Recent Developments in Multilevel Modeling

Roberto G. Gutierrez

Director of Statistics StataCorp LP

2007 Nordic and Baltic Stata Users Group Meeting, Stockholm

- 1. What's new in Stata 10
- 2. One-level models
- 3. Alternate covariance structures
- 4. A two-level model
- 5. The Laplacian approximation
- 6. A crossed-effects model
- 7. Concluding remarks

- New commands xtmelogit and xtmepoisson
- Mixed effects for binary and count responses
- They work just like xtmixed does
- Random intercepts and random coefficients
- You can have multiple levels of nested random effects
- Various predictions, including random effects and their standard errors
- We'll be discussing binary responses and xtmelogit

For a series of $i = 1, \ldots, M$ independent panels, let

$$P(y_{ij} = 1 | \mathbf{u}_i) = H(\mathbf{x}_{ij}\boldsymbol{\beta} + \mathbf{z}_{ij}\mathbf{u}_i)$$

where

there are $j = 1, ..., n_{ij}$ observations in panel *i* \mathbf{x}_{ij} are the *p* covariates for the fixed effects β are the fixed effects \mathbf{z}_{ij} are the *q* covariates for the random effects \mathbf{u}_i are the random effects, specific to panel *i* \mathbf{u}_i are normal with mean **0** and variance matrix $\mathbf{\Sigma}$ H() is the logistic cdf

Alternate formulation

• You can also think of this model in terms of a latent response $y_{ij} = I(y_{ij}^* > 0)$ where

$$y_{ij}^* = \mathbf{x}_{ij}\boldsymbol{\beta} + \mathbf{z}_{ij}\mathbf{u}_i + \epsilon_{ij}$$

• The errors ϵ_{ij} are logistic-distributed with mean zero and variance $\pi^2/3$, independent of \mathbf{u}_i

- Random effects are not directly estimated, but instead characterized by the elements of Σ, known as variance components
- You can, however, "predict" random effects
- \bullet As such, you fit this model by estimating β and the variance components in $\pmb{\Sigma}$
- A maximum-likelihood solution requires integrating out the distribution of **u**_i.
- A tricky proposition in nonlinear models such as logit

One-level models

Bangladesh fertility survey

Example

- 1989 Bangladesh fertility survey (Huq and Cleland 1990)
- Ng et al. (2006) analyze data on 1,934 women, who were polled on their use of contraception
- Data were collected from 60 districts containing urban and rural areas
- Covariates include age, urban/rural area, and indicators for number of children
- Among other things, we wish to assess a district effect on contraception use

One-level models

Modeling contraception use

• For woman j in district i, consider this model for $\pi_{ij} = P(c_use_{ij} = 1)$

- The *u_i* represent 60 district-specific random effects
- You can use xtlogit (option re) to fit this model and estimate σ²_µ, the variance of the u_i
- xtlogit will also give an LR test for $H_o: \sigma_u^2 = 0$, by comparing log likelihoods with logit
- You could also use xtmelogit on this model

• Introducing a random coefficient, we now consider

 $logit(\pi_{ij}) = \beta_0 + \beta_1 urban_{ij} + \mathcal{F}_{ij} + u_i + v_i urban_{ij}$

- \mathcal{F}_{ij} is shorthand for the fixed-effects specification on age and children
- This model allows for distinct random effects for urban and rural areas within each district
- For rural areas in district *i*, the effect is *u_i*
- For urban areas, $u_i + v_i$
- You need xtmelogit to fit this model

N/I	tilovo	Mode	aling
wiu	LIIEVE	INIOUG	siing

One-level models

Using xtmelogit

. <pre>xtmelogit c_use urban age child* district:</pre>	urban
Refining starting values:	
(output omitted)	
<pre>Performing gradient-based optimization: (output omitted)</pre>	
Mixed-effects logistic regression Group variable: district	Number of obs Number of groups
	Obs per group: min avg max
Integration points = 7 Log likelihood = -1205.0025	Wald chi2(5) Prob > chi2

c_use	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
urban	.7143927	.1513595	4.72	0.000	.4177336	1.011052
age	0262261	.0079656	-3.29	0.001	0418384	0106138
child1	1.128973	.1599346	7.06	0.000	.8155069	1.442439
child2	1.363165	.1761804	7.74	0.000	1.017857	1.708472
child3	1.352238	.1815608	7.45	0.000	.9963853	1.70809
_cons	-1.698137	.1505019	-11.28	0.000	-1.993115	-1.403159

