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Background  
 

Sensitivity analysis is the study of how the variation in 
the output of a model can be attributed to different 
sources of variation.  
 
Methods dealing with uncertainty in model outputs are 
well known in  
 
• Decision modeling  
• Risk analysis  
 

and applied in a variety of industries and applications   
 

Engineering  
Financial Planning  
Project Management  
Government 

Health Care  
Pharmaceuticals    
Consulting  
Insurance 
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Application to epidemiology 

 
The collection of observational data is subject to 
many sources of uncertainty including errors of 
measurement, absence of information, and poor or 
partial understanding of the driving forces and 
mechanisms. 
 
 
 

Mathematical 
model: 
 
Regression 
model 

Inputs: 
 
 
Collected 
data 

Outputs: 
 
 
Relative  
Risk 
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Causation of Bias 
 

 
 
Generation of observed data. 
 
Moving from left to right shows the introduction of errors 
as we move from what we are trying to measure to what 
we actually measure (Phillips 2003). 
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The two steps of a conventional analysis 
 
 

Step 1) Use standard statistical methods based on the  
following not testable assumptions: 

 
1. No unmeasured confounders 

 
2. Random selection, participation, and missing 

 
3. No mismeasurement  

 
Step 2) address possible violations of assumption 1-3  

with speculative discussions. 
 

In practice, the assumptions of Step 1) may be grossly 
violated, and  the Step 2) is often skipped (Greenland 
2005). 
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Various approaches to bias   
 
 

1. Ignore biases (or hope that they cancel out) 
 

2. Mention something about potential biases 
 

3. Address qualitatively the effect of bias    
 

4. Address quantitatively the effect of bias  
  
 
Based on a recent study, it seems that the majority 
of published papers on the major epidemiological 
journals follow the approaches 1 to 3 (Jurek, et al. 
2006). 
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Why quantitative methods are rarely used? 
 
 

1. Lack of training in epidemiology and 
biostatistics courses 

 
 

2. No request from the reviewers  
 
 

3. Lack of user-friendly packaged software  
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The problem is that 
 
 

• A conventional confidence interval reflect only 
uncertainty due to random error and 

 
• fail to consider uncertainty due to systematic errors. 

 
• The confidence interval is too narrow.  
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Deterministic sensitivity analysis 
 
• It estimates what the true measure of effect (Relative 

Risk) would be in light of the observed data and some 
hypothetical level of bias. 

 
• The idea is to back-calculate the data that would have 

been observed without bias, assuming particular 
values for the bias parameters. 

 
• Deterministic (traditional or classical) sensitivity 

analysis can be seen as a series of educated guesses 
about the bias parameters (Greenland 1996). 
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2 by 2 tables for epidemiologists 
 

 Exposed  Unexposed Total 

 
Cases 

 
a1 a0 m1 

    

Non-Cases 
 

b1 b0 m0 

 
Case-control data (odds ratio) 
Cohort - Cumulative incidence data (risk ratio) 
Cohort - Incidence rate date (rate ratio) (Non-cases 
would be person-time at risk) 
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Misclassification of the exposure 
 

• Sensitivity (Se)= probability someone exposed is 
classified as exposed 

 
• Specificity (Sp)= probability someone unexposed is 

classified as unexposed 
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Misclassification of the exposure 
 
The relative risk RRa adjusted for misclassification is a 
function of the sensitivity and specificity specified for 
cases and non-cases. 
 

  Non-differential Differential 

Cases Se   Sp 

Non-cases 

Se     Sp 
 

Se   Sp 

 
The bias parameters are Se and Sp 
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Misclassification of the exposure 
 

RRa = RRo / K 

K = function(Se, Sp) 
 
RRa is the misclassified-adjusted relative risk   
 
RRo is the observed relative risk   

 
K  is a factor that govern magnitude and direction of bias. 
 
If Se = Sp = 1 there is no misclassification. 
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Selection bias 
 

RRa = RRo / K 

K = (Sa1, Sb0, Sa0 , Sb1) 
 
where Sa1 , Sb0 , Sa0  , Sb1 are the probabilities of case 
and non-cases selection among exposed and unexposed.  
  
RRa is the selection-bias adjusted relative risk   
 
RRo is the observed relative risk   

 
K  is a factor that govern magnitude and direction of bias. 
 
