
Improving the speed and accuracy when fitting
flexible parametric survival models on the log

hazard scale.

Paul C Lambert1,2

1Cancer Registry of Norway, Norwegian Institute of Public Health, Norway
2Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden

2024 Northern European Stata Conference, Oslo, Norway
10th September 2024

1 / 19

Introduction

• Yesterday, I taught a pre-conference course on flexible parametric
survival models using stpm3.

• I concentrated on models on the log cumulative hazard scale.

• Sometimes, there is a need to fit models on the log hazard scale.

• However, there are many more computational challenges for models
on the log hazard scale.

• This talk will describe how I dealt with these computational
challenges.

2 / 19

Flexible parametric survival models (FPSMs)

• FPSMs use spline functions to model the effect of time.

• Models can be fitted on different scales, but the most common is
the log cumulative hazard scale.

ln[H(t|xi)] = s (ln(t)|γ, k0) + xiβ

• On this scale we can derive the hazard and cumulative hazard
functions analytically, which are fed into the log-likelhood.

• Fitting these models is very quick.

3 / 19

FPSMs on the log hazard scale

• We change from H(t) to h(t).

ln [h(t)] = s(ln(t)|γ) + xβ

• We are now on the log hazard scale. This is useful for,
– Modelling SMRs/SIRs.
– Multiple time-scales.
– Sometimes with multiple time-dependent effects.
– When apply constraints (e.g. constrain HRs to be proportional after certain

time.)

4 / 19

FPSMs on the log hazard scale

• The change from uppercase H(t) to lowercase h(t) complicates
things.

ln [h(t)] = s(ln(t)|γ) + xβ

• The log-Likelihood is

ℓi = di ln [h(ti)] +

∫ ti

t0i

h(u)du

ℓi = di ln [s(ln(t)|γ) + xβ] +

∫ ti

t0i

exp(s(ln(u)|γ) + xβ)du

• Not analytically tractable, so need to use numerical integration.
5 / 19

Splines on the log hazard scale in Stata - history

stgenreg General software could write out any hazard function.
Integration used Gauss-Legendre Quadrature

strcs Models on log hazard function using restricted cubic splines.
Integration using Gauss-Legendre Quadrature, but used
analytic integrals before first and after last knot.

merlin Integration used Gauss-Legendre Quadrature.

6 / 19

Numerical intergration

ℓi = di ln [h(ti)] +

∫ ti

t0i

h(u)du

• Need to numerically integrate for all N individuals
• This will be every time likelihood function called

– and for gradient function
– and for Hessian matrix

• Can use Gaussian quadrature (with K nodes).∫ ti

t0i

h(u)du ≈ ti − t0i
2

K∑
k=1

wkh

(
ti − t0i

2
ϵi +

ti + t0i
2

)
7 / 19

Three part integration (initially used in strcs)
Boundary knots moved away from boundaries for illustration

0.0

0.2

0.4

0.6

0.8

ha
za

rd
 fu

nc
tio

n

0 1 2 3 4 5
Years from diagnosis

Analytic
Numerical

8 / 19

tanh-sinh quadrature

• Gauss legendre quadrature performs poorly when there is a
singularity at t = 0.

• This means that you need many nodes, which becomes much more
computationally intensive.

• I recently came accross the tanh-sinh quadrature method[?].

• It stated on Wikepedia that,

It is especially applied where singularities or infinite derivatives exist at
one or both endpoints

• So, I decided to explore.

9 / 19

Numerical integration of Weibull 1

Gauss-Legendre Quadrature
5 nodes: 0.76193023

10 nodes: 0.78044879
15 nodes: 0.78633660
20 nodes: 0.78915244
30 nodes: 0.79183060
50 nodes: 0.79382080
75 nodes: 0.79473710

100 nodes: 0.79516625
1000 nodes: 0.79614788
5000 nodes: 0.79620469

True value: 0.79621434

0.0

0.2

0.4

0.6

0.8

1.0

1.2

h(
t)

0 2 4 6 8 10
time

Weibull hazard (λ=0.2, γ=0.6)

10 / 19

Numerical integration of Weibull 2

tanh-sinh Quadrature
5 nodes: 0.74324507

10 nodes: 0.79618120
15 nodes: 0.79621440
20 nodes: 0.79621434
30 nodes: 0.79621434
50 nodes: 0.79621434
75 nodes: 0.79621434

