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Introduction

@ xtdcce2 on SSC since August 2016

o Described in The Stata Journal, Vol 18, Number 3, Ditzen (2018) and in
Ditzen (2019).

@ Setting: Dynamic panel model with heterogeneous slopes and an unobserved
common factor (f; ) and a heterogeneous factor loading (v;):

Vit = AiYie—1 + Bixit + i, (1)
ujr = vife + €it

1 1
—— e = =3 ")
Bme N;§:1 Bis Amc N;§:1 i
i=1,..Nandt=1,., T

@ Aim: consistent estimation of 3; and B¢ :
» Large N, T = 1: Cross Section; 3 =f;, Vi

N=1, Large T: Time Series; B,

Large N, Small T: Micro-Panel; 3 = ﬁ,, Vi

Large N, Large T: Panel Time Series; B, and BMG

@ If the common factors are left out, they become an omitted variable, leading
to the omitted variable bias.

@ xtdcce2 includes test for cross-sectional dependence (Pesaran, 2015), xtcd2,
and estimation of exponent of cross-sectional dependence (Bailey et al., 2016,
2019), xtcse2.

vvyy
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Introduction

@ Estimation of most economic models requires heterogeneous
coefficients. Examples: growth models (Lee et al., 1997),
development economics (McNabb and LeMay-Boucher, 2014),
productivity analysis (Eberhardt et al., 2012), consumption models
(Shin et al., 1999) ,...

@ Vast econometric literature on heterogeneous coefficients models
(Zellner, 1962; Pesaran and Smith, 1995; Shin et al., 1999).

@ Theoretical literature how to account for unobserved dependencies
between cross-sectional units evolved (Pesaran, 2006; Chudik and
Pesaran, 2015).
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Dynamic Common Correlated Effects |

Vit = Ai¥it—1 + BiXit + Ui, (2)
Uie = 7ifr + €0

o Individual fixed effects («;) or deterministic time trends can be added,
but are omitted in the remainder of the presentation.

@ The heterogeneous coefficients are randomly distributed around a
common mean, f§; = 3+ v, v; ~ 1ID(0,9,) and
Ai = A+, i~ 1ID(0, Q).

@ f; is an unobserved common factor and ~; a heterogeneous factor
loading.

@ In a static model A\; = 0, Pesaran (2006) shows that equation (2) can
be consistently estimated by approximating the unobserved common
factors with cross section averages X; and y; under strict exogeneity.
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Dynamic Common Correlated Effects Il
@ In a dynamic model, the lagged dependent variable is not strictly

exogenous and therefore the estimator becomes inconsistent. Chudik

and Pesaran (2015) show that the estimator gains consistency if the

floor of pr = [\3/?] lags of the cross-sectional averages are added.
o Estimated Equation:

pT

Yie = Ai¥ijt—1 + Bixi¢ + Z Vi Ze—i + €i
1=0

Ze = (e, Xt)

@ The Mean Group Estimates are: fiyg = % Z,N:1 #; with 7t = (3\,-,3,-)
and the asymptotic variance is

N
Var(fmg) = Z — #me) (Fi — Ame)
i=1
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Estimation of Long Run Coefficients

@ A more general representation of eq (1) with further lags of the dependent
and independent variable in the form of an ARDL(p,, px) model is:

Py Px
Vit = Z ALiYie—1 + Z BriXit—1 + Uj . (3)
=1 =0

@ where p, and py is the lag length of y and x.
@ The long run coefficient of 8 and the mean group coefficient are:

N

E?io Bui ) 1

b = 5 Ove =1 b (4)
1= 3202 M N ;

o How to estimate 6; and Apg?

» Chudik et al. (2016) propose two methods, the cross-sectionally augmented
ARDL (CS-ARDL) and the cross-sectionally augmented distributed lag (CS-DL)
estimator.

» Using an error correction model (ECM).
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CS-DL, CS-ARDL, CS-ECM

e CS-DL
> Idea: directly estimate the long run coefficients, by adding differences of the
explanatory variables and their lags.

px—1 PT
;=
Vit = 0ixie + E 07 1AX; ey + E Vi Zt—1 + €t
1=0 1=0

o CS-ARDL and CS-ECM

> |dea: first estimate short run coefficients, then calculate long run coefficients.

Py Px PT
- Ay x: ! 3 .
Yiit = LiYit—1 + ﬂ/,lxl,t*/ + 'Yi,lztfl + €.t
=1 1=0 1=0

Ocs—aroLi = 727;0 /@I’i
_ARDL,i = -
1= A

o For all estimators the mean group estimates are 8¢ = vazl é,-.

@ The variance/covariance matrix for the mean group coefficients is the same as
for the "normal” (D)CCE estimator.

@ For the calculation of the variance/covariance matrix of the individual long
run coefficients 0;, the delta method is used.
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Next Steps...