--more--

stata 🔢

1934

32.2

118

97.30

0.0000

60

2

=

=

=

=

=

=

=

One-level models

Using xtmelogit

Random-effects Parameters	Estimate	Std. Err.	[95% Conf.	Interval]
district: Independent sd(urban) sd(_cons)	. 5235464 . 4889585	.203566 .087638	.2443374 .3441182	1.121813 .6947624
LR test vs. logistic regression Note: LR test is conservative	on: chi2(and provided	2) = 47.05 only for ref	Prob > chi erence.	2 = 0.0000

- As with logit, option or will give odds ratios
- Use option variance for variances instead of standard deviations of random effects
- LR test comparing to standard logit is at the bottom, along with a note telling you the *p*-value is conservative

- Evaluating the log likelihood requires integrating out the random effects
- The default method used by xtmelogit is adaptive Gaussian quadrature (AGQ) with seven quadrature points per level
- AGQ is computationally intensive
- Previous methods, such as PQL and MQL, avoided the integration altogether (Breslow and Clayton 1993)
- PQL and MQL can be severely biased (Rodriguez and Goldman 1995)
- Also, being quasi-likelihood, their use prohibits LR tests

• Implicit in our previous model was the default independent covariance structure

$$\boldsymbol{\Sigma} = \mathsf{Var} \left[\begin{array}{c} u_i \\ v_i \end{array} \right] = \left[\begin{array}{cc} \sigma_u^2 & 0 \\ 0 & \sigma_v^2 \end{array} \right]$$

- Assuming Cov(u_i, v_i) = 0 means you are also assuming Var(u_i + v_i) > Var(u_i)
- Are urban areas really more variable than rural areas?
- Even worse, what if we change the coding of the random effects? Codings are not arbitrary here
- Option covariance(unstructured) will include this covariance in the model

Unstructured covariance

.....

(output omitte	ed)	s child*	district:	urban,	COV(UII)	var	
Mixed-effects logistic regression					of obs	=	1934
Group variable	: district			Number	of group	s =	60
				Obs per	group:	min =	2
						avg =	32.2
					1	max =	118
Integration po	ints = 7			Wald ch	i2(5)	=	97.50
Log likelihood	l = -1199.318	5		Prob >	chi2	=	0.0000
c_use	Coef.	Std. Err.	Z	P> z	[95%	Conf.	Interval]
urban	.8157872	.1715519	4.76	0.000	.4795	516	1.152023
age	026415	.008023	-3.29	0.001	0421	398	0106902
child1	1.13252	.1603285	7.06	0.000	.818	282	1.446758
child2	1.357739	.1770522	7.67	0.000	1.010	724	1.704755
child3	1.353827	.1828801	7.40	0.000	.9953	882	1.712265
_cons	-1.71165	.1605617	-10.66	0.000	-2.026	345	-1.396954

-1-27 A. 11 Advantary

--more--

Unstructured covariance

Random-effects Parameters	Estimate	Std. Err.	[95% Conf.	Interval]
district: Unstructured var(urban) var(_cons) cov(urban,_cons)	.6663222 .3897435 4058846	.3224715 .1292459 .1755418	.2580709 .2034723 7499403	1.7204 .7465388 0618289
IP tost us logistic regressi		2) - EQ /	D Drach S abi	2 - 0 0000

LR test vs. logistic regression: chi2(3) = 58.42 Prob > chi2 = 0.0000Note: LR test is conservative and provided only for reference.

LR chi2(1) =	11.38
Prob > chi2 =	0.0007
	LR chi2(1) = Prob > chi2 =

• We can now estimate the variance of the random effects for urban areas as

$$Var(u_i + v_i) = \sigma_u^2 + \sigma_v^2 + 2\sigma_{uv}$$

- If you did this, you would get $Var(u_i + v_i) = 0.244$, which is actually less than $Var(u_i) = 0.390$
- Better still, if you want to directly compare rural areas to urban areas, recode your random effects
- The unstructured covariance structure will ensure an equivalent model under alternate codings of random-effects variables
- Also, predictions of random effects will be what you want


```
Multilevel Modeling
```

Recoding your random effects

. gen byte rural = 1 - urban				
<pre>. xtmelogit c_use urban rural > nocons cov(un) var</pre>	age child*,	nocons dist	rict: urban	rural,
(output omitted)				
Mixed-effects logistic regress	sion	Number o	f obs =	1934
Group variable: district		Number o	f groups =	60
		Obs per	group: min =	2
			avg =	32.2
			max =	118
Integration points = 7		Wald chi	2(6) =	120.24
Log likelihood = -1199.315 (output omitted)		Prob > c	hi2 =	0.0000
Random-effects Parameters	Estimate	Std. Err.	[95% Conf.	Interval]
district: Unstructured				
var(urban)	.2442916	.1450648	.0762869	.7822893
var(rural)	.3897431	.1292457	.2034722	.7465379
cov(urban,rural)	0161406	.105746	2233989	.1911177

LR test vs. logistic regression: chi2(3) = 58.42 Prob > chi2 = 0.0000Note: LR test is conservative and provided only for reference.

