Recent Developments in Multilevel Modeling

Roberto G. Gutierrez

Director of Statistics StataCorp LP

2007 North American Stata Users Group Meeting, Boston

- 1. What's new in Stata 10
- 2. One-level models
- 3. Alternate covariance structures
- 4. A two-level model
- 5. The Laplacian approximation
- 6. A crossed-effects model
- 7. Concluding remarks

- New commands xtmelogit and xtmepoisson
- Mixed effects for binary and count responses
- They work just like xtmixed does
- Random intercepts and random coefficients
- You can have multiple levels of nested random effects
- Various predictions, including random effects and their standard errors
- We'll be discussing binary responses and xtmelogit

For a series of i = 1, ..., M independent panels, let

$$P(y_{ij}=1|\mathbf{u}_i)=H(\mathbf{x}_{ij}\boldsymbol{\beta}+\mathbf{z}_{ij}\mathbf{u}_i)$$

where

there are $j=1,\ldots,n_{ij}$ observations in panel i \mathbf{x}_{ij} are the p covariates for the fixed effects $\boldsymbol{\beta}$ are the fixed effects \mathbf{z}_{ij} are the q covariates for the random effects \mathbf{u}_i are the random effects, specific to panel i \mathbf{u}_i are normal with mean $\mathbf{0}$ and variance matrix $\mathbf{\Sigma}$ H() is the logistic cdf

• You can also think of this model in terms of a latent response $y_{ij} = I(y_{ii}^* > 0)$ where

$$y_{ij}^* = \mathbf{x}_{ij}\boldsymbol{\beta} + \mathbf{z}_{ij}\mathbf{u}_i + \epsilon_{ij}$$

• The errors ϵ_{ij} are logistic-distributed with mean zero and variance $\pi^2/3$, independent of \mathbf{u}_i

- ullet Random effects are not directly estimated, but instead characterized by the elements of $oldsymbol{\Sigma}$, known as *variance components*
- You can, however, "predict" random effects
- ullet As such, you fit this model by estimating $oldsymbol{eta}$ and the variance components in $oldsymbol{\Sigma}$
- A maximum-likelihood solution requires integrating out the distribution of u_i.
- A tricky proposition in nonlinear models such as logit

Example

- 1989 Bangladesh fertility survey (Huq and Cleland 1990)
- Ng et al. (2006) analyze data on 1,934 women, who were polled on their use of contraception
- Data were collected from 60 districts containing urban and rural areas
- Covariates include age, urban/rural area, and indicators for number of children
- Among other things, we wish to assess a district effect on contraception use

• For woman j in district i, consider this model for $\pi_{ii} = P(\mathtt{c_use}_{ii} = 1)$

$$\begin{split} \mathsf{logit}(\pi_{ij}) \ = \ \beta_0 + \beta_1 \mathsf{urban}_{ij} + \beta_2 \mathsf{age}_{ij} + \\ \beta_3 \mathsf{child1}_{ij} + \beta_4 \mathsf{child2}_{ij} + \beta_5 \mathsf{child3}_{ij} + u_i \end{split}$$

- The *u_i* represent 60 district-specific random effects
- You can use xtlogit (option re) to fit this model and estimate σ_u^2 , the variance of the u_i
- xtlogit will also give an LR test for H_o : $\sigma_u^2 = 0$, by comparing log likelihoods with logit
- You could also use xtmelogit on this model

Introducing a random coefficient, we now consider

$$logit(\pi_{ij}) = \beta_0 + \beta_1 urban_{ij} + \mathcal{F}_{ij} + u_i + v_i urban_{ij}$$

- $oldsymbol{\circ} \mathcal{F}_{ij}$ is shorthand for the fixed-effects specification on age and children
- This model allows for distinct random effects for urban and rural areas within each district
- For rural areas in district i, the effect is ui
- For urban areas, $u_i + v_i$
- You need xtmelogit to fit this model


```
Multilevel Modeling
One-level models
Using xtmelogit
```

```
. xtmelogit c_use urban age child* || district: urban
Refining starting values:
  (output omitted)
Performing gradient-based optimization:
  (output omitted)
Mixed-effects logistic regression
                                                Number of obs
                                                                          1934
                                                Number of groups
Group variable: district
                                                                            60
                                                Obs per group: min =
                                                               avg =
                                                                          32.2
                                                                           118
                                                               max =
Integration points = 7
                                                Wald chi2(5)
                                                                         97.30
Log likelihood = -1205.0025
                                                Prob > chi2
                                                                        0.0000
```

c_use	Coef.	Std. Err.	z	P> z	[95% Conf.	. Interval]
urban age child1 child2 child3 _cons	.7143927 0262261 1.128973 1.363165 1.352238 -1.698137	.1513595 .0079656 .1599346 .1761804 .1815608	4.72 -3.29 7.06 7.74 7.45	0.000 0.001 0.000 0.000 0.000	.4177336 0418384 .8155069 1.017857 .9963853 -1.993115	1.011052 0106138 1.442439 1.708472 1.70809 -1.403159