If Sa1 , Sb0 , Sa0  , Sb1 =1 there is no bias. 
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Unmeasured or uncontrolled confounder 
 

 
 
A confounder is associated with the exposure and is also 
an independent risk factor of the disease outcome.  
 
If either association is non-existent, there is no 
confounding.  
 
The bias parameters are Pc1 , Pc0 , and RRcd 

Disease Outcome 

Confounder 

Exposure 

Pc1 = Prevalence of 
the confounder among 
the exposed 
 
Pc0 = Prevalence of 
the confounder among 
the unexposed 

RRcd = confounder-
disease relative risk 
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Unmeasured or uncontrolled confounder 
 

RRa = RRo / K 

K = (Pc0, Pc1 , RRcd ) 
 
RRa is the confounder-adjusted relative risk   
 
RRo is the observed relative risk   

 
K  is a factor that govern magnitude and direction of bias 
 
If Pc1 = Pc0  there is no confounding  
 
If RRcd = 1 there is no confounding  
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New Stata commands  
 
Name Description 

 
episens 

 
It requires the original data. 
  

 
episensi 

 
Original data not available. 
Immediate version of episens.  
It requires the cell counts. 

 
 
 
 
 
 



 19

Example – Case-control study about 
occupational exposure to resins and lung 
cancer mortality  

 
. cci 45 94 257 945 , woolf 
 
                 |                        |             Proportion 
                 |   Exposed   Unexposed  |      Total     Exposed 
-----------------+------------------------+------------------------ 
           Cases |        45          94  |        139       0.3237 
        Controls |       257         945  |       1202       0.2138 
-----------------+------------------------+------------------------ 
           Total |       302        1039  |       1341       0.2252 
                 |                        | 
                 |      Point estimate    |    [95% Conf. Interval] 
                 |------------------------+------------------------ 
      Odds ratio |         1.760286       |    1.202457    2.576898  
 Attr. frac. ex. |         .4319106       |    .1683693    .6119365  
 Attr. frac. pop |         .1398272       | 
                 +------------------------------------------------- 
                               chi2(1) =     8.63  Pr>chi2 = 0.0033 
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Non-differential misclassification of the 
exposure 
 
. episensi 45 94 257 945 , st(cc) dseca(c(.9)) dspca(c(.9)) /// 
dsenc(c(.9)) dspnc(c(.9))  
 
Se|Cases   : Constant(.9) 
Sp|Cases   : Constant(.9) 
Se|No-Cases: Constant(.9) 
Sp|No-Cases: Constant(.9) 
 
Observed Odds Ratio [95% Conf. Interval]= 1.76 [1.20, 2.58] 
 
Deterministic sensitivity analysis for 
misclassification of the exposure 
   External adjusted Odds Ratio = 2.34 
   Percent bias = -25%  
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Differential misclassification of the 
exposure 
 
. episensi 45 94 257 945, st(cc) dseca(c(.9)) dspca(c(.8)) /// 
dsenc(c(.8)) dspnc(c(.8)) 
 
Se|Cases   : Constant(.9) 
Sp|Cases   : Constant(.8) 
Se|No-Cases: Constant(.8) 
Sp|No-Cases: Constant(.8) 
 
Observed Odds Ratio [95% Conf. Interval]= 1.76 [1.20, 2.58] 
 
Deterministic sensitivity analysis for 
misclassification of the exposure 
   External adjusted Odds Ratio = 9.11 
   Percent bias = -81% 
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Table. Deterministic sensitivity analysis of the resins-lung cancer odds ratios 
under various assumptions about the exposure sensitivity (Se) and specificity 
(Sp) among cases and controls.  
 

Cases   Controls 
Se Sp  Se 0.9 0.8 0.9 0.8 

   Sp 0.9 0.9 0.8 0.8 
0.9 0.9   2.3 2.0 19 16 
0.8 0.9   2.8 2.4 23 20 
0.9 0.8   1.3 1.1 11 9 
0.8 0.8   1.6 1.3 13 11 

 
Under non-differential misclassification (yellow cells) bias-
corrected relative risks are always further away from the 
null. 
 
