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Introduction

Klein, R. and Vella, F. (2010). Estimating a class of triangular

simultaneous equations models without exclusion restrictions.

Journal of Econometrics, 154(2).

Stata command: kvreg

Identi�cation uses heteroscedasticity

Focus on intuition of the estimator and required assumptions
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Related Work

Lewbel, A. (2012). Using Heteroscedasticity to Identify and

Estimate Mismeasured and Endogenous Regressor Models.

Journal of Business & Economic Statistics, 30(1).

Stata command: ivreg2h by Christopher Baum and Mark

Scha�er

Requires stricter restrictions on the error terms

Computationally less expensive
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Triangular Simultaneous Equations

The Klein and Vella 2010 estimator is designed to estimate a model

of the following form:

Y1 = Y2θ +Xβ +u1 (1)

Y2 = Xπ + v2 (2)

Y1 and Y2 are continuous

E (u1 | X ) = 0 and E (v2 | X ) = 0

corr (u1,v2) 6= 0

Barker Two-stage without exclusions
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Identi�cation Strategy

Most common approach is instrumental variables

IV requires exclusion restriction, which are frequently di�cult

to justify or non-existent

Instead, KV use a control function approach

A non-linear control function is constructed by modeling

heteroscedasticity in the error terms
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Control Function Theory

Y1 = Y2θ +Xβ +u1 (1)

Y2 = Xπ + v2 (2)

Problem: E [u1 | X ,Y2] 6= 0 because corr (u1,v2) 6= 0

Write u1 = E [u1 | X ,Y2]+ e, where E [e|X ,Y2] = 0

Include an estimate of E [u1 | X ,Y2] in the Y1 equation

Leaving:

Y1 = Y2θ +Xβ + ̂E [u1 | X ,Y2]+ e

Barker Two-stage without exclusions
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Control Function Implementation: 2SLS

2SLS estimation of a linear control function:

v̂2 = Y2−X π̂ (3)

Y1 = Y2θ +Xβ +ρ v̂2+ e (4)

Giving us the control function, ρ v̂2, where:

u1 = ρ v̂2+ e

E (e | X ,Y2) = 0

Without an exclusion restriction, eq. 4 cannot be estimated, as v̂2
is a linear function of the other regressors, (Y2,X ).
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Non-linear Control Function

Introduce a control function that is a non-linear function of X:

Y1 = Y2θ +Xβ + cf (X )+ e (5)

Identi�cation follows from non-linearity

Exclusion restrictions are not required

Non-linear control functions are used in sample selection

models

e.g. Inverse Mills Ratio: λ = φ(xβ )
Φ(xβ )

requires strong distributional assumptions

KV construct a non-linear control function that can be

estimated with minimal distributional assumptions
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Characterize the Error Structure

The error terms should exhibit multiplicative heteroscedasticity:

u1 = Su1 (X )u∗1 (6)

v2 = Sv2 (X )v∗2 (7)

u∗1 is the homoscedastic component

Su1 (X ) is a scaling function

The conditional variance functions follow:

Var(u1|X ) = S
2

u1

Var(v2|X ) = S
2

v2

Barker Two-stage without exclusions
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Restrictions

For u1 = Su1u
∗
1 and v2 = Sv2v

∗
2 ,

Consistent estimation of cf (X ) requires:

E (u∗1|X ) = 0 (8)

E (v∗2 |X ) = 0 (9)

Su1

Sv2
6= C (10)

E (u∗1v
∗
2 |X ) = E (u∗1v

∗
2 ) = ρ (11)

Barker Two-stage without exclusions
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Interpretation of Error Restrictions

E (u∗1v
∗
2 |X ) = E (u∗1v

∗
2 )≡ ρ (11)

Homoscedastic components must be linearly related

Cannot be tested - it must be justi�ed with contextual

argument

Linearity assumptions are prevalent in regression analysis

Speci�c interpretation of the restriction and coe�cient is

application speci�c
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Application: Wages and Education

Modeling the impact of Years of Education on Wages:

wage = educ ∗θ +Xβ +u1

educ = Xπ + v2

With an additive linear error structure:

u∗1 = ρv∗2 + ε
∗ cov (v∗2 ,ε

∗|X ) = 0

Barker Two-stage without exclusions
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Interpretation

u∗1 = ρv∗2 + ε
∗

v∗2 is unobserved scholastic ability

ρ measures the impact of unobserved ability on wages

Returns to unobserved scholastic ability are constant and do

not depend on other individual characteristics

Violated if wages rise exponentially with unobserved ability

Violated if the relationship grows weaker with age
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De�nition of cf (X )

Given an error structure satisfying the restrictions above, the

control function is de�ned as:

cf (X ) = ρ
Su1

Sv2
v2 (12)

Adding the control function into the Y1 equation gives:

Y1 = Y2θ +Xβ +ρ
Su1

Sv2
v2+ e (13)

Barker Two-stage without exclusions
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The Role of SLS in KVREG

Semiparametric least squares is used to estimate

S2
v2 = Var (v2|X ) = E

[
v22 |X

]
Semiparametric estimation is not required for identi�cation

Any consistent estimate of S2
v2 = E

[
v22 |X

]
will work:

Parametric S2
v2 = exp(Xδ )

Nonparametric S2
v2 = g(X )

Semiparametric S2
v2 = g(Xδ )

Semiparametric estimation is computationally feasible with

minimal distributional assumptions

sls will be available through SSC as a stand-alone estimation

command
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Estimation Procedure

Y1 = Y2θ +Xβ +ρ
Su1 (X γ)

Sv2 (Xδ )
v2+ e

. kvreg Y1 Y2 X
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Estimation: Step 1