--more--

R. Gutierrez (StataCorp)

Multilevel Modeling One-level models

Using xtmelogit

Random-effects Parameters	Estimate	Std. Err.	[95% Conf.	Interval]
district: Independent sd(urban) sd(_cons)	.5235464	. 203566	. 2443374	1.121813
	.4889585	. 087638	. 3441182	.6947624

LR test vs. logistic regression: chi2(2) = 47.05 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

- As with logit, option or will give odds ratios
- Use option variance for variances instead of standard deviations of random effects
- LR test comparing to standard logit is at the bottom, along with a note telling you the *p*-value is conservative

- Evaluating the log likelihood requires integrating out the random effects
- The default method used by xtmelogit is adaptive Gaussian quadrature (AGQ) with seven quadrature points per level
- AGQ is computationally intensive
- Previous methods, such as PQL and MQL, avoided the integration altogether (Breslow and Clayton 1993)
- PQL and MQL can be severely biased (Rodriguez and Goldman 1995)
- Also, being quasi-likelihood, their use prohibits LR tests

 Implicit in our previous model was the default independent covariance structure

$$\mathbf{\Sigma} = \mathsf{Var} \left[\begin{array}{c} u_i \\ v_i \end{array} \right] = \left[\begin{array}{cc} \sigma_u^2 & 0 \\ 0 & \sigma_v^2 \end{array} \right]$$

- Assuming $Cov(u_i, v_i) = 0$ means you are also assuming $Var(u_i + v_i) > Var(u_i)$
- Are urban areas really more variable than rural areas?
- Even worse, what if we change the coding of the random effects? Codings are not arbitrary here
- Option covariance(unstructured) will include this covariance in the model

. xtmelogit c_use urban age child* || district: urban, cov(un) var (output omitted)

Mixed-effects logistic regression Number of obs 1934 Group variable: district Number of groups 60 Obs per group: min = 32.2 avg = 118 max = Integration points = 7 Wald chi2(5) 97.50 Log likelihood = -1199.315 Prob > chi2 0.0000

urban .8157872 .1715519 4.76 0.000 .4795516 1.152023 age 026415 .008023 -3.29 0.001 0421398 0106902 child1 1.13252 .1603285 7.06 0.000 .818282 1.446758 child2 1.357739 .1770522 7.67 0.000 1.010724 1.704755 child3 1.353827 .1828801 7.40 0.000 .9953882 1.712265	c_use	Coef.	Std. Err.	z	P> z	[95% Conf	. Interval]
_cons -1.71165 .1605617 -10.66 0.000 -2.026345 -1.396954	age	026415	.008023	-3.29	0.001	0421398	0106902
	child1	1.13252	.1603285	7.06	0.000	.818282	1.446758
	child2	1.357739	.1770522	7.67	0.000	1.010724	1.704755

--more--

Random-effects Parameters	Estimate	Std. Err.	[95% Conf	. Interval]
district: Unstructured var(urban) var(_cons) cov(urban,_cons)	.6663222	.3224715	.2580709	1.7204
	.3897435	.1292459	.2034723	.7465388
	4058846	.1755418	7499403	0618289

LR test vs. logistic regression: chi2(3) = 58.42 Prob > chi2 = 0.0000 Note: LR test is conservative and provided only for reference.

