall]
_____________ o
group | -4.024676 1.081131 -3.72 0.000 -6.143654 -1.905698

pre | .4599018 .1441533 3.19 0.001 .1773666 . 742437

visit | -1.226764 .1175009 -10.44  0.000 -1.457062  -.9964666

cons | 8.432806  3.120987 2.70 0.007 2.315783 14.54983
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Stata-xtgee

Then | fit a model with unstructured correlation

xtgee dep group pre visit, i(subj) t(visit) corr(uns) link(iden) fam(normal)

GEE population-averaged model Number of obs = 295
Group and time vars: subj visit Number of groups = 61
Link: identity Obs per group: min = 1
Family: Gaussian avg = 4.8
Correlation: unstructured max = 6
Wald chi2(3) = 94.13

Scale parameter: 25.87029 Prob > chi2 = 0.0000
dep | Coef Std. Err z P>|z| [95% Conf. Intervall]
_____________ b
group | -4.134413 .9986306 -4.14  0.000 -6.091693 -2.177133

pre | .3399185 .1326684 2.56 0.010 .0798932 .5999437

visit | -1.228327 .1492831 -8.23 0.000 -1.520916  -.9357372

cons | 11.13045  2.892903 3.85 0.000 5.460464 16.80044
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And finally a model with AR1 structure

Stata-xtgee

xtgee dep group pre visit, i(subj) t(visit) corr(arl) link(iden) fam(normal)

note:

some groups have fewer than 2 observations

not possible to estimate correlations for those groups

8 groups omitted from estimation

Iteration
Iteration
Iteration
Iteration

W N -

: tolerance
: tolerance
: tolerance
: tolerance

.10070858
.00136623
.00002736
5.508e-07

GEE population-averaged model
Group and time vars:

Link:
Family:

Correlation:

Scale parameter:

subj visit

identity
Gaussian
AR(1)

25.82413

Number of obs
Number of groups

Obs per group: min

287
53

5.4

64.55
0.0000

-4.218194
.4268002
-1.181975
9.037864

1.053504
.1376156
.1907298
3.036076

avg
max

Wald chi2(3)

Prob > chi2

P>|z| [95% Conf.

0.000 -6.283023

0.002 .1570785

0.000 -1.555799

0.003 3.087264

-2.153364
.6965219
-.8081517
14.98846
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SAS-GLM

Here, | show what | think is the equivalent
procedure in SAS (codes are reported at the end).
Independence:

The REG Procedure
Model: MODEL1
Dependent Variable: dep

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F
Model 3 3719.12937 1239.70979 48.05 <.0001
Error 201 7507.95172 25.80052
Corrected Total 294 11227

Root MSE 5.07942 R-Square 0.3313

Dependent Mean 11.32915 Adj R-Sq 0.3244

Coeff Var 44 .83496

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t]
Intercept 1 8.23358 1.80395 4.56 <.0001
group 1 -4.29066 0.60730 -7.07 <.0001
pre 1 0.47691 0.07986 5.97 <.0001
visit 1 -1.30784 0.16984 -7.70 <.0001
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Unrestricted Covariance structure

Effect group

Intercept

group

group 1
pre

visit
Compound structure

Effect group

Intercept
group

group 1
pre

visit

AR1 structure
Effect group
Intercept

group 0
group
pre
visit

[
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SAS-GLM

Estimate

6.2422
4.1207
0
0.3641
-1.1091

Estimate

4.4124
4.0216
0
0.4598
-1.2259

Estimate

5.0946
4.0317
0
0.4296
-1.2221

Standard
Error

2.8737
0.9739

0.1292
0.1426

Standard
Error

3.1901
1.0887

0.1452
0.1167
Error

2.9691
1.0015

0.1331
0.1844

58
58

58
58
DF

58
58

58
233
DF

58
58
58
233

t Value

2.17
4.23

2.82
-7.78
t Value

1.38
3.69

3.17
-10.50
t Value

1.72
4.03
3.23
-6.63

Pr > |t]|

0.0339
<.0001

0.0066
<.0001
Pr > |t]|

0.1719
0.0005

0.0025
<.0001
Pr > |t]|

0.0915
0.0002

0.0021
<.0001
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SAS-GLM

libname rino ’c:\rino\nasug’;

data rino;

infile ’c:\rino\nasug\depress.dat’;

input subj group pre depl dep2 dep3 dep4 dep5 dep6;

if depl=-9 then depl=. ;

if dep2=-9 then dep2=. ;

if dep3=-9 then dep3=. ;

if dep4=-9 then dep4=. ;

if depb=-9 then depb=. ;

if dep6=-9 then dep6=. ;

run;

proc means;

var depl dep2 dep3 dep4 dep5 dep6 group pre;
run;

data rinol;
set rino;

visit=1; dep=depl;t=1;output;
visit=2; dep=dep2;t=2;output;
visit=3; dep=dep3;t=3;output;
visit=4; dep=dep4;t=4;output;
visit=b; dep=depb;t=b;output;
visit=6; dep=dep6;t=6;output;
run;

proc means;

var dep time pre group;

run;