Y1 = Y2θ +Xβ +ρ
Su1 (X γ)

Sv2 (Xδ )
v2+ e

1. Estimate v2, secondary equation residual

. reg Y2 X

. predict v2, residual

Barker Two-stage without exclusions
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Estimation: Step 2

Y1 = Y2θ +Xβ +ρ
Su1 (X γ)

Sv2 (Xδ )
v2+ e

2. Estimate Sv2 (Xδ ), the sq root of S
2

v2 = Var(v2|X ) = E
[
v22 |X

]
. gen v22 = v2^2
. sls v22 X

. predict S2
v2, yhat

. gen Sv2 = sqrt(S2
v2)

Barker Two-stage without exclusions



Motivation
The Estimator
Further Work

Summary

Theory
Implementation
Simulation Results

Estimation: Step 3

Y1 = Y2θ +Xβ +ρ
Su1 (X γ)

Sv2 (Xδ )
v2+ e

3. Estimate remaining parameters in a single minimization problem

using moptimize

min
{θ ,β ,ρ,γ}

N

∑
i=1

[
Y1i −

(
Y2iθ +Xiβ +ρ

Sui (X γ)

Svi (Xδ )
vi

)]2

Barker Two-stage without exclusions
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Estimation: Step 3a

Y1 = Y2θ +Xβ +ρ
Su1 (X γ)

Sv2 (Xδ )
v2+ e

3a. Estimate Su1(X γ) within each iteration of the minimization

procedure.

At the current parameter estimates,
(

θ̃ , β̃ , γ̃
)
:

. gen u1 = Y1−
(
Y2 ∗ θ̃ +X ∗ β̃

)
. gen u21 = u21^2
. gen S2

u1 = E
[
u21 |X ∗ γ̃

]
. gen Su1 = sqrt(S2

u1)

Barker Two-stage without exclusions
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Simulation Coe�cient Estimates

Table: Coe�cient Estimates

Variable True OLS CF

Y2 1 1.29 .98

(.050) (.200)

x1 1 .72 1.02

(.070) (.205)

x2 1 .72 1.02

(.091) (.205)

Cons 1 .72 1.03

(.071) (.203)

ρ 0.33 .314

(.181)

N = 1000 R = 100 Ave. Time = 839 sec
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Computational Requirements

Optimization is computationally expensive

Average time is 14 min. for N=1,000

64-bit Linux

8 GB ram

Intel Xeon CPU @ 2.70GHz

Objective function is not convex, so direct search is required

Nelder-Mead algorithm

Barker Two-stage without exclusions
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Variance Estimates

Current variance estimates are roughly 4-times larger than

variance of simulated coe�cients

Variance in�ation related to semiparametric component

derivative of kernel density estimator

bandwidth choice for derivative estimates

Final component before posting kvreg and sls to SSC

archive
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NP System

Nonparametric estimation of E [Y |X ] is central to many semi

and nonparametric estimators

kvreg and sls share components for nonparametric

conditional expectation

Components should be formalized in a system like Stata's

optimize and moptimize

see Hay�eld and Racine's np package in R
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Summary

Identi�cation is through non-linearity

Semiparametric estimation is one way to estimate conditional

variance functions and requires minimal distributional

assumptions

Watch for kvreg and sls in the SSC archive

For current code, email: mdb96@georgetown.edu
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Thank You

Michael Barker

mdb96@georgetown.edu
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Appendix

Lewbel, 2013: Error Restrictions

Application of the Lewbel, 2013 error restrictions for identi�cation

through heteroscedasticity to the KV, 2010 model:

Lewbel, 2013 KV, 2010

cov
(
X ,v22

)
6= 0 =⇒ Sv2 6= C

cov (X ,u1v2) = 0 =⇒ ρ = corr(u∗,v∗) = 0
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Appendix

Lewbel, 2013: Correlated Error Structure

The Lewbel estimator can be applied to correlated error structures

if each error term can be written as additive components as follows:

u1 = A1+B1

v2 = A2+B2

where:

A1, A2 are correlated and homoscedastic

B1, B2 are uncorrelated and heteroscedastic

This type of error structure can be applied to unobserved single

factor models.
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Semiparametric Least Squares

Estimation of S2
v via Semiparametric Least Squares

Model:

v2 = g (Xδ )+ ε

Estimation:

min
{δ}

N

∑
i=1

(
v2i − Ê

[
v2i |Xiδ

])2
For any candiate δ̃ :

Ê
[
v2i |X i δ̃

]
=

∑j 6=i v
2
j ∗K

(
Xi δ̃ −Xj δ̃

h

)

∑j 6=i K

(
Xi δ̃ −Xj δ̃

h

)
Barker Two-stage without exclusions



Appendix

Simulation Model

Error Terms:

v∗2 , ε
∗ ∼ N (0,1)

u∗1 =.33∗ v∗2 + ε
∗

u1 =exp(.2∗ x1+ .6∗ x2)∗u∗1
v2 =exp(.6∗ x1+ .2∗ x2)∗ v∗2

De�ne Model:

x1 ∼N (0,1)

x2 ∼χ
2(1)

Y1 =1+ x1+ x2+Y2+u1

Y2 =1+ x1+ x2+ v2
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Appendix

Simulation Variance Estimates

Table: Variance Estimates

Variable Simulation Estimated Trimmed (10-90)

Cons .041 .185 .046

(.566) (.070)

Y2 .040 .185 .044

(.576) (.071)

x1 .042 .189 .046

(.588) (.069)

x2 .042 .183 .047

(.551) (.071)

ρ .027 .205 .054

(.646) (.080)

N = 1000 R = 100 Ave. Time = 839 sec
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