The uncertainty in the corrected RR (range 2.3 up to 11) 
overwhelms the uncertainty suggested by conventional 
limits 95% CI, 1.2-2.6). 
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Unmeasured confounder  

 
Binary outcome: Lung cancer death 
 
Binary exposure: Resins exposure, yes vs no 
 
Binary unmeasured confounder: Smoking, yes vs no 
 
Case-control data 
 

Lung cancer Resins exposure 

Pc1 = 0.7 
 
Pc0 = 0.5 

Smoking 

RRcd = 5 

RR ed = 1.76 
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. episensi 45 94 257 945, dpexp(c(.7)) dpunexp(c(.5)) 
drrcd(c(5)) 
 

Pr(c=1|e=1): Constant(.7) 
Pr(c=1|e=0): Constant(.5) 
RR_cd      : Constant(5) 
 
Observed Odds Ratio [95% Conf. Interval]= 1.76 [1.20, 2.58] 
 
Deterministic sensitivity analysis for unmeasured 
confounding 
   External adjusted Odds Ratio = 1.39 
   Percent bias =  27% 
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Table. Deterministic sensitivity analysis of the resins-cancer odds ratios to choice 
of different values for the bias parameters: smoking prevalences among exposed 
(Pc1) and unexposed (Pc0), and the smoking-lung cancer relative risk (RRcd). 
 

Pc1         Pc0                   ORce                        RRcd 
   5 10 15 

0.40 0.30 1.56 1.49 1.42 1.39 
0.55 0.45 1.49 1.54 1.49 1.48 
0.70 0.60 1.56 1.57 1.54 1.53 
0.45 0.25 2.45 1.26 1.13 1.09 
0.60 0.40 2.25 1.35 1.27 1.24 
0.75 0.55 2.45 1.41 1.35 1.33 

 
The observed unadjusted resins-lung cancer odds ratio is 
1.8 (95% CI, 1.2-2.6). 
 
ORce is the confounder-exposure OR, calculated from the 
prevalences Pc1 and Pc0. 
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Limitation of deterministic sensitivity 
analysis 

 
• Lack probability structure for the bias parameters 

 
• Fail to discriminate among the different scenarios in 

terms of their likelihood 
 

• It is not easy to summarize results 
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Probabilistic sensitivity analysis 
 

A more realistic approach allows for uncertainty in the 
bias parameters. 

 
By specifying a probability distribution for the bias 

parameters, the bias-adjusted relative risk reflects the 
uncertainty in the bias parameters. 

 
The command episens allows the user to specify a 
variety of probability densities for the bias parameters, 
and use these densities to obtain simulation limits for the 
bias adjusted exposure-disease measure of effect. 
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Type of systematic error and  
bias parameters  

Description Probability density functions 

Misclassification of the exposure   

dseca Sensitivity cases constant(k) 
dspca Specificity cases uniform(a b) 
dsenc Sensitivity non-cases triangular(a b c) 
dspnc Specificity non-cases trapezoidal(a b c d) 

 logit-logistic(m s [lb ub])
 logit-normal(m s [lb ub]) 

Selection bias   

dpscex Pr selection cases exposed constant(k) 
dpscun Pr selection cases unexposed uniform(a b) 
dpsnex Pr selection non cases exposed triangular(a b c) 
dpsnun Pr selection non case sunexposed trapezoidal(a b c d) 

 logit-logistic(m s [lb ub])
 logit-normal(m s [lb ub]) 
  

dsbfactor Selection bias factor constant(k) 
log-normal(m s) 
log-logistic(m s) 

Unmeasured confounding   

dpexp Pr confounder exposed constant(k) 
dpunexp Pr confounder unexposed uniform(a b) 

   triangular(a b c) 
   trapezoidal(a b c d) 

  logit-logistic(m s [lb ub])
  logit-normal(m s [lb ub]) 

  
drrcd RR confounder-disease constant(k) 
dorce OR confounder-exposure log-normal(m s) 

 log-logistic(m s) 
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Uniform distribution   

0
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.5 .6 .7 .8 .9

 
 
All the values within the specified bounds (a=.5, b=.9) 
are equally probable 
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Triangular distribution  
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There is a mode (most likely value, b=.7) within the 
specified bounds (a=.5, c=.9) 
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Trapezoidal distribution 

0
1

2
3

4
P

er
ce

nt

.5 .6 .7 .8 .9

 
 

There is an interval of equally probable values between .6 
and .8, within specified bounds (.5, .9). 
 