/* proc print data=rinol;
run;

*/

proc reg data=rinol;

model dep=group pre visit ;

run;

proc mixed data=rinol noclprint method=ml ;
class subj group t;
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model dep = group pre visit /s;
repeated t /type=un subject=subj r;

title ’unrest.cov. structure, linear trend, ML’;

run;

proc mixed data=rinol noclprint method=ml;
class subj group t;

model dep = group pre visit /s;

repeated t /type=cs subject=subj r;

title ’compound structure, linear trend, ML’;
run;

proc mixed data=rinol noclprint method=ml;
class subj group t;

model dep = group pre visit /s;

repeated t /type=ar(l) subject=subj r;
title ’arl structure, linear trend, ML’;
run;

proc mixed data=rinol noclprint method=ml;
class subj group t;

model dep = group pre visit /s;

random intercept /type =un sub=subj s;
title ’random intercept, linear trend, ML’;
run;

proc mixed data=rinol noclprint method=ml;
class subj group t;

model dep = group pre visit /s;

random intercept visit /type =un sub=subj s;
title ’random intercept, linear trend, ML’;
run;

NASUGS, 2001
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Stata SAS- comparison

Similar results are observed, however not the same
estimates are produced. Testing and comparison of
models with different covariance structures will be

reported in a future paper (most likely an STB
bullettin).
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Normally Distributed Data
Random Effect Models

This approach assumes that the correlation arises
among repeated measures as the regression
coefficients vary across individuals.

That is, each subject is assumed to have an
(unobserved) underlying level of response which
persists across the p measurements.

This subject effect is treated as random and the
model becomes

Yij = Bo+01X1ij+02X0ij+. . -+ Lp—1Xp_1,45+bi+e;

or
Yij = (Bo+bi)+P1 X1+ B2 X0+ . . ABp_1Xp_1,i5+¢€;

(also known as “random intercepts model”).
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In the model

Yij = Bot+051 X155+ 02X0i5+. . . ABp_1Xp_1,i5+bi+e;;

the response for the it subject is assumed to differ
from the population mean, by a subject effect, b;,
and a within-subject measurement error, e;;.

Alternatively, we have decomposed

Eij = bz -+ eij-
Furthermore, it is assumed that

biiN(O,Uz?); €ijiN(OaUg)

and that b; and e;; are mutually independent.
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The introduction of a random subject effect induces
correlation among the repeated measures.

It can be shown that the following correlation
structure results:

Var(Yij) = oy, + o,

2
Cov(Y;;, Vi) = o
%
op + 02
b e

— correlation of observations on the same individual

—> Corr(Y;;,Y5) =

Stata can fit this model using the XTREG
procedure.
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XTREG/Stata

. Xxtreg dep group pre visit, i(subj) mle

Random-effects ML regression

Group variable

Random effects

Log likelihood

(

u_

i) : subj

-832.36607

i 7 Gaussian

Number of obs
Number of groups

295
61

/sigma_e

-4.021599
.4597672
-1.2256857
8.434001

3.8056795
3.346938

1.08894
.1451952
.1168668
3.142894

.4160801
.15434

Obs per group: min
avg
max

LR chi2(3)

Prob > chi2

P>|z]| [95% Conf.

0.000 -6.155882

0.002 .1751898

0.000 -1.454912

0.007 2.274042

0.000 2.990293

0.000 3.044438

.4451442

-1.887316
. 7443446
-.9968024
14 .59396

4.621297
3.649439

Likelihood ratio test of sigma_u=0: chibar2(01)=

Prob>=chibar2 = 0.000

NASUGS, 2001
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Effect

Intercept
group
group

pre

visit

NASUGS, 2001

group

Effect

group
pre
visit

SAS

random intercept, linear trend, ML

Covariance Parameter Estimates

Cov Parm

UN(1,1)
Residual

Subject

subj

Estimate

14.4836
11.2021

Fit Statistics
-2 Log Likelihood

AIC (smaller is better)
AICC (smaller is better)
BIC (smaller is better)

1664.7
1676.7
1677.0
1689.4

Solution for Fixed Effects

Estimate

4.4124
4.0216
0
0.4598
-1.2259

Standard
Error

3.1901
1.0887

0.1452
0.1167

DF

58
233

233
233

Type 3 Tests of Fixed Effects

Num
DF

Den
DF

233
233
233

F Value

13.64
10.03
110.35

t Value

1.38
3.69
3.17
-10.50

Pr > F

0.0003
0.0017
<.0001

Pr > |t]

0.1719
0.0003

0.0017
<.0001
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Splus

> summary (rem0)
Linear mixed-effects model fit by REML
Data: rino
AIC BIC logLik
1678.536 1700.576 -833.2679

Random effects:
Formula: visit ~ 1 | subj
(Intercept) Residual
StdDev: 3.923239 3.353891

Fixed effects: dep © visit + pre + group
Value Std.Error DF t-value p-value
(Intercept) 8.435886 3.224813 233 2.61593 0.0095
visit -1.224393 0.117018 233 -10.46327 <.0001
pre 0.4595562 0.149022 58 3.08379 0.0031
group -4.016623 1.117115 58 -3.59553 0.0007