@ Monte Carlo simulation
@ Bootstrapping in large panels
© Description of xtdcce?2

@ Examples
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Monte Carlo Simulation

@ Aims: Assess the bias of the point estimate and standard error of the
long run coefficient.

Simulation follows Chudik et al. (2016).
The DGP is an ARDL(2,1) model:

Vit = i+ A1iYie—1+ Ao iye—2 + BoiXie + B1,iXit—1 + Uit
Uit = Yufe + €t

@ The coefficients are generated as:
0; ~ IIDN(1,0%) A = (14 &) A2,i = —Exinai
Bo,i = &pingis Bri = (1—&pi)nsi nxi = HIDU(0, Amax)

ngi = 8,/ (]_ — i1 — )\2’,-)7 Exi ~ //DU(O.27 0.3), Epi ~ /IDU(O, 1)

(03, Amax) are varied between (0.2,0.6) and (0.8, 0.8).
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Monte Carlo Results
Bias and RMSE of Oc.

(N,T) Bias of Oy (x100) RMSE of Opc (x100)
40 50 100 150 200 40 50 100 150 200

CS-DL
40 -21.57 -21.04 -19.52 -18.73 -18.26 23.50 22.48 20.10 19.04 18.46
50 -19.41 -19.15 -17.09 -16.64 -16.42 21.12 20.19 1751 16.84 16.52
100 -20.04 -18.76 -17.40 -17.08 -16.93 20.39 19.02 17.25 16.81 16.61
150 -16.99 -16.41 -15.06 -14.72 -1456 17.35 16.64 15.05 14.62 14.46
200 -20.73 -19.62 -18.20 -17.72 -17.37 21.04 19.80 18.24 17.70 17.31
CS-ARDL
40 -2.63 -1.64 -1.94 -0.64 -0.48 19231 13.65 8.01 558 4.80
50 -2.13  -186.07 -1.45 -0.75 -0.58 40.85 404997 653 547 436
100 -3.53 -0.43 -1.21  -094 -0.65 182.04 2421 464 346 296
150 -4.93 -2.29 -1.31  -0.95 -0.59 34.46 7.20 3.69 269 248
200 -2.63 -2.29 -1.63 -1.11  -0.61  23.47 8.54 376 273 222
Monte Carlo results for Oy = 1/N Ef"zl 0; with pr = [T1/3], pf =0and (O‘é, Amax) = (0.2, 0.6).

o CS-ARDL performs better in terms of bias, bias of both estimators
decline with an increase in T.
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Monte Carlo Results
Bias and RMSE of SE(fuc).

(N,T) Bias of SE(dyc) (x100) RMSE of SE(fmc) (x100)
40 50 100 150 200 40 50 100 150 200

CS-DL
40 -63.83 -60.79 -71.47 -75.26 -77.61 12.06 1354 1585 16.68 17.19
50 -54.64 -60.85 -71.95 -75.80 -78.13 11.40 1263 1487 1566 16.13
100 -67.21 -71.64 -79.56 -82.30 -83.81 12.91 13.75 1526 15.79 16.07
150 -73.50 -76.87 -83.12 -85.09 -86.19 14.17 1481 16.01 16.39 16.60
200 -76.23 -79.50 -85.22 -87.17 -88.23 14.77 1540 16.51 16.88 17.09
CS-ARDL
40 -46.24 -43.80 -65.46 -71.38 -74.85 187.57 1094 1457 1584 16.59
50 -10.73 836.47 -66.20 -72.09 -75.85 36.00 4048.46 13.72 1491 15.67
100 -42.71 -53.72 -75.66 -80.31 -82.62 180.31 2447 1453 15.41 1585
150 -35.95 -67.29 -80.78 -84.14 -85.84 32.86 1331 1556 16.21 16.53
200 -39.30 -68.12 -82.47 -85.69 -87.39 21.64 1447 1598 16.60 16.93

Monte Carlo results for SE(Oy6) = 1/1/N Z,Nzl(éi — Opig)? with pr = [T1/3], pf = 0and (ag, Amax) = (0.2,0.6).
@ Standard errors are downward biased, increase with number of time
periods.
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Bootstrapping in large panels

@ Monte Carlo results show that standard errors are downward biased.
@ Bootstrap often useful in small samples.
@ No closed form solution for standard errors of individual long run
coefficients. Delta method can fail.
@ Bootstrap has to maintain the following properties of the DGP:
» Dynamic nature of the model
» Common factor structure
» Error structure across time and cross-sectional units
» N and T jointly to infinity
o Kapetanios (2008) and Westerlund et al. (2019) propose to re-sample
cross-sectional units, but common factor structure changes.

@ Gongalves and Perron (2018) show that resampling over time is
invalid in the presence of cross-sectional dependence.