 32

Log-normal distribution (m=0) 
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Log-logistic distribution (m=0) 
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Logit-normal distribution (m=0, lb=.5, ub=.9) 
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Logit-logistic distribution (m=0, lb=.5, ub=.9) 
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Logit-logistic distribution (m=1, lb=.5, ub=.9) 
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Logit-logistic distribution (m=-1, lb=.5, ub=.9) 
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Monte Carlo-type simulations 
 

Monte Carlo (random number-based) simulations 
involve two steps:  

 
step 1) generate a dataset containing observations 

from the user specified probability density functions of the 
bias parameters 

 
step 2) draw a random sample (one set of likely bias 

parameters) from this dataset to back-calculate the 
relative risk 

 
We repeat steps 1 and 2 a large number of times to 
obtain a distribution of bias-corrected estimates.  
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Non-differential misclassification of the 
exposure (a=.75, b=.85, c=.95, 1) 
 
. episensi  45 94 257 945 , st(cc) reps(20000)  nodots    /// 
dseca(trap(.75  .85 .95  1) )   dspca(trap(.75  .85 .95  1) )  /// 
dsenc(trap(.75  .85 .95  1) )   dspnc(trap(.75  .85 .95  1)) 
grpriors 
 
Se|Cases   : Trapezoidal(.75,.85,.95,1) 
Sp|Cases   : Trapezoidal(.75,.85,.95,1) 
Se|No-Cases: Trapezoidal(.75,.85,.95,1) 
Sp|No-Cases: Trapezoidal(.75,.85,.95,1) 
 
Probabilistic sensitivity analysis for misclassification of the 
exposure 
 
                                       Percentiles         Ratio 
                             2.5       50        97.5      97.5/2.5 
                             -------------------------------------- 
Conventional                 1.20      1.76      2.58      2.14 
Systematic error             1.87      2.46      14.70     7.86 
Systematic and random error  1.49      2.57      15.07     10.10 
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Differential misclassification of the 
exposure (a=.75, b=.85, c=.95, 1) 

 
. episensi  45 94 257 945  , st(cc) reps(20000) nodots /// 
 dseca(trap(.75  .85 .95  1)  )  dspca(trap(.75  .85 .95  1) )  /// 
 dsenc(trap(.7   .8  .9  .95) )  dspnc(trap(.7   .8  .9  .95) )      
 corrsens(.8)  corrspec(.8)   
 

Se|Cases   : Trapezoidal(.75,.85,.95,1) 
Sp|Cases   : Trapezoidal(.75,.85,.95,1) 
Se|No-Cases: Trapezoidal(.7,.8,.9,.95) 
Sp|No-Cases: Trapezoidal(.7,.8,.9,.95) 
Corr Se|Cases and Se|No-Cases : .8 
Corr Sp|Cases and Sp|No-Cases : .8 
 
Probabilistic sensitivity analysis for misclassification of the 
exposure 
 
                                       Percentiles         Ratio 
                             2.5       50        97.5      97.5/2.5 
                             -------------------------------------- 
Conventional                 1.20      1.76      2.58      2.14 
Systematic error             1.81      3.48      48.19     26.57 
Systematic and random error  1.61      3.60      48.92     30.47 
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Unmeasured confounder 
 

Two uniform distributions for the smoking prevalences 
among exposed and unexposed between 0.4 and 0.7.  
 
The probability density function of the smoking-lung 
cancer mortality RR is assumed to be log-normal with 
95% confidence limits of log(5) and log(15).  
 
The limits imply that the mean of this distribution is  
[(log(15)-log(5)]/2=2.159 with standard deviation 
[log(15)-log(5)]/2*1.96=0.280. 
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. episensi  45 94 257 945 , st(cc) reps(20000) nodots 
dpexp(uni(.4 .7)) dpunexp(uni(.4 .7)) drrcd(log-n(2.159 .280))              
grarrsys grarrtot grprior  
 
Pr(c=1|e=1): Uniform(.4,.7) 
Pr(c=1|e=0): Uniform(.4,.7) 
RR_cd      : Log-Normal(2.16,0.28) 
 