- You've seen Independent and Unstructured in action
- Also available are Identity and Exchangeable
- You can combine these to form blocked-diagonal structures
- Such structures can reduce the number of estimable parameters
- For example, consider a random effects specification of the form

... || district: child1 child2, nocons cov(ex) || district: child3, nocons

as an alternative to a 3×3 unstructured variance matrix

Example

- The Tower of London (Rabe-Hesketh et al. 2001)
- Study of cognitive abilities of patients with schizophrenia
- Cognitive ability was measure as successful completion of the Tower of London, a computerized task (binary variable dtlm)
- 226 subjects, all but one tested at three difficulty levels
- Subjects were not only patients (group==3), but relatives (group==2) and nonrelated controls (group==1)
- We can thus propose a model having random effects shared among relatives (variable family) and subject-specific effects nested within families

. xi	: xtmelogit	dtlm difficulty	i.group family: subject:, or variance	е
i.gr	oup	_Igroup_1-3	<pre>(naturally coded; _Igroup_1 omitted)</pre>	
(0	itput omittea	1)		
Mivo	l-effects 1	ogistic regressi	on Number of obs =	677

									0
Group Variable		No. of Groups	Obser Minimum	vations pe Average	er Grou e Ma	ıp aximum	Integra Poin	ation nts	
family subject		118 226	2 2	5.7 3.0	,)	27 3	27 3		
Log likelihood	1 =	-305.12043	3		Wald o Prob >	chi2(3) • chi2	=	74 0.0	1.89 0000
dtlm	00	lds Ratio	Std. Err.	Z	P> z	[95%	Conf.	Interv	/al]
difficulty _Igroup_2 _Igroup_3		.192337 .7798295 .3491338	.0371622 .2763766 .1396499	-8.53 -0.70 -2.63	0.000 0.483 0.009	.13 .389 .159	1704 3394 4117	.2808 1.561 .7646	3839 1964 3517

--more--

A two-level model

Random-effects Parameters	Estimate	Std. Err.	[95% Conf.	Interval]			
family: Identity	569182	5216584	0944322	3 430694			
	.309102	.0210004	.0344322	3.430034			
subject: Identity							
var(_cons)	1.137931	.6857497	.3492672	3.707441			
LR test vs. logistic regressi	on: chi2(2) = 17.54	Prob > chi	2 = 0.0002			
Note: LR test is conservative and provided only for reference.							

stata 🔝

- xtmelogit, by default, uses AGQ which can be intensive with large datasets or high-dimensional models
- Computation time is roughly on the order of

$$T \sim p^2 \{M + M(N_Q)^{q_t}\}$$

where

p is the number of estimable parameters *M* is the number of lowest-level (smallest) panels N_Q is the number of quadrature points q_t is the total dimension of the random effects (all levels)

• The real killer is $(N_Q)^{q_t}$

- Ideally, you want enough quadrature points such that adding more points doesn't change much
- In complex models, this can very time consuming, especially during the exploratory phase of the analysis
- Sometimes you just want quicker results, and you may be willing to give up a bit of accuracy
- Use option laplace, equivalent to $N_Q = 1$
- The computational benefit is clear one raised to any power equals one

Leplacian approximation

. xi: xtmelog: i.group (output omitt	it o ted)	itlm level _Igroup_1	i.gro -3	лр :	family: (naturall)	subj y code	ject:, or ed; _Igrou	variano 1p_1 omi	ce laplace itted)
Mixed-effects	108	gistic regr	essio	n		Numbe	er of obs	=	677
Group Variab	le	No. of Groups	Miı	Obser nimum	vations p Averag	er Gro e N	oup Maximum	Integra Poir	ation nts
fami] subjec	ly ct	118 226		2 2	5. 3.	7 0	27 3		1 1
Log likelihood	d =	-306.51035				Wald Prob	chi2(3) > chi2	=	76.09 0.0000
dtlm	00	lds Ratio	Std.	Err.	z	P> z	[95%	Conf.	Interval]
level _Igroup_2 _Igroup_3		.2044132 .7860452 .3575718	.037 .262 .135	7578 5197 4592	-8.60 -0.72 -2.71	0.000	0 .142 L .408 7 .170	23248 34766 01774	.2935872 1.512613 .7513194

--more--

The Laplacian approximation

Option laplace

Random-effects Parameters	Estimate	Std. Err.	[95% Conf	. Interval]
family: Identity var(_cons)	.522942	.4704255	.0896879	3.04911
subject: Identity var(_cons)	.7909329	.5699273	.1926568	3.247095
LR test vs. logistic regress	ion: chi2(2) = 14.7	6 Prob > ch	i2 = 0.0006

LR test vs. logistic regression: chi2(2) = 14.76 Prob > chi2 = 0.000 Note: LR test is conservative and provided only for reference. Note: log-likelihood calculations are based on the Laplacian approximation.