@ Praskova (2018) shows that if the common factors are known a wild
bootstrap can be used.

o ldea: Wild Bootstrap
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Wild Bootstrap

@ Steps:
@ Estimate Model, eg: yie = Aiyie—1 + Bixie + 2100 'y,f7,it_/ + €t
© Remove residual: yi ¢ = yi+ — €+
© Following Roodman et al. (2018) generate weights

Kb _ 1 with p = 0.5
it 7 —1 with p=20.5

and calculate y,-(l;) =Vit+ k,-(t;)é,-,t
@ Estimate model and save coefficients.
© Repeat 3 - 4 B times and calculate standard errors or percentile

confidence interval.
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xtdcce2

General Syntax

Syntax:

xtdcce2 depvar [indepvars] [ varlist2 = varlist_dv ] [if]

gosssectiona/(var/ist,cr)‘ [, nocrosssectional pooled(varlist_p)

cr_lags(#) ‘ivrengptions(stﬁng) e_ivreg2 ivslow |lr(varlist_lr)

1r,options(stﬁng)‘ pooledconstant noconstant reportconstant trend

pooledtrend jackknife recursive exponent xtcse2options(string)

nocd fullsample showindividual fast blockdiaguse nodimcheck

useinvsym useqr noomitted showomitted]

For Bootstrap:

bootstrap_xtdcce?2 [, reps(intger) seed(string) cfresiduals

percentile showindividual]
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xtdcce2

General Syntax

Py Px
Vit =i + Z ALiYit—1 + Z BriXi t—1
=1 —o
Py Px
+ Z Vy,ilYe—1 + Z Vi) Xe—1 + €i¢
1=0 1=0

e crosssectional(varlist) specifies cross sectional means, i.e.
variables in Z;. These variables are partialled out.

e cr_lags(#) defines number of lags (p7) of the cross sectional
averages. The number of lags can be variable specific. The same
order as in cr() applies, hence if cr(y x), then cr_lags(py px).

@ lr(varlist_lr) and lr_options(string) define the long run
coefficients and options. For an ARDL (2,2) model it would be:
1r(L(1/2).y L(0/2).x) lr_options(ardl)
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xtdcce?
CS-DL Example

o Chudik et al. (2013) estimate the long run effect of public debt on
output growth with the following equation:

px—1

AYIt—CI+9X/t+ ZIBIIAXIt I+7y,Ayt+Z7x:lxlt /elt
1=0 /=0

@ where y; ¢ is the log of real GDP, x; s = (Ad+,mi ), di+ is log of
debt to GDP ratio and  is the inflation rate.

@ The results from Chudik et al. (2013, Table 18) with 1 lag of the
explanatory variables (px = 1) in the form of an ARDL(1,1,1) and
three lags of the cross sectional averages are estimated with:

xtdcce2 d.y dp d.gd d.(dp d.gd) , cr(d.y dp d.gd)
cr_lags(0 3 3) fullsample
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xtdcce?
CS-DL Example

. xtdcce221 d.y dp d.gd d.(dp d.gd) ///
>, cr(d.y dp d.gd) cr_lags(0 3 3) fullsample
(Dynamic) Common Correlated Effects Estimator - Mean Group

Panel Variable (i): ccode Number of obs = 1601
Time Variable (t): year Number of groups = 40
Degrees of freedom per group: Obs per group (T) = 40
without cross-sectional averages = 35.025
with cross-sectional averages = 26.025
Number of F(560, 1041) = 0.90
cross-sectional lags 0 to 3 Prob > F = 0.93
variables in mean group regression = 160 R-squared = 0.67
variables partialled out = 400 R-squared (MG) = 0.40
Root MSE = 0.03
CD Statistic = 1.11
p-value 0.2667
D.y Coef.  Std. Err. z P>z [95% Conf. Intervall
Mean Group:
dp| -.0889339  .0256445  -3.47 0.001 -.1391961 -.0386717
D.gd| -.0865123 .0143  -6.05 0.000 -.1145398 -.0584849
D.dp| .0053284  .0413629 0.13 0.897 -.0757413  .0863981
D2.gd| .0068065  .0148306 0.46 0.646 -.022261 .035874

Mean Group Variables: dp D.gd D.dp D2.
Cross Sectional Averaged Variables: D.

