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What’s new in Stata 10

New commands xtmelogit and xtmepoisson

Mixed effects for binary and count responses

They work just like xtmixed does

Random intercepts and random coefficients

You can have multiple levels of nested random effects

Various predictions, including random effects and their
standard errors

We’ll be discussing binary responses and xtmelogit

R. Gutierrez (StataCorp) September 7, 2007 3 / 32



Multilevel Modeling

One-level models

Definition

For a series of i = 1, . . . ,M independent panels, let

P(yij = 1|ui) = H(xijβ + zijui)

where

there are j = 1, . . . , nij observations in panel i

xij are the p covariates for the fixed effects

β are the fixed effects

zij are the q covariates for the random effects

ui are the random effects, specific to panel i

ui are normal with mean 0 and variance matrix Σ

H() is the logistic cdf

R. Gutierrez (StataCorp) September 7, 2007 4 / 32



Multilevel Modeling

One-level models

Alternate formulation

You can also think of this model in terms of a latent response
yij = I (y∗

ij > 0) where

y∗

ij = xijβ + zijui + ǫij

The errors ǫij are logistic-distributed with mean zero and
variance π2/3, independent of ui
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One-level models

Variance Components

Random effects are not directly estimated, but instead
characterized by the elements of Σ, known as variance

components

You can, however, “predict” random effects

As such, you fit this model by estimating β and the variance
components in Σ

A maximum-likelihood solution requires integrating out the
distribution of ui .

A tricky proposition in nonlinear models such as logit
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One-level models

Bangladesh fertility survey

Example

1989 Bangladesh fertility survey (Huq and Cleland 1990)

Ng et al. (2006) analyze data on 1,934 women, who were
polled on their use of contraception

Data were collected from 60 districts containing urban and
rural areas

Covariates include age, urban/rural area, and indicators for
number of children

Among other things, we wish to assess a district effect on
contraception use
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One-level models

Modeling contraception use

For woman j in district i , consider this model for
πij = P(c useij = 1)

logit(πij) = β0 + β1urbanij + β2ageij +

β3child1ij + β4child2ij + β5child3ij + ui

The ui represent 60 district-specific random effects

You can use xtlogit (option re) to fit this model and
estimate σ2

u, the variance of the ui

xtlogit will also give an LR test for Ho : σ2
u = 0, by

comparing log likelihoods with logit

You could also use xtmelogit on this model
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One-level models

Stretching our wings

Introducing a random coefficient, we now consider

logit(πij ) = β0 + β1urbanij + Fij + ui+viurbanij

Fij is shorthand for the fixed-effects specification on age and
children

This model allows for distinct random effects for urban and
rural areas within each district

For rural areas in district i , the effect is ui

For urban areas, ui + vi

You need xtmelogit to fit this model
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One-level models

Using xtmelogit

. xtmelogit c_use urban age child* || district: urban

Refining starting values:

(output omitted )

Performing gradient-based optimization:

(output omitted )

Mixed-effects logistic regression Number of obs = 1934

Group variable: district Number of groups = 60

Obs per group: min = 2
avg = 32.2

max = 118

Integration points = 7 Wald chi2(5) = 97.30
Log likelihood = -1205.0025 Prob > chi2 = 0.0000

c_use Coef. Std. Err. z P>|z| [95% Conf. Interval]

urban .7143927 .1513595 4.72 0.000 .4177336 1.011052

age -.0262261 .0079656 -3.29 0.001 -.0418384 -.0106138
child1 1.128973 .1599346 7.06 0.000 .8155069 1.442439

child2 1.363165 .1761804 7.74 0.000 1.017857 1.708472
child3 1.352238 .1815608 7.45 0.000 .9963853 1.70809
_cons -1.698137 .1505019 -11.28 0.000 -1.993115 -1.403159

--more--
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One-level models

Using xtmelogit

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

district: Independent
sd(urban) .5235464 .203566 .2443374 1.121813

sd(_cons) .4889585 .087638 .3441182 .6947624

LR test vs. logistic regression: chi2(2) = 47.05 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.
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One-level models

Some notes

As with logit, option or will give odds ratios

Use option variance for variances instead of standard
deviations of random effects

LR test comparing to standard logit is at the bottom, along
with a note telling you the p-value is conservative
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One-level models

Revisiting that tricky proposition

Evaluating the log likelihood requires integrating out the
random effects

The default method used by xtmelogit is adaptive Gaussian
quadrature (AGQ) with seven quadrature points per level

AGQ is computationally intensive

Previous methods, such as PQL and MQL, avoided the
integration altogether (Breslow and Clayton 1993)

PQL and MQL can be severely biased (Rodriguez and
Goldman 1995)

Also, being quasi-likelihood, their use prohibits LR tests
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Alternate covariance structures

Extending the model

Implicit in our previous model was the default independent
covariance structure

Σ = Var

[

ui

vi

]

=

[

σ2
u 0
0 σ2

v

]

Assuming Cov(ui , vi ) = 0 means you are also assuming
Var(ui + vi ) > Var(ui )

Are urban areas really more variable than rural areas?