100 nodes: 0.79621434

True value: 0.79621434

0.0

0.1

0.2

0.3

0.4

0.5

-4 -2 0 2 4
t

Transformed Weibull hazard (λ=0.2, γ=0.6)

11 / 19

tanh-sinh quadrature is the default method in stpm3

. stpm3 , scale(lnhazard) df(4) nolog
Number of obs = 6,242
Wald chi2(4) = 822.75

Log likelihood = -9345.3029 Prob > chi2 = 0.0000

Coefficient Std. err. z P>|z| [95% conf. interval]

time
_ns1 8.521712 .4113931 20.71 0.000 7.715397 9.328028
_ns2 -2.390542 .1994054 -11.99 0.000 -2.781369 -1.999714
_ns3 .674227 .1012383 6.66 0.000 .4758036 .8726504
_ns4 .7512846 .2063079 3.64 0.000 .3469285 1.155641

_cons -2.890098 .102914 -28.08 0.000 -3.091805 -2.68839

Quadrature method: tanh-sinh with 30 nodes.
Analytical integration before first and after last knot.

• You can explore combinations of 3-part integration vs all numerical
integration and Gauss Legendre vs tanh-sinh integration by
specifying suboptions for integoptions() in stpm3.

12 / 19

Comparing methods.

Gauss Legendre: all numerical integration
. est tab n10 n20 n25 n30 n50 n1000, stats(ll) b(%6.5f) stfmt(%9.3f)

Variable n10 n20 n25 n30 n50 n1000

_ns1 15.77737 12.55816 11.83925 11.41981 10.76840 10.24086
_ns2 -5.31281 -3.34123 -2.85658 -2.56926 -2.11758 -1.74656
_ns3 1.39246 1.22665 1.15463 1.10849 1.03205 0.96639

_cons -3.39790 -3.35931 -3.34217 -3.33122 -3.31315 -3.29773

ll -1203.823 -1218.122 -1219.871 -1220.776 -1222.052 -1222.947

tanh-sinh: 3-part integration
. est tab n10_tanh3 n20_tanh3 n25_tanh3 n30_tanh3 n50_tanh3 n1000_tanh3, stats(ll) b(%6.5f) stfmt(%9.3f)

Variable n10_tanh3 n20_tanh3 n25_tanh3 n30_tanh3 n50_tanh3 n1000_t~3

_ns1 10.26746 10.22919 10.23109 10.22917 10.22974 10.22975
_ns2 -1.76273 -1.73814 -1.73938 -1.73815 -1.73851 -1.73852
_ns3 1.00457 0.96459 0.96569 0.96449 0.96484 0.96484

_cons -3.31129 -3.29728 -3.29766 -3.29725 -3.29737 -3.29737

ll -1223.109 -1222.958 -1222.959 -1222.959 -1222.959 -1222.959

13 / 19

Using python and automatic differentation

• For large datasets numerical integration is slow.
• I put some effort into speeding up computation times.

– Likelihood evaluator in Mata
– Derive gradient and Hessians
– Some other computational improvements.

• However, could I make it faster by calling Python to do the heavy
computation?

14 / 19

Faster models with large data sets

• For large datasets can send heavy computations to Python.
• Just add python option.
• The mlad program is used to maximize the likelihood.
• Calls mlad

– Maximum Likelihood using Automatic Differentiation.
– Calls Python Jax module.
– Scores and Hessian automatically created
– Just-In-Time (JIT) compilation
– Efficient use of multiple processors.

. stpm3 i.dep, scale(lnhazard) df(5)

. stpm3 i.dep, scale(lnhazard) df(5) python

See mlad talk at Stata Conference
https://www.stata.com/meeting/us21/slides/US21 Lambert.pdf

15 / 19

https://www.stata.com/meeting/us21/slides/US21_Lambert.pdf

A alternative optimizer, mlad

• Rather than a Stata program to define the likelihood the user needs
to write a Python function.

• Automatic differentiation is used so the gradient and Hessian
functions are calculated automatically using Jax.

• Likelihood, gradient and Hessian functions are compiled so fast and
can make use of multiple processors.

• Makes use of Stata’s ml command for setup, updating parameters
and assessing convergence.

• All results are returned in Stata in standard ml format, so standard
post-estimation tools are available.