Heterogenous constant partialled out.

gd
y(0) dp(3) D.gd(3)

@ The long run coefficients are éﬁ,MG = —0.0889 and éAd,MG = —0.0865.
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xtdcce?2
CS-DL Example

. bootstrap_xtdcce2 , reps(500)
(running on xtdcce2 sample)

Wild-Bootstrap replications ( 500 ) using residuals

Observed Bootstrap

Normal-based

Coef. Std. Err. z P>|z| [95% Conf. Intervall
Mean Group:
dp| -.0889339 .1532996 -0.58 0.562 -.3893956 .2115279
D.gd| -.0865123 .0600872 -1.44 0.150 -.204281 .0312563
D.dp .0053284 .2093117 0.03 0.980 -.404915 .4155719
D2.gd .0068065 .094243 0.07 0.942 -.1779065 .1915195

@ The long run coefficients are not significant any longer.
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xtdcce?2
CS-ARDL

o Assume an ARDL(1,2) and pr = (py, px) = (2,2) such as:

Vit =Ai¥it—1 + Bo,iXi,t + B1,iXi =1 + Bo,iXi 2

2 2
+ Z Yy i1 ¥ + Z’Yx,i,l;(tfl +eit
1=0 1=0

@ The model is directly estimated and then the long run coefficients are calculated as:

fcs arpLi = Bo.i + Bui + Bai
A 1-X

@ Using xtdcce2 the command line is:
xtdcce2 y , 1lr(L.y x L.x L2.x) lr_options(ardl) cr(y x) cr_lags(2)

@ 1r () defines the long run variables.

@ xtdcce2 automatically detects the variables and their lags if time series operators
are used. Alternatively variables can be enclosed in parenthesis, for example
1r(L.y (x 1x 12x)), with 1x = L.x and 12x = L2.x.
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xtdcce2

CS-ARDL Example - ARDL(1,1,1) from Chudik et al. (2013, Table 17).

. xtdcce221 d.y , 1r(L.d.y L.dp dp L.d.gd d.gd) ///
> 1r_options(ardl) cr(d.y dp d.gd) cr_lags(3) ///

> fullsample

(Dynamic) Common Correlated Effects Estimator - (CS-ARDL)
Panel Variable (i): ccode Number of obs 1599
Time Variable (t): year Number of groups = 40
Degrees of freedom per group: Obs per group (T) = 40
without cross-sectional averages
with cross-sectional averages
Number of F(720, 879) 0.79
cross-sectional lags Prob > F 1.00
variables in mean group regression R-squared 0.61
variables partialled out R-squared (MG) 0.44
Root MSE 0.03
CD Statistic 0.57
p-value = .5690
D.y Coef. Std. Err. z P>zl [95% Conf. Intervall
Short Run Est.
Mean Group:
LD.y| .0475614 .0393514  1.21  0.227 -.0295659  .1246888
dp| -.1036029  .0402888 -2.57  0.010 -.1825675 -.0246383
D.gd| -.0745686 .0122305 -6.10  0.000 -.0985398 -.0505973
L.dp| -.0199465  .0462873 -0.43  0.667 -.1106679 0707749
LD.gd| -.0132482  .0156115 -0.85  0.396 -.0438463 0173498
Long Run Est.
Mean Group:
1r_dp| -.1639748  .0378594 -4.33  0.000 -.2381778 -.0897718
1r_gd| -.0873991  .0164432 -5.32  0.000 -.1196271 -.0551711
1r_y| -.9524386  .0393514 -24.20  0.000 -1.029566 -.8753112
Mean Group Variables:
Cross Sectional Averaged Variables: D.y dp D.gd

Long Run Variables:

1r_dp lr_gd lr_y
Cointegration variable(s): lr_y
Heterogenous constant partialled out.
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xtdcce2

CS-ARDL Example - ARDL(1,1,1) from Chudik et al. (2013, Table 17), bootstrapped.

. bootstrap_xtdcce2 , reps(500) percentile

(running on xtdcce2 sample)

Wild-Bootstrap

I ! I

2

replications ( 500 ) using residuals

50

100
150
200
250
300
350
400
450
500

Observed Observed percentile t

Coef.  Std. Err. z P>|z| [95% Conf. Intervall
Short Run Est.
Mean Group:

LD.y .0475614 .0393514 1.21 0.227 .7006659 1.241012

dp| -.1036029 .0402888  -2.57 0.010 -.2056815 -.1088788

D.gd| -.0745686 .0122305  -6.10 0.000 -.0594676 -.0451482

L.dp| -.0199465 .0462873  -0.43 0.667 -.0205935 .0986097

LD.gd| -.0132482 .0156115  -0.85 0.396 -.0282485 .0010115
Long Run Est.
Mean Group:

1r_dp| -.1639748 .0378594  -4.33 0.000 -.2314161 -.142728

lr_gd| -.0873991 .0164432  -5.32 0.000 -.0905856 -.0492529

1r_y| -.9524386 .0393514 -24.20 0.000 -.2993341 .241012
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xtdcce2

CS-ARDL Example - ARDL(3,3,3) from Chudik et al. (2013, Table 17).