. estimates store corr

. lrtest no_corr corr

Likelihood-ratio test
(Assumption: no_corr nested in corr)

LR chi2(1) = 11.38Prob > chi2 = 0.0007

 We can now estimate the variance of the random effects for urban areas as

$$Var(u_i + v_i) = \sigma_u^2 + \sigma_v^2 + 2\sigma_{uv}$$

- If you did this, you would get $Var(u_i + v_i) = 0.244$, which is actually less than $Var(u_i) = 0.390$
- Better still, if you want to directly compare rural areas to urban areas, recode your random effects
- The unstructured covariance structure will ensure an equivalent model under alternate codings of random-effects variables
- Also, predictions of random effects will be what you want


```
. gen byte rural = 1 - urban
. xtmelogit c_use urban rural age child*, nocons || district: urban rural,
> nocons cov(un) var
  (output omitted)
Mixed-effects logistic regression
                                              Number of obs
                                                                       1934
                                              Number of groups
Group variable: district
                                                                       60
                                              Obs per group: min =
                                                            avg =
                                                                       32.2
                                                                       118
                                                            max =
Integration points = 7
                                              Wald chi2(6)
                                                                = 120.24
Log likelihood = -1199.315
                                              Prob > chi2
                                                                     0.0000
```

Random-effects Parameters	Estimate	Std. Err.	[95% Conf.	Interval]
district: Unstructured				
var(urban)	.2442916	.1450648	.0762869	.7822893
var(rural)	.3897431	.1292457	.2034722	.7465379
cov(urban,rural)	0161406	.105746	2233989	.1911177

LR test vs. logistic regression: chi2(3) = 58.42 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

(output omitted)

- You've seen Independent and Unstructured in action
- Also available are Identity and Exchangeable
- You can combine these to form blocked-diagonal structures
- Such structures can reduce the number of estimable parameters
- For example, consider a random effects specification of the form

```
... || district: child1 child2, nocons cov(ex) || district: child3, nocons
```

as an alternative to a 3×3 unstructured variance matrix

Example

- The Tower of London (Rabe-Hesketh et al. 2001)
- Study of cognitive abilities of patients with schizophrenia
- Cognitive ability was measure as successful completion of the Tower of London, a computerized task (binary variable dtlm)
- 226 subjects, all but one tested at three difficulty levels
- Subjects were not only patients (group==3), but relatives (group==2) and nonrelated controls (group==1)
- We can thus propose a model having random effects shared among relatives (variable family) and subject-specific effects nested within families

. xi: xtmelogit dtlm difficulty i.group || family: || subject:, or variance (naturally coded; _Igroup_1 omitted) i.group _Igroup_1-3 (output omitted) Mixed-effects logistic regression

Number of obs

nikou dilecto logistic logicostich			Number of obb					011		
Group Variab		No. of Groups	Ob Minim		rations j Avera	•	ıp aximum	Integra Poi		
fami subje		118 226		2 2	_	.7	27 3		7 7	•
Log likelihoo	d = -30	5.12043	3			Wald o	chi2(3) chi2	=		4.89
dtlm	Odds	Ratio	Std. Er	r.	z	P> z	[95%	Conf.	Inter	val]
difficulty _Igroup_2 _Igroup_3	.77	92337 98295 91338	.037162 .276376 .139649	6	-8.53 -0.70 -2.63	0.000 0.483 0.009	.389	31704 93394 94117	1.56	8839 1964 6517

677

⁻⁻more--

☐The Tower of London

Random-effects Parameters	Estimate	Std. Err.	[95% Conf.	Interval]
family: Identity var(_cons)	.569182	.5216584	.0944322	3.430694
subject: Identity var(_cons)	1.137931	.6857497	.3492672	3.707441

LR test vs. logistic regression: chi2(2) = 17.54 Prob > chi2 = 0.0002 Note: LR test is conservative and provided only for reference.

- xtmelogit, by default, uses AGQ which can be intensive with large datasets or high-dimensional models
- Computation time is roughly on the order of

$$T \sim p^2 \{ M + M(N_Q)^{q_t} \}$$

where

p is the number of estimable parameters M is the number of lowest-level (smallest) panels N_Q is the number of quadrature points q_t is the total dimension of the random effects (all levels)

• The real killer is $(N_Q)^{q_t}$

- Ideally, you want enough quadrature points such that adding more points doesn't change much
- In complex models, this can very time consuming, especially during the exploratory phase of the analysis
- Sometimes you just want quicker results, and you may be willing to give up a bit of accuracy
- ullet Use option laplace, equivalent to $N_Q=1$
- The computational benefit is clear one raised to any power equals one

The Laplacian approximation Option laplace

Group Variable	Average	Group Maximum	Integration Points			
family	118	2	5.7	27		1
subject	226	2	3.0	3	1	
			Wa	ld chi2(3)	=	76.09
Log likelihood =	-306.51035		Pr	ob > chi2	=	0.0000

dtlm	Odds Ratio	Std. Err.	z	P> z	[95% Conf.	Interval]
level		.0377578	-8.60	0.000	.1423248	.2935872
_Igroup_2		.2625197	-0.72	0.471	.4084766	1.512613
_Igroup_3		.1354592	-2.71	0.007	.1701774	.7513194

