Re-Imagining a

Stata/Python combination

James Fiedler
Stata Conference 2013

Abstract: At lastyear's Stata Conference, I presented some ideas for combining Stata and the
Python programming language within a single interface. Two methods were presented: in
one, Python was used to automate Stata; in the other, Python was used to send simulated
keystrokes to the Stata GUI. The first method has the drawback of only working in Windows,
and the second can be slow and subject to character input limits. In this presentation, I will
demonstrate a method for achieving interaction between Stata and Python that does not
suffer these drawbacks, and I will present some examples to show how this interaction can be
useful.

Support

where I work

NASA Johnson Space Center

who I work for

Universities Space Research Association

What I have in mind

To start off, let me describe the kind of “Stata/Python combination” I have in mind for this talk.

File Edit Dats Graphics Statistics User Window Help =

=l | - B EH e E

Variable Label
make Make and Model
price Price
mpg Mileage (mpg)
. rep7s Repair Record 1978
matrix list m headroom Headroom (in.)
trunk Trunk space (cu. ft.)
_ weight Weight (bs.)
m[7,4] =
length Length {in.)
mpg turn Turn Cirde (ft.)
r1i 17 3 displacement Displacement {cu. in.)
r2 29 3 gear_ratio Gear Ratio
r 20 5 foreign Car type
3 £
r4 15 4
r5 18 =
ré 26 3
r7 20 2
& -
=
some global
=
C:\Usersljfiedler\Documents\StataFiles\stata_plugins MNUM

(In order to have some values to work with, I haveloaded a copy of the auto data set, created a matrix
m from a subset of the data values, and created a global macro blah.)

What I'd like to see is the ability to use Python interactively within Stata. Currently, there are two
interactive modes. There’s (what I call) “ado mode”, which is what I used in this slide.

File Edit Dats Graphics Statistics User Window Help =
&= e - ElE#BIE
Variable Label
make Make and Model
price Price
. mata mpg Mileage (mpg)
£) rep7s Repair Record 1978
- st globa 1{- "bhlah") headroom Headroom (in.)
-)) trunk Trunk space (cu. ft.)
some global - - 8
= weight Weight (bs.)
length Length {in.)
ost_matrix("m") turn Turn Cirdle {ft.)
displacement Displacement (cu. in.)
gear_ratio Gear Ratio
. - foreign Car type
1 17 3
2 22 3
3 20)
< 15 =
5 18 4
6 26 3 & 2
7 20 2 =
=
C:\Usersljfiedler\Documents\StataFiles\stata_plugins MNUM

And with themata command the user can enter a Mata interactive mode. Mata has different syntax,

data structures, and functionality, but it’s not completely disconnected from “ado mode” because there
are functions for interacting with values defined in ado mode. For example, st_global() can be used

to bring an ado-mode macro into Mata as a string and st_matrix() can be used to bring an ado-mode
matrix in as a Mata matrix.

What I’d like to see is another interactive mode where Python can be used.

File Edit Dats Graphics Statistics User Window Help =
o —
=l | - ElE#BIE
Variable Label
make Make and Model
price Price
mpg Mileage (mpg)
rep7s Repair Record 1978
headroom Headroom (in.)
trunk Trunk space (cu. ft.)
weight Weight (bs.)
length Length {in.)
turn Turn Cirde (ft.)
displacement Displacement (cu. in.)
gear_ratio Gear Ratio
foreign Car type
& -
=
=
C:\Usersljfiedler\Documents\StataFiles\stata_plugins MNUM

Just as there’s a mata command in Stata, which puts the user into an interactive Mata session, there
could be a python command which puts the user into an interactive Python session. And just as there

are Mata functions for interacting with Stata values from Mata, there could be Python functions for
interacting with Stata values.

Why add Python?

Functionality: Python has a lot of modules
for data-related tasks.

Edge cases: There are things you can do in

Stata that would be easier in Python.

Python is fun.

The first, obvious reason for adding Python is that doing so would add functionality. Thereis a large
community of people using Python for data analysis, numerical computing, scientific computing, etc.
As a consequence, there is a lot of Python code for doing the kinds of things that Stata users do. Having
access to this code would expand what users can do in Stata, or at least expand what can be done
practically.

Second, when there is overlap in what can be done in Stata and Python, sometimes it’ll be easier to do
it in Python.

Finally, one of the things Python programmers will consistently tell you is that Python is a fun
language to use.

Problem:

Is anyone aware of a Stata
user-written routine or other
method of importing data stored in

NetCDF files into Stata?

— Statalist, "Reading NetCDF files", February 2012

Here’s an example from Statalist where adding Python would add functionality. This person had been
given a NetCDF file and was wondering whether any commands had been written for opening such a
file.

Response:

... 1t's common for researchers in
the oceanographic/climate fields to
use python to work with NetCDF

— Statalist, "Reading NetCDF files", February 2012

There weren’t any Stata commands for opening the file, so one person suggested using Python.