. xtdcce221 d.y , cr_lags(3) fullsample ///

> 1r(L(1/3).(d.y) (L(0/3).dp) (L(0/3).d.gd) ) ///
> 1r_options(ardl) cr(d.y dp d.gd)
(Dynamic) Common Correlated Effects Estimator -

(CS-ARDL)

Panel Variable (i): ccode Number of obs = 1562
Time Variable (t): year Number of groups = 40
Degrees of freedom per group: Obs per group (T) = 39
without cross-sectional averages = 27.05
with cross-sectional averages = 15.05
Number of F(960, 602) = 0.96
cross-sectional lags =3 Prob > F - 0.71
variables in mean group regression = 440 R-squared = 0.39
variables partialled out = 520 R-squared (MG) = 0.51
Root MSE - 0.02
CD Statistic = -0.51
p-value 0.6108
D.y Coef. Std. Err. z P>zl [95% Conf. Intervall
Short Run Est.
Mean Group:
LD.y| .0123776 .0349374  0.35  0.723 -.0560984  .0808536
L2D.y| -.1395721  .0948493 -1.47  0.141 -.3254733  .046329
L3D.y| -.0829106 .1072972 -0.77  0.440 -.2932092  .1273881
dp| -.0707066  .0503045 -1.41  0.160 -.1693015  .0278883
D.gd| -.0853072  .0137595 -6.20  0.000 -.1122754  -.0583391
L.dp| -.0312738  .0513445 -0.61  0.542 -.1319071  .0693595
L2.dp| .098219  .101743  0.97  0.334 -.1011937  .2976317
L3.dp| -.0424672 .0581718 -0.73  0.465 -.1564818  .0715474
LD.gd| -.0270313  .0204755 -1.32  0.187 -.0671624  .0130999
L2D.gd| -.0114101  .012726 =-0.90  0.370 -.0363525  .0135324
L3D.gd| .0283559 .0177672  1.60  0.110 -.0064671  .0631789
Long Run Est.
Mean Group:
1r_dp| -.0795232  .0887003 -1.35  0.176 -.1945738  .0355274
1r_gd| -.1198351 .0402246 -2.98  0.003 -.1986738 -.0409964
1r_y| -1.210105 .2006012 -6.03  0.000 -1.603276 -.8169339
Mean Group Variables:
Cross Sectional Averaged Variables: D.y dp D.gd

Long Run Variables:

1r_dp 1r_gd lr_y

Cointegration variable(s): lr_y
Heterogenous constant partialled out.

Jan Ditzen (Heriot-Watt University)

xtdcce2 - Long Run Coefficients

30. August 2019

22 /48



xtdcce2

CS-ARDL Example - ARDL(3,3,3) from Chudik et al. (2013, Table 17), bootstrapped.

. bootstrap_xtdcce2 , reps(500)

(running on xtdcce2 sample)

Wild-Bootstrap replications ( 500 ) using residuals
1 2 3 4 5

50

100
150
200
250
300
350
400
450
500

Observed  Bootstrap Normal-based

Coef.  Std. Err. z P>lz| [95% Conf. Intervall
Short Run Est.
Mean Group:

LD.y| .0123776  .0523665  0.24  0.813 -.0902588  .115014

L2D.y| -.1395721  .0619368 -2.25  0.024 -.2609661 -.0181782

L3D.y| -.0829106 .0383575 -2.16  0.031 -.1580899 -.0077312

dp| -.0707066  .1551891 -0.46  0.649 -.3748717  .2334585

D.gd| -.0853072  .0408892 -2.09  0.037 -.1654486 -.0051658

L.dp| -.0312738  .2973936 -0.11  0.916 -.6141546  .551607

L2.dp| .098219  .3611995  0.27  0.786 -.6097191  .8061571

L3.dp| -.0424672  .2644735 -0.16  0.872 -.5608257  .4758914

LD.gd| -.0270313 .07608 -0.36  0.722 -.1761453  .1220827

L2D.gd| -.0114101 .1131884 -0.10  0.920 -.2332553  .2104352

L3D.gd| .0283559  .0859342  0.33  0.741 -.1400721  .1967839
Long Run Est.
Mean Group:

1r_dp| -.0795232  .0790329 -1.01  0.314 -.2344249  .0753785

1r_gd| -.1198351  .0324949 -3.69  0.000 -.183524 -.0561463

1r_y| -1.210105 .1392513 -8.69  0.000 -1.483033 -.9371776
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Conclusion
xtdcce?2...

introduced a routine to estimate a panel model with heterogeneous
slopes and dependence across cross-sectional untis by using the
dynamic common correlated effects estimator.
supports estimation of long run coefficients using three different
models, using the

» CS-DL estimator - direct estimation of the long run coefficients

» CS-ARDL estimator - calculation of long run coefficients out of short

run coefficients
» an ECM approach

is available on SSC (current version 2.01).
standard errors and confidence intervals can be bootstrapped.