Even worse, what if we change the coding of the random
effects? Codings are not arbitrary here

Option covariance(unstructured) will include this
covariance in the model
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Alternate covariance structures

Unstructured covariance

. xtmelogit c_use urban age child* || district: urban, cov(un) var

(output omitted )

Mixed-effects logistic regression Number of obs = 1934
Group variable: district Number of groups = 60

Obs per group: min = 2

avg = 32.2
max = 118

Integration points = 7 Wald chi2(5) = 97.50

Log likelihood = -1199.315 Prob > chi2 = 0.0000

c_use Coef. Std. Err. z P>|z| [95% Conf. Interval]

urban .8157872 .1715519 4.76 0.000 .4795516 1.152023
age -.026415 .008023 -3.29 0.001 -.0421398 -.0106902

child1 1.13252 .1603285 7.06 0.000 .818282 1.446758
child2 1.357739 .1770522 7.67 0.000 1.010724 1.704755

child3 1.353827 .1828801 7.40 0.000 .9953882 1.712265
_cons -1.71165 .1605617 -10.66 0.000 -2.026345 -1.396954

--more--
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Alternate covariance structures

Unstructured covariance

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

district: Unstructured

var(urban) .6663222 .3224715 .2580709 1.7204
var(_cons) .3897435 .1292459 .2034723 .7465388

cov(urban,_cons) -.4058846 .1755418 -.7499403 -.0618289

LR test vs. logistic regression: chi2(3) = 58.42 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. estimates store corr

. lrtest no_corr corr

Likelihood-ratio test LR chi2(1) = 11.38
(Assumption: no_corr nested in corr) Prob > chi2 = 0.0007
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Alternate covariance structures

Recoding your random effects

We can now estimate the variance of the random effects for
urban areas as

Var(ui + vi) = σ2
u + σ2

v + 2σuv

If you did this, you would get Var(ui + vi) = 0.244, which is
actually less than Var(ui ) = 0.390

Better still, if you want to directly compare rural areas to
urban areas, recode your random effects

The unstructured covariance structure will ensure an
equivalent model under alternate codings of random-effects
variables

Also, predictions of random effects will be what you want
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Alternate covariance structures

Recoding your random effects

. gen byte rural = 1 - urban

. xtmelogit c_use urban rural age child*, nocons || district: urban rural,
> nocons cov(un) var

(output omitted )

Mixed-effects logistic regression Number of obs = 1934

Group variable: district Number of groups = 60

Obs per group: min = 2
avg = 32.2
max = 118

Integration points = 7 Wald chi2(6) = 120.24

Log likelihood = -1199.315 Prob > chi2 = 0.0000

(output omitted )

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

district: Unstructured

var(urban) .2442916 .1450648 .0762869 .7822893
var(rural) .3897431 .1292457 .2034722 .7465379

cov(urban,rural) -.0161406 .105746 -.2233989 .1911177

LR test vs. logistic regression: chi2(3) = 58.42 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.
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Alternate covariance structures

Compound Structures

You’ve seen Independent and Unstructured in action

Also available are Identity and Exchangeable

You can combine these to form blocked-diagonal structures

Such structures can reduce the number of estimable
parameters

For example, consider a random effects specification of the
form

... || district: child1 child2, nocons cov(ex) || district: child3, nocons

as an alternative to a 3 × 3 unstructured variance matrix
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A two-level model

The Tower of London

Example

The Tower of London (Rabe-Hesketh et al. 2001)

Study of cognitive abilities of patients with schizophrenia

Cognitive ability was measure as successful completion of the
Tower of London, a computerized task (binary variable dtlm)

226 subjects, all but one tested at three difficulty levels

Subjects were not only patients (group==3), but relatives
(group==2) and nonrelated controls (group==1)

We can thus propose a model having random effects shared
among relatives (variable family) and subject-specific effects
nested within families
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A two-level model

The Tower of London

. xi: xtmelogit dtlm difficulty i.group || family: || subject:, or variance

i.group _Igroup_1-3 (naturally coded; _Igroup_1 omitted)

(output omitted )

Mixed-effects logistic regression Number of obs = 677

No. of Observations per Group Integration

Group Variable Groups Minimum Average Maximum Points

family 118 2 5.7 27 7

subject 226 2 3.0 3 7

Wald chi2(3) = 74.89

Log likelihood = -305.12043 Prob > chi2 = 0.0000

dtlm Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

difficulty .192337 .0371622 -8.53 0.000 .131704 .2808839
_Igroup_2 .7798295 .2763766 -0.70 0.483 .3893394 1.561964