The file was handled some other way, but the user wrote back with some conclusions, one of which
was:

There are quite a number of programs that will extract from or use data in NetCDF files but all
involve a minimum of one or two intermediate steps before the data canbe imported into Stata. It
would be nice to eliminate this, but I don't have the time or (probably) ex pertise totake it on
because, at a minimum, it will involve linking C or Fortran [or, ahem, Python] programs to Stata.

With Python and a module for reading NetCDF files it would probably only take a few lines of code to
get this file into Stata.

Problem:

I have a large number of large
comma-separated text files that I
am trying to import. "insheet" is not

working

— Statalist, "importing quirky csv", November 2011

Here’s an example of an edge case, again from Statalist. This person has a CSV file, which, because of
some funky formatting, the user hasn’t been able to import with the insheet command.

Response:

I've found Python's csv parser to be
quite robust and able to write out
the csv files in such a way that Stata
will happily read them.

— Statalist, "importing quirky csv", November 2011

Another user suggests that Python’s csv module might help. Without more information, we can’t be

sure that the Python method would be easier in this case, but we can see that the respondent has
found cases where it is.

How do we add Python?

Use a C plugin

Stata provides functions in C for interacting
with data and matrices.

Python provides a C API for interacting with
Python structures.

Stata, through its plugin system, provides C functions for interacting with Stata data, macros, matrices,
etc. Python, through its C API (application programming interface) provides C functions for starting a
Python interpreter and interacting with Python structures.

The idea is to match up Stata’s C plugin functions with Python’s C API functions. In a sense, the idea is
to translate the C plugin functions into Python.

I think this is the way to go (i.e., much better than the methods I used at last year’s Stata Conference),
and I wish I could take credit for the idea. In fact, I’'m pretty sure the idea came up in conversation
with Stata Corp. employees last year, so credit for the idea should go to them.

Demonstration

Before I begin a demonstration, I should probably make it clear that thisisn’t a simulation. Last year I
used an imitation of the Stata GUI to demonstrate some ideas. This year there is no imitation Stata, and
no imitation Python. This is a real instance of Stata, and I am really using Python within Stata.

File Edit Dats Graphics Statistics User Window Help =

el =i] - - l#HBIE

Variable Label
make Make and Model
" price Price
. python mpg Mileage (mpg)
_— e o - t) rep7s Repair Record 1978
st g lobal " INELE) headroom Headroom (in.)
g OII'I; loba 1 ') trunk Trunk space (cu. ft.)
g - weight Weight (bs.)
length Length {in.)
. st_Matrix("m") turn Turn Cirdle {ft.)
displacement Displacement (cu. in.)
m[7,4] gear_ratio Gear Ratio
' -1 . foreign Car type
C Co
ro 17 3
ri 22 3
r2 20)
r> 15 4
ra 18 4 IR
rs 26 3 .
ré 20 2
=
C:\Usersljfiedler\Documents\StataFiles\stata_plugins MNUM

The idea, as I said, is to have the ability to use Python interactively within Stata. With Stata’s C plugin
functions, the idea can be implemented. In the slide above the command python puts the user in an

interactive Python session.

There’s some leeway in how the C plugin functions are translated into Python functions. I’ve decided
to make the Python functions mimic the Mata functions. The Python function for pulling in a global
macrosis st_global (), and the function for pulling in a Stata matricesis st_Matrix().

(Notice the capital “M” in st_Matrix(). Python has no inherent notion of a matrix, so I’'ve made a
class st_Matrix, which is mostly just a view onto a Stata matrix.)

File Edit Dats Graphics Statistics User Window Help =

el =i] - - l#HBIE

Variable Label

make Make and Model
price Price

mpg Mileage (mpg)
rep7s Repair Record 1978
headroom Headroom (in.)
trunk Trunk space (cu. ft.)
weight Weight (bs.)

length Length {in.)

turn Turn Cirde (ft.)

displacement Displacement (cu. in.)
gear_ratio Gear Ratio
foreign Car type

. python , file("hello.py")

C:\Usersljfiedler\Documents\StataFiles\stata_plugins MNUM

We can also use the Python plugin to run Python files. Here I’ve exited Python mode (not shown), so
I’m back in ado mode, and I’ve used the python function with the file option. The hello.py file is just

a single line:

print(“Hello from a Python file”)

File Edit Dats Graphics Statistics User Window Help =
o —
=l | - ElE#BIE
Variable Label
make Make and Model
price Price
mpg Mileage (mpg)
rep7s Repair Record 1978
headroom Headroom (in.)
trunk Trunk space (cu. ft.)
weight Weight (bs.)
length Length {in.)
turn Turn Cirde (ft.)
displacement Displacement (cu. in.)
gear_ratio Gear Ratio
foreign Car type
& -
=
=
C:\Usersijfiedler\Documents\StataFiles\stata_plugins NUM

(This example is in ado mode.)

The previous page shows a Python file used in isolation. Here a Python file will be used together with
an ado file to find regular expression matches.