includes estimation of cross-sectional exponent.
Further developments:
» Two-step ECM.
» Speed improvements and fitting it for "big" data.
» Compare bootstrapped standard errors and delta method standard
errors.
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The Delta Method

@ Allows calculation of an approximate probability distribution for a
matrix function a(/3) based on a random vector with a known
variance.

e Assume §; —p 8 and /n(B; — 3) —4 N(0,0) and first derivate of
a(B):

da(p)
op’

A(B) =

@ then the distribution of the function a() is

Vala(B) - a(B)] —a N (0, A()ZA(BY)
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The Delta Method |

@ Assume an ARDL(2,1) model with the following long run coefficients:

Vit = Qi + A1iYie—1+ Xoiyie—2 + Boixit + BriXit—1 + €t
di=—(1—=Ari —Ao,)

o, Bo,i + Bu,i
Li=
1= — A

e Stack the short run coefficients into m; = (A1,i, A2.i, Bo,is F1,i)

@ The vector function a(;) maps the short run coefficients into a
vector of the short run and long run coefficients:
a(mj) = (A1,is A2, Bojis Bu,is @iy 01,7), where ¢; = —1+ A1 ; + Ay j and

01 — Bo,i+Bu,i
Li = T3
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The Delta Method Il

@ The covariance matrix is:

Var(A1i) Cov(Aii,A2i) Cov(Ai,Boi) Cov(Ai, f,i)

Var(ﬁlv,-)

@ The first derivative of a(m;) is:
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The Delta Method I

8)\17,- 6)\1,,' (9)\17,' 8)\17,-
OA1,i  OX21 OPoi 0P,
O i Oy, i ONzi Oy
OA1,i  OXai  Ofoi OP,
0Bo,i  0Boi 0Bo,i 9P,
OA1,;  OXa; 0o OB
A(mi) =
0B1,i 0B OB O
OA1,;  OXa;  Ofo;i OB
0¢i 0¢i 0di 0di
OA1,;  OXa;  Ofo; OB
8017,' 891,,' 8917,' 8917,'
OM1,i  OXai  Ofoi OP,

’

i
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The Delta Method IV

@ with

0¢p;  0p;

A oy !

00, 00, 1

Bo,i OB 1—Aui— o
001;  001; o+ B
A O (1= A — Agi)?

@ Then A(7;) becomes:
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The Delta Method V

1 0 0 0
0 1 0 0
0 0 1 0
A(mi) = 0 0 0 1
1 1 0 0
Bo,i+B,i Bo,i+B1,i 1 1
(1—>\1,i—>\2,i)2 (1—>\1,i—>\2,i)2 I=Ani=Aei 1=A0i=A2,

@ Then the covariance matrix including the long run coefficients is

Jan Ditzen (Heriot-Watt University)

Y= A(m)ZiA(m)
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Monte Carlo Setup

As in Chudik et al. (2016) the data generating processes are the following:*
Vit =0+ AiYit—1 + Ao,iye—2 + BoiXit + P1,iXit—1 + Uit
Ujs = Vife + €it
Xit = Cxi + Qxi¥it—1 + Vxife + Vxirt

yi.¢+ is the dependent variable and Xx; ; the only independent variable. For a

matter of ease, it is assumed that only one explanatory variable exists.
The common factors are calculated as below:

fr = pefe-1 + s, sr ~ IDN(0,1 — p?)
Vii,t = PxiVii,t—1 F Sxi,ts Sxi,t ~ IDN(0, 05,
pxi ~ 1IDU(0,0.95)

pr = 0 if serially uncorrelated factors, or if correlated pr = 0.6

2
Ooi = 00 = <50i 1- [E(pxi)]2>

!This paper focuses on the baseline cases with heterogenous slopes and stationary
factors.
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Monte Carlo Setup I
Fixed Effects The cross-section specific fixed effects are generated as:

cyi ~ IIDN(1,1)

Cxi = Cyi + Seyis Sexi ™~ IIDN(O, 1).
Dependence between Xx; ¢, gi + and c; is introduced by adding ¢,; to the
equations for ¢,; and cg;.

Coefficients First the long run coefficient 6 is drawn and then the short
run coefficients are backed out.

0; ~ IIDN(1, 03)

Ari = (1+ &), A2,i = —Eximi

Bo,i = Epingis Bri = (L —&pi) ngi

i = HIDU(0, Amax), ngi = 0;i/ (1 — X1 — \ai)
£\ ~ IDU(0.2,0.3), £5: ~ 1IDU(0, 1)
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Monte Carlo Setup 1

Factor Loadings

Yi =+ Niv, Nir ~ IIDN(0, 02)
fYX/. = ’.YX + 77i’y><> nifyx ~ IIDN(O’ U’%/X)
02 =02, =02
1
7= Vb b=~ —03

2 2
=+/b b, = — 2
L 0 T m(m4+1) m+ 177

where m is the number of unobserved factors. In comparison to Chudik
and Pesaran (2015) it is restricted to 1.
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Monte Carlo Setup @= II|

Error Term The errors are generated such that heteroskedasticity,
autocorrelation and weakly cross-sectional dependence is allowed.