Probabilistic sensitivity analysis for unmeasured confounding 
  
                                       Percentiles         Ratio 
                             2.5       50        97.5      97.5/2.5 
                             -------------------------------------- 
Conventional                 1.17      1.76      2.61      2.23 
Systematic error             1.24      1.76      2.49      2.00 
Systematic and random error  1.04      1.76      3.01      2.90 

 
 
The median smoking-adjusted resins-lung cancer OR is 
1.76 with 95% simulation limits of 1.04 and 3.01.  As 
expected, the ratio of the smoking-adjusted simulation 
limits (2.9) is higher than the ratio of the conventional 
limits (2.2). 
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More reasonable priors 
 
Given that there is no reason to expect great differences 
in the prevalence of smoking among resins exposed and 
unexposed, small differences are more likely than large 
ones. 
 

One way to address non independent distributions of 
the confounder-exposure specific prevalences is to specify 
a probability density function for the confounder-exposure 
OR (option dorce) instead of the prevalence of the 
confounder among the exposed (option dpexp).  

 
Assuming independent priors for the confounder-

exposure OR and the prevalence of the confounder 
among the unexposed is not unreasonable. 
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. episensi  45 94 257 945 , st(cc) reps(20000) nodots    /// 
dpunexp(uni(.4 .7)) drrcd(log-n(2.159 .280)) 
dorce(log-normal(0 .639))   
 
Pr(c=1|e=0): Uniform(.4,.7) 
RR_cd      : Log-Normal(2.16,0.28) 
OR_ce      : Log-Normal(0.00,0.64) 
 
Probabilistic sensitivity analysis for unmeasured confounding 
 
                                       Percentiles         Ratio 
                             2.5       50        97.5      97.5/2.5 
                             -------------------------------------- 
Conventional                 1.20      1.76      2.58      2.14 
Systematic error             1.24      1.76      3.04      2.45 
Systematic and random error  1.04      1.77      3.44      3.30 
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Table. Percentiles of Monte Carlo simulated distribution of the smoking-adjusted 
resins-lung cancer odds ratio. 
 

 Percentiles 
Type of analysis 2.5th  Median 97.5th  
Conventional 1.2 1.8 2.6 
    
Systematic error     
           Adjusted Odds Ratio 1.2      1.8       3.0 
    
Systematic and random-
sampling error    

           Adjusted Odds Ratio 1.0      1.8       3.4 
 

 

 
 
 
 
 

 



 50

Summary 
 
Conventional statistical methods to estimate exposure-
disease associations from observational studies are based 
on several assumptions. 
 
When such assumptions are not met, however, the point 
and interval estimates for the association between 
exposure and disease are likely to be biased and fail to 
capture the uncertainty around them. 
 
Deterministic (traditional) sensitivity analysis provides a 
range of bias-adjusted exposure-disease OR, based on 
observed data and some hypothetical level of bias. 
 
In more realistic scenario, probabilistic sensitivity analysis 
provides a distribution of bias-adjusted exposure-disease 
OR. 
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Strengths  
 

• Sensitivity analysis helps the investigator to make 
explicit the location and shape of the distribution of 
the bias parameters. 

 
• The distributions of the bias parameters reflect the 

knowledge and judgment of the investigator about the 
potential systematic errors that may affect the 
observed findings. 

 
• Probabilistic sensitivity analysis provides a wider 

confidence interval that includes both systematic and 
random error, which conventional analysis fails to 
consider (too narrow).   

 

 
 
 



 52

Limitations 
 

• Concerns have been raised by some about the 
arbitrariness in the particular distributions assumed for 
the bias parameters, which can lead to different 
distributions of the adjusted exposure-disease RR. 

 
• However, it should be emphasized that in order to 

make a shared and meaningful bias correction of the 
exposure-disease RR, the distributions of the bias 
parameters should be based on the best available 
evidence and by careful judgment. 

 
• Informed sensitivity analysis is therefore limited by 

lack of data and/or scientific knowledge about the role 
of bias in a specific exposure-disease association. 
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Download 
 
 
Latest version on my website  
 
 
http://nicolaorsini.altervista.org/ 
 
 
 

Install the commands, from within Stata, typing at the 
command line:  
 
 
. net from http://nicolaorsini.altervista.org/stata/ 
 
. net install episens  
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