⁻⁻more--

Multilevel Modeling The Laplacian approximation

Option laplace

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval] family: Identity var(cons) .522942 4704255 .0896879 3.04911 subject: Identity var(cons) .7909329 .5699273 .1926568 3.247095

LR test vs. logistic regression: chi2(2) = 14.76 Prob > chi2 = 0.0006

Note: LR test is conservative and provided only for reference.

 ${\tt Note: \ log-likelihood\ calculations\ are\ based\ on\ the\ Laplacian\ approximation.}$

- Odds ratios and their standard errors are well approximated by Laplace
- Variance components exhibit bias, particularly at the lower (subject) level
- Model log-likelihoods and comparison LR test are in fair agreement
- These behaviors are fairly typical
- If anything, it shows that you can at least use laplace while building your model

One further advantage of laplace is that it permits you to fit crossed-effects models, which will have high-dimension

Example

- School data from Fife, Scotland (Rabe-Hesketh and Skrondal 2005)
- Attainment scores at age 16 for 3,435 students who attended any of 148 primary schools and 19 secondary schools
- We are interested in whether the attainment score is greater than 6
- We want random effects due to primary school and secondary school, but these effects are not nested

Consider the model

$$logit\{(Pr(attain_{ijk} > 6))\} = \beta_0 + \beta_1 sex_{ijk} + u_i + v_j$$

for student k who attended primary school i and secondary school j

- Since there is no nesting, you can use the level designation
 _all: to treat the entire data as one big panel
- Use factor notation R. varname to mimic the creation of indicator variables identifying schools
- However, notice that we can treat one set of effects as nested within the entire data

. xtmelogit attain_gt_6 sex || _all:R.sid || pid:, or variance
Note: factor variables specified; option laplace assumed
 (output omitted)

Mixed-effects logistic regression

		,							
Group Variab	le	No. of Groups	Ob:		vations pe Average		p ximum	Integra Poi	
_a p	ll id	1 148	34	35 1	3435.0 23.2		3435 72		1 1
Log likelihoo	d =	-2220.0035				Wald c		=	14.28 0.0002
attain_gt_6	00	lds Ratio	Std. Er	r.	z	P> z	[95%	Conf.	Interval]
sex		1.32512	.098696	8	3.78	0.000	1.14	5135	1.533395

Number of obs

--more--

3435

Random-effects	Parameters	Estimate	Std. Err.	[95% Conf.	Interval]
_all: Identity	var(R.sid)	.1239739	.0694743	.0413354	.3718252
pid: Identity	var(_cons)	.4520502	.0953867	. 298934	. 6835937

LR test vs. logistic regression: chi2(2) = 195.80 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Note: \log -likelihood calculations are based on the Laplacian approximation.

- xtmelogit and xmepoisson are new to Stata 10
- We discussed xtmelogit the same holds true for xtmepoisson
- Computations can get intensive
- The Laplacian approximation is a quicker alternative
- You can fit crossed-effects models, and large ones with creative nesting
- Work in this area is ongoing

- Breslow, N. E. and D. G. Clayton. 1993. Approximate inference in generalized linear mixed models. *Journal of the American Statistical Association* 88: 9–25.
- Huq, N. M. and J. Cleland. 1990. Bangladesh Fertility Survey 1989 (Main Report). National Institute of Population Research and Training.
- Ng, E. S. W., J. R. Carpenter, H. Goldstein, and J. Rasbash. 2006. Estimation in generalised linear mixed models with binary outcomes by simulated maximum likelihood. Statistical Modelling 6: 23–42.
- Rabe-Hesketh, S., S. R. Touloupulou, and R. M. Murray. 2001. Multilevel modeling of cognitive function in schizophrenics and their first degree relatives. Multivariate Behavioral Research 36: 279–298.
- Rabe-Hesketh, S. and A. Skrondal. 2005. Multilevel and Longitudinal Modeling Using Stata. College Station, TX:
 Stata Press
- Rodriguez, G. and N. Goldman. 1995. An assessment of estimation procedures for multilevel models with binary responses. *Journal of the Royal Statistical Society, Series A* 158: 73–89.