Correlation:
(Intr) visit pre
visit -0.107
pre -0.960 0.005
group -0.130 -0.040 -0.066

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-3.840718 -0.5559042 -0.03438542 0.4645086 3.912141

Number of Observations: 295 Number of Groups: 61
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Random Intercepts and Slopes Models

A natural extension of the random intercepts model.
The introduction of random intercepts and slopes
induces a covariance matrix that depends on time
(ti)-

Consider the following model with intercepts and
slopes that vary randomly among subjects

Yij = Bo + Bitij + bio + birtij + ei;
Assume that b;p and b;; have mean zero and let
Var(e;;) = o2, Var(byo) = 05y, Var(b;1) = o3,

and CO’U(bZ‘Q, bzl) = 001-
Then, it can be shown that

Var(Yij) = ogo + 2tijoor + o11t; + of
and
Cov(Yy;, Yik) = 0g0 + (tij + tik)oor + o5 1tiitin
That is, the covariance matrix is a function of time.

Stata has limited resources for modeling
longitudinal data (GLLAMMG is a routine provided
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by Rabe-Hesketh which allows to fits this model,
but it is not part of regular Stata and as, Sophia
has told me, GLLAMMS®6 is intended for non-normal

data where no exact method exists: instead we can
use PROC MIXED in SAS and LME in Splus.
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STATA

gen cons=1 eq cons: cons eq slope: visit
gllamm6 dep group pre
visit, i(subj) nrf(2) eqgs(cons slope) trace

gllamm model

log likelihood = -820.90341

I
+
group | -3.459758 .9574966 -3.61 0.000 -5.336417 -1.583099
I
I
I

pre .5769432 .0954126 6.05 0.000 .3899379 .7639484
visit -1.240965 .15652877 -7.99 0.000 -1.545324  -.9366072
_cons 5.499468  2.249447 2.44 0.014 1.090632 9.908304

8.1725165 (.86878708)

Variances and covariances of random effects

xx*xlevel 2 (subj)

var(1): 23.758474 (5.8717413)
cov(1,2): -2.2504823 (.98450321) cor(1,2): -.53217727

var(2): .75269674 (.18593369)
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SAS

random intercept + slope, linear trend, ML

Iteration History

Iteration Evaluations -2 Log Like Criterion
1 1792.01280464

1 2 1642.82321420 0.00000252

1 1642.82181110 0.00000000

Convergence criteria met.

Covariance Parameter Estimates

Cov Parm Subject Estimate
UN(1,1) subj 22.3135
UN(2,1) subj -2.4981
UN(2,2) subj 0.8352
Residual 8.3660

Fit Statistics

-2 Log Likelihood 1642.8
AIC (smaller is better) 1658.8

random intercept + slope, linear trend, ML

12:30 Saturday, Mar
The Mixed Procedure

Fit Statistics
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Effect

Intercept
group
group
pre

visit

NASUGS, 2001

AICC (smaller is better)
BIC (smaller is better)

Null Model Likelihood Ratio Test

DF Chi-Square

149.19

1659.3
1675.7

Pr > ChiSq

<.0001

Solution for Fixed Effects

group Estimate

4.2101
4.0397
0
0.4682
-1.2097

= O

Standard
Error

3.2138
1.0922

0.1456
0.1651

DF

58
181

181
52

t Value

1.31
3.70

3.22
-7.33

29

Pr > |t]

0.1954
0.0003

0.0015
<.0001



Splus

> summary (reml)
Linear mixed-effects model fit by REML
Data: rino
AIC BIC logLik
1659.905 1689.292 -821.9527

Random effects:
Formula: ~ visit | subj
Structure: General positive-definite
StdDev  Corr
(Intercept) 4.8414891 (Inter
visit 0.9303804 -0.572
Residual 2.8915377

Fixed effects: dep ™ visit + pre + group
Value Std.Error DF  t-value p-value
(Intercept) 8.243741 3.247253 233 2.538682 0.0118
visit -1.206358 0.167118 233 -7.218614 <.0001
pre 0.468243 0.149474 58 3.132615 0.0027
group -4.034921 1.121173 58 -3.598840 0.0007

Correlation:
(Intr) visit pre
visit -0.139
pre -0.956 0.005
group -0.126 -0.047 -0.067

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-3.315408 -0.5357005 -0.09072777 0.4617966 3.058502

Number of Observations: 295 Number of Groups: 61

NASUGS, 2001
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Non Normal Data

In this case, we cannot always specify a likelihood
with an arbitrary structure. We can define random
effect models by introducing a random intercept
and slope into the linear predictor (generalized
linear mixed models). These models can be difficult
to estimate (GLLAMMS).

In the GEE approach, we can specify any covariance
structure and link function without specifying the
joint distribution of the the repeated observations.

REM and GEE lead to different interpretations of
between subject effects. In the first case, a between
subject effect stands for the difference between
subjects conditional on the same random effect,
while the parameters of GEE represent the average
difference between subject.
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