The Laplacian approximation

- Odds ratios and their standard errors are well approximated by Laplace
- Variance components exhibit bias, particularly at the lower (subject) level
- Model log-likelihoods and comparison LR test are in fair agreement
- These behaviors are fairly typical
- If anything, it shows that you can at least use laplace while building your model

One further advantage of laplace is that it permits you to fit crossed-effects models, which will have high-dimension

Example

- School data from Fife, Scotland (Rabe-Hesketh and Skrondal 2005)
- Attainment scores at age 16 for 3,435 students who attended any of 148 primary schools and 19 secondary schools
- $\bullet\,$ We are interested in whether the attainment score is greater than 6
- We want random effects due to primary school and secondary school, but these effects are not nested

• Consider the model

 $logit\{(Pr(attain_{ijk} > 6))\} = \beta_0 + \beta_1 sex_{ijk} + u_i + v_j$

for student k who attended primary school i and secondary school j

- Since there is no nesting, you can use the level designation _all: to treat the entire data as one big panel
- Use factor notation R. *varname* to mimic the creation of indicator variables identifying schools
- However, notice that we can treat one set of effects as nested within the entire data

A crossed-effects model

. xtmelogit attain_gt_6 sex || _all:R.sid || pid:, or variance

Note: factor variables specified; option laplace assumed

(*output omitted*)

Mixed-effects logistic regression Number of obs = 3435

Group Variabl	Le	No. of Groups	M:	Obseı inimum	rvat	ions per Average	Grou Ma	p ximum	Integration Points		
_al pi	Ll id	1 148		3435 1		3435.0 23.2		3435 72	3435 72		
Log likelihood = -2220.0035					V F	Vald c Prob >	hi2(1) chi2	=	14.2 0.000		
attain_gt_6	00	lds Ratio	Std	. Err.		z F	> z	[95%	Conf.	Interval	
sex		1.32512	. 098	86968		3.78 0	0.000	1.14	5135	1.53339	

--more--

A crossed-effects model

Estimation results

Random-effect	s Parameters	Estimate	Std. Err.	[95% Conf.	Interval]	
_all: Identity	var(R.sid)	. 1239739	.0694743	.0413354	.3718252	
pid: Identity	<pre>var(_cons)</pre>	.4520502	.0953867	. 298934	.6835937	
IP tost wa log	istic rogrossi	chi?(2) - 105.80) Prob > chi	2 - 0 0000	

LR test vs. logistic regression: chi2(2) = 195.80 Prob > chi2 = 0.0000 Note: LR test is conservative and provided only for reference. Note: log-likelihood calculations are based on the Laplacian approximation.

- xtmelogit and xtmepoisson are new to Stata 10
- We discussed xtmelogit the same holds true for xtmepoisson
- Computations can get intensive
- The Laplacian approximation is a quicker alternative
- You can fit crossed-effects models, and large ones with creative nesting
- Work in this area is ongoing

- Breslow, N. E. and D. G. Clayton. 1993. Approximate inference in generalized linear mixed models. Journal of the American Statistical Association 88: 9–25.
- Huq, N. M. and J. Cleland. 1990. Bangladesh Fertility Survey 1989 (Main Report). National Institute of Population Research and Training.
- Ng, E. S. W., J. R. Carpenter, H. Goldstein, and J. Rasbash. 2006. Estimation in generalised linear mixed models with binary outcomes by simulated maximum likelihood. *Statistical Modelling* 6: 23–42.
- Rabe-Hesketh, S., S. R. Touloupulou, and R. M. Murray. 2001. Multilevel modeling of cognitive function in schizophrenics and their first degree relatives. *Multivariate Behavioral Research* 36: 279–298.
- Rabe-Hesketh, S. and A. Skrondal. 2005. Multilevel and Longitudinal Modeling Using Stata. College Station, TX: Stata Press.
- Rodriguez, G. and N. Goldman. 1995. An assessment of estimation procedures for multilevel models with binary responses. Journal of the Royal Statistical Society, Series A 158: 73–89.