€i.t = Pei€ijt—1 + Cirt
Ct = (Cl,t: C2,t7 ""CN,t) = aCSDSet + €t
= (= (1—acspS) et
1
et ~ ”DN(Ov 50-12 (1 - p?;)), with 0‘,-2 ~ X2(2)
Pei ™~ //DU(0,0.S)

01 0 0 0
10 L o0 0
SE:o%o :
00 10
: 3 0 3
00 0 1 0
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xtdcce2

pmg-Options
@ 1r(varlist) defines the variables in the long run relationship.
@ xtdcce?2 estimates internally

PT
Ayt = ¢iyit—1+ ViXit—1 — BildXi ¢ + Z ViiZit + U (5)
=0
while xtpmg (with common factors) is based on:
PT
Ayi s = ¢ilyie—1 — 0ixie—1] — BilDxi ¢ + Z%’,/ii,r + Uit
=0
@ where 0; = —% 0; is calculated and the variances calculated using

the Delta method.
e lr_option(string)
» nodivide, coefficients are not divided by the error correction speed of
adjustment vector (i.e. estimate (5)).
> xtpmgnames, coefficients names in e(b_p_mg) and e(V_p_mg) match
the name convention from xtpmg.
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xtdcce2

Test for cross sectional dependence

@ xtdcce2 package includes the xtcd2 command, which tests for cross

sectional dependence (Pesaran, 2015).

@ Under the null hypothesis, the error terms are weakly cross sectional

dependent.
Ho : E(ujtuj+) =0,V t and i # j.
N—-1 N
2T
CD=,—— Dii
N(N—1) Z Z Pi
i=1 j=i+1
T A A
~ ~ —1 Ui, tUj
By = pii = D=1 Dielje

@ Under the null the CD test statistic is asymptotically CD ~ N(0,1).
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Saved values

Scalars

e(N)

e(T)
e(N_partial)

e(N_pooled)
e(rss)
e(11)
e(df_m)
e(r2)
e(cd)
e(cr_lags)

Scalars
e(Tmin)
e(Tbar)
Macros
e(tvar)
e(depvar)
e(omitted)
e(pooled)
e(cmdline)
e(insts)
e(alpha)

Matrices
e(b)

e(bi)

Functions
e(sample)

Ditzen (Heriot-Watt University)

number of observations

number of time periods

number of variables
partialled out

number of pooled variables

residual sum of squares

log-likelihood (only 1V)

model degrees of freedom

R-squared

CD test statistic

number of lags of cross sectional averages

(unbalanced panel)
minimum time
average time

name of time variable

name of dependent variable

name of omitted variables

name of pooled variables
command line including options
instruments (exogenous) variables
estimated of exponent

of cross-section dependence

coefficient vector

(mean group or individual)
coefficient vector

(individual and pooled)

marks estimation sample

xtdcce2 -

e(N_g)
e(Kmg)
e(N_omitted)

e(mss)
e(F)
e(rmse)
e(df_r)
e(r2.a)
e(cdp)

e(Tmax)

e(idvar)
e(indepvar)
e(1lr)
e(cmd)
e(version)
e(instd)
e(alphaSE)

e(V)

e (Vi)

g Run Coefficients

number of groups
number of regressors
number of omitted variables

model sum of square

F statistic

root mean squared error
residual degree of freedom
R-squared adjusted

p-value of CD test statistic

maximum time

name of unit variable

name of independent variables

long run variables

command line

xtdcce2 version, if xtdcce2, version used
instrumented (endogenous) variables
estimated standard error

of exponent of cross-section dependence

variance—covariance matrix
(mean group or individual)

variance—covariance matrix
(individual and pooled)
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Options

@ pooled(varlist) specifies homogeneous coefficients. For these
variables the estimated coefficients are constrained to be equal across
all units (8; = BV i). Variable may occur in indepvars. Variables in
exogenous_vars(), endogenous_vars() and 1r() may be pooled
as well.

@ crosssectional (varlist) defines the variables which are included in
z; and added as cross sectional averages (Z:—/) to the equation.
Variables in crosssectional () may be included in pooled(),
exogenous_vars (), endogenous_vars() and 1r(). Variables in
crosssectional () are partialled out, the coefficients not estimated
and reported. crosssectional(-all) adds adds all variables as cross
sectional averages. No cross sectional averages are added if
crosssectional(_none) is used, which is equivalent to
nocrosssectional. crosssectional() is a required option but can
be substituted by nocrosssectional.
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Options |

o cr_lags(#) specifies the number of lags of the cross sectional
averages. If not defined but crosssectional() contains varlist,
then only contemporaneous cross sectional averages are added, but no
lags. cr_lags(0) is equivalent to. The number of lags can be
different for different variables, following the order defined in cr().