16 / 19

A alternative optimizer, mlad

• Rather than a Stata program to define the likelihood the user needs
to write a Python function.

• Automatic differentiation is used so the gradient and Hessian
functions are calculated automatically using Jax.

• Likelihood, gradient and Hessian functions are compiled so fast and
can make use of multiple processors.

• Makes use of Stata’s ml command for setup, updating parameters
and assessing convergence.

• All results are returned in Stata in standard ml format, so standard
post-estimation tools are available.

16 / 19

What is mlad doing?

17 / 19

What is mlad doing?

17 / 19

What is mlad doing?

17 / 19

Times in seconds

Sample Size
500,000 1,000,000

3 part integration
strcs 2930 4807

stpm3 493 (83.1%) 981 (79.6%)
stpm3 (python option) 46 (98.4%) 83 (98.3%)
All numerical integration

stmerlin 1950 3996
stpm3 464 (76.2%) 917 (77.0%)

stpm3 (python option) 34 (98.3%) 69 (98.3%)
Note: Using State BE (only using 1 core) on machine with 16 cores.

18 / 19

Times in seconds

Sample Size
500,000 1,000,000

3 part integration
strcs 2930 4807
stpm3 493 (83.1%) 981 (79.6%)

stpm3 (python option) 46 (98.4%) 83 (98.3%)
All numerical integration

stmerlin 1950 3996
stpm3 464 (76.2%) 917 (77.0%)

stpm3 (python option) 34 (98.3%) 69 (98.3%)
Note: Using State BE (only using 1 core) on machine with 16 cores.

18 / 19

Times in seconds

Sample Size
500,000 1,000,000

3 part integration
strcs 2930 4807
stpm3 493 (83.1%) 981 (79.6%)

stpm3 (python option) 46 (98.4%) 83 (98.3%)

All numerical integration
stmerlin 1950 3996

stpm3 464 (76.2%) 917 (77.0%)
stpm3 (python option) 34 (98.3%) 69 (98.3%)
Note: Using State BE (only using 1 core) on machine with 16 cores.

18 / 19

Times in seconds

Sample Size
500,000 1,000,000

3 part integration
strcs 2930 4807
stpm3 493 (83.1%) 981 (79.6%)

stpm3 (python option) 46 (98.4%) 83 (98.3%)
All numerical integration

stmerlin 1950 3996
stpm3 464 (76.2%) 917 (77.0%)

stpm3 (python option) 34 (98.3%) 69 (98.3%)
Note: Using State BE (only using 1 core) on machine with 16 cores.

18 / 19

Times in seconds

Sample Size
500,000 1,000,000

3 part integration
strcs 2930 4807
stpm3 493 (83.1%) 981 (79.6%)

stpm3 (python option) 46 (98.4%) 83 (98.3%)
All numerical integration

stmerlin 1950 3996

stpm3 464 (76.2%) 917 (77.0%)
stpm3 (python option) 34 (98.3%) 69 (98.3%)
Note: Using State BE (only using 1 core) on machine with 16 cores.

18 / 19

Times in seconds

Sample Size
500,000 1,000,000

3 part integration
strcs 2930 4807
stpm3 493 (83.1%) 981 (79.6%)

stpm3 (python option) 46 (98.4%) 83 (98.3%)
All numerical integration

stmerlin 1950 3996
stpm3 464 (76.2%) 917 (77.0%)

stpm3 (python option) 34 (98.3%) 69 (98.3%)
Note: Using State BE (only using 1 core) on machine with 16 cores.

18 / 19

Times in seconds

Sample Size
500,000 1,000,000

3 part integration
strcs 2930 4807
stpm3 493 (83.1%) 981 (79.6%)

stpm3 (python option) 46 (98.4%) 83 (98.3%)
All numerical integration

stmerlin 1950 3996
stpm3 464 (76.2%) 917 (77.0%)

stpm3 (python option) 34 (98.3%) 69 (98.3%)
Note: Using State BE (only using 1 core) on machine with 16 cores.

18 / 19

Summary

• It is now much faster to fit FPSMs on the log hazard scale.

• This makes their use feasible in large datasets.
• Choice of quadrature method can lead to important improvements
in accuracy of results.

– tanh-sinh quadrature and 3-part integration lead to big improvements.

• Use of python option is simple for the user.
– Requires installation of various python packages.

19 / 19

	Titlepage