_Igroup_3 .3491338 .1396499 -2.63 0.009 .1594117 .7646517

--more--
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A two-level model

The Tower of London

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

family: Identity
var(_cons) .569182 .5216584 .0944322 3.430694

subject: Identity
var(_cons) 1.137931 .6857497 .3492672 3.707441

LR test vs. logistic regression: chi2(2) = 17.54 Prob > chi2 = 0.0002

Note: LR test is conservative and provided only for reference.
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The Laplacian approximation

Computation time

xtmelogit, by default, uses AGQ which can be intensive with
large datasets or high-dimensional models

Computation time is roughly on the order of

T ∼ p2{M + M(NQ)qt}

where

p is the number of estimable parameters
M is the number of lowest-level (smallest) panels
NQ is the number of quadrature points
qt is the total dimension of the random effects (all levels)

The real killer is (NQ)qt
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The Laplacian approximation

Option laplace

Ideally, you want enough quadrature points such that adding
more points doesn’t change much

In complex models, this can very time consuming, especially
during the exploratory phase of the analysis

Sometimes you just want quicker results, and you may be
willing to give up a bit of accuracy

Use option laplace, equivalent to NQ = 1

The computational benefit is clear – one raised to any power
equals one
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The Laplacian approximation

Option laplace

. xi: xtmelogit dtlm level i.group || family: || subject:, or variance laplace

i.group _Igroup_1-3 (naturally coded; _Igroup_1 omitted)

(output omitted )

Mixed-effects logistic regression Number of obs = 677

No. of Observations per Group Integration

Group Variable Groups Minimum Average Maximum Points

family 118 2 5.7 27 1

subject 226 2 3.0 3 1

Wald chi2(3) = 76.09

Log likelihood = -306.51035 Prob > chi2 = 0.0000

dtlm Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

level .2044132 .0377578 -8.60 0.000 .1423248 .2935872
_Igroup_2 .7860452 .2625197 -0.72 0.471 .4084766 1.512613

_Igroup_3 .3575718 .1354592 -2.71 0.007 .1701774 .7513194

--more--
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The Laplacian approximation

Option laplace

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

family: Identity
var(_cons) .522942 .4704255 .0896879 3.04911

subject: Identity

var(_cons) .7909329 .5699273 .1926568 3.247095

LR test vs. logistic regression: chi2(2) = 14.76 Prob > chi2 = 0.0006

Note: LR test is conservative and provided only for reference.
Note: log-likelihood calculations are based on the Laplacian approximation.
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The Laplacian approximation

Option laplace

Odds ratios and their standard errors are well approximated by
Laplace

Variance components exhibit bias, particularly at the lower
(subject) level

Model log-likelihoods and comparison LR test are in fair
agreement

These behaviors are fairly typical

If anything, it shows that you can at least use laplace while
building your model
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A crossed-effects model

Fife

One further advantage of laplace is that it permits you to fit
crossed-effects models, which will have high-dimension

Example

School data from Fife, Scotland (Rabe-Hesketh and Skrondal
2005)

Attainment scores at age 16 for 3,435 students who attended
any of 148 primary schools and 19 secondary schools

We are interested in whether the attainment score is greater
than 6

We want random effects due to primary school and secondary
school, but these effects are not nested
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A crossed-effects model

Model

Consider the model

logit{(Pr(attainijk > 6)} = β0 + β1sexijk + ui + vj

for student k who attended primary school i and secondary
school j

Since there is no nesting, you can use the level designation
all: to treat the entire data as one big panel

Use factor notation R.varname to mimic the creation of
indicator variables identifying schools

However, notice that we can treat one set of effects as nested
within the entire data
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A crossed-effects model

Estimation results

. xtmelogit attain_gt_6 sex || _all:R.sid || pid:, or variance

Note: factor variables specified; option laplace assumed

(output omitted )

Mixed-effects logistic regression Number of obs = 3435

No. of Observations per Group Integration

Group Variable Groups Minimum Average Maximum Points

_all 1 3435 3435.0 3435 1
pid 148 1 23.2 72 1

Wald chi2(1) = 14.28

Log likelihood = -2220.0035 Prob > chi2 = 0.0002

attain_gt_6 Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

sex 1.32512 .0986968 3.78 0.000 1.145135 1.533395

--more--
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A crossed-effects model

Estimation results

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

_all: Identity
var(R.sid) .1239739 .0694743 .0413354 .3718252

pid: Identity

var(_cons) .4520502 .0953867 .298934 .6835937

LR test vs. logistic regression: chi2(2) = 195.80 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.
Note: log-likelihood calculations are based on the Laplacian approximation.
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Concluding remarks

xtmelogit and xtmepoisson are new to Stata 10

We discussed xtmelogit – the same holds true for
xtmepoisson

Computations can get intensive

The Laplacian approximation is a quicker alternative

You can fit crossed-effects models, and large ones with
creative nesting

Work in this area is ongoing
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