@ nocrosssectional prevents adding cross sectional averages. Results
will be equivalent to the Pesaran and Smith (1995) Mean Group
estimator, or if 1r (varlist) specified to the Shin et al. (1999) Pooled
Mean Group estimator.

@ xtdcce?2 supports instrumental variable regression using ivreg2. The
IV specific options are:

» ivreg2options passes further options on to ivreg2. See ivreg?2,

options for more information.
» fulliv posts all available results from ivreg2 in e() with prefix
ivreg2_.
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Options Il

» noisily shows the output of wrapped ivreg2 regression command.

» ivslow For the calculation of standard errors for pooled coefficients an
auxiliary regressions is performed. In case of an IV regression, xtdcce2
runs a simple |V regression for the auxiliary regressions. this is faster. If
option is used ivslow, then xtdcce2 calls ivreg2 for the auxiliary
regression. This is advisable as soon as ivreg2 specific options are used.

@ xtdcce?2 is able to estimate long run coefficients. Three models are
supported, an error correction model, the CS-DL and CS-ARDL
method. No options for the CS-DL method are necessary.

» 1r(varlist): Variables to be included in the long-run cointegration
vector. The first variable(s) is/are the error-correction speed of
adjustment term. The default is to use the pmg model. In this case
each estimated coefficient is divided by the negative of the long-run
cointegration vector (the first variable). If the option ardl is used, then
the long run coefficients are estimated as the sum over the coefficients
relating to a variable, divided by the sum of the coefficients of the
dependent variable.
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Options Il

» lr options(string) Options for the long run coefficients. Options
may be:
* ardl estimates the CS-ARDL estimator.
* nodivide, coefficients are not divided by the error correction speed of
adjustment vector.
* xtpmgnames, coefficients names in e(b_p.mg) and e(V_p_mg) match
the name convention from xtpmg.

@ noconstant suppress constant term.
@ pooledconstant restricts the constant to be the same across all
groups (fo,i = Bo, Vi).

@ reportconstant reports the constant. If not specified the constant
is treated as a part of the cross sectional averages.

@ trend adds a linear unit specific trend. May not be combined with
pooledtrend.

@ pooledtrend a linear common trend is added. May not be combined
with trend.
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Options IV

jackknife applies the jackknife bias correction for small sample time
series bias. May not be combined with recursive.

@ recursive applies recursive mean adjustment method to correct for
small sample time series bias. May not be combined with jackknife.
exponent uses xtcse2 to estimate the exponent of the
cross-sectional dependence of the residuals. A value above 0.5
indicates cross-sectional dependence.

@ nocd suppresses calculation of CD test statistic. blockdiaguse uses
mata blockdiag rather than an alternative algorithm. mata
blockdiag is slower, but might produce more stable results.

@ showindividual reports unit individual estimates in output.

e fast omit calculation of unit specific standard errors.
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Options V

e fullsample uses entire sample available for calculation of cross
sectional averages. Any observations which are lost due to lags will be
included calculating the cross sectional averages (but are not included
in the estimation itself).

@ xtdcce2 checks for collinearity in three different ways. It checks if
matrix of the cross-sectional averages is of full rank. After partialling
out the cross-sectional averages, it checks if the entire model across
all cross-sectional units exhibits multicollinearity. The final check is
on a cross-sectional level. The outcome of the checks influence which
method is used to invert matrices. If a check fails xtdcce2 posts a
warning message. The default is cholinv and invsym if a matrix is of
rank-deficient. The following options are available to alter the
behaviour of xtdcce2 with respect to matrices of not full rank:

» useqr calculates the generalized inverse via QR decomposition. This
was the default for rank-deficient matrices for xtdcce2 pre version 1.35.
» useinvsym calculates the generalized inverse via mata invsym.
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Options VI

» showomitted displays a cross-sectional unit - variable breakdown of
omitted coefficients.

» nomitted suppress checks for collinearity.
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xtdcce2

Small Sample Time Series Bias Corrections

"half panel” jackknife
A A L/, A

® where 7}, is the mean group estimate of the first half (t =1, ..., %)
of the panel and ;. of the second half (t = T + 1, ..., T) of the
panel.
Recursive mean adjustment

t—1

ZWIS with Wlt_(ylt7 It)

- 1
Wi+ = W;
1t 1t t— 1

@ Partial mean from all variables, except the constant, removed.

@ Partial mean is lagged by one period to prevent it from being
influenced by contemporaneous observations.
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