If you’ve never used regular expressions, these are basically a cryptic method of specifying patterns in
text. Ifyou have used regular expressions, Stata’s regular expressions are probably sufficient for the
vast majority of uses. Occasionally, though, some Stata users want to do something more complicated
than what Stata’s regular expressions were designed to handle.

Here I’ve created a Stata command called prem (for print regular expression matches). It takes a single
Stata variable as its argument and takes a regular expression string as an option. In the example
above, the regular expression uses a back reference to find entries repeated characters—for example, it
finds the “bb” in “Rabbit” and the “000” in “5000”—then prints it to the screen with the match
underlined.

Sympy module

Sympy is a Python library for
symbolic mathematics. It aims to
become a full-featured computer
algebra system.

— Sympy.org

For the next couple examples I’ll be using a symbolic math module called Sympy. With Sympy you can
do things like take the limit of a function, factorize polynomials, and get the Taylor series expansion of
a function.

23 ® | S] - |ZT' _,T = e File Edit Object Graph Tools Help
5 b | Ga | [oA
1lll, Graph b

File Edit Data Graphics Statiscs User Window Help UGElLRRaCI !IEIB

X

Taylor approxmations to sin(x)

. approx sin(x) , range(-3 3) <

X
x"5/120 - x"3/6 + x

-x"3/8 + x -

C:\Usersljfiedler\Documents\StataFiles\stata_plugins CAP NUM OVR /A

(This example is in ado mode.)

Here I’m using the command approx which takes a function of x as its argument, and graphs the

function together with Taylor approximations. In the graph, the thick black line represents sin(x) and
the blue lines show the first three Taylor approximations.

Again, the point of this is to show that ado files and Python files can work together seamlessly.

File Edit Dats Graphics Statistics User Window Help [UMSElURRaCT] (O] =]
__;.Hu!u RJ | - illy - |ZT' _,T_cl :I File Edit Object Graph Tools Help
el o | B | g [ok

1lll, Graph 4 b x

X

Taylor approxmations to x*sin(x)*cos(x)

n

. approx sin(x) , range(-3 3)

. approx sin(x)*cos(x)*x , range(-1

T
-2 -1 0 1 2
X

x"2 — 2%x"4/3 + x"2
— 2"x"6/15 - 2"x"4/3 + x"2

C:\Usersljfiedler\Documents\StataFiles\stata_plugins CAP NUM OVR

Here’s another example with a more complicated function.

File Edit Dats Graphics Statistics User Window Help [UMSElURRaCT] (O] =]
__;Hugu RJ | - illy - |ZT' j_cl j File Edit Object Graph Tools Help
el o | B | g [ok |
1lll, Graph 4 b x

X

range(-6 6)

C:\Usersljfiedler\Documents\StataFiles\stata_plugins CAP NUM OVR /A

Sympy can also be used to find the functional form of derivatives and integrals. Here is a command for
graphing a function with its derivative and integral.

Next: The dta module

Looking ahead and imagining people using the Python plugin, I would guess a common use would be
to build or modify datasets. Users might want to build their datasets from scratch or by importing CSV
files, for example, then save the dataset as a dta file for analysis in Stata. Or they might want to open
and modify existing dta files before analyzing them in Stata.

I’m working on a module for doing these kinds of things.

The dta module provides

A Python version of the Stata data
structure, the Dta class

Ability to create a Dta object from
Python iterables (lists, tuples, etc.)

The module includes a complete Python version of the Stata data structure, or at least includes
everything that a dta file would include.

The module provides the ability to create a Python dataset from Python array types (“iterable” types
such as lists, tuples, generators, etc.).

The dta module provides

Methods for converting
Dta object « .dta file

The module also provides the ability to create a Python dataset from a saved dta file, and to saveto a
dta file.

Demonstration

File Edit Dats Graphics Statistics User Window Help =

=4 B R E N RS AN e R e

Variable Label
’ make Make and Model
. python) price Price
Al - mpg Mileage (mpg)
. from stata_dta import Dta rep7s Repair Record 1978
headroom Headroom (in.)
_ PR . s B R e s N P trunk Trunk space {cu. ft.)
. v = [[10*1 + j for j in range(5)] for i in range(6)] weight Weight (bs)
length Length {in.)
.V turn Turn Cirde (ft.)
([0, 1, 2, 3, 41, [10, 11, 12, 13, 14], [20, 21, 22, 23, 24], [30, 31, 32, 33, 34], [40, displacement Displacement (cu. in.)
> 51 52 53 54]] gear_ratio Gear Ratio
! ' ! foreign Car type
. for row in v: print(row)
[0, 1, 2, 3, 4]
[10, 11, 12, 13, 14]
[20, 21, 3, 24]
[30, 31, 32, 33, 34] KK
[40, 41, 3, 44] =
[50, 51, 52, 53, 54]
=]
C:\Usersljfiedler\Documents\StataFiles\stata_plugins MNUM

We need to do some preparatory work for the next example.
Here is the purpose of each of the above inputs (notice the labels 0-4 to the left of the slide):
0. Startthe Python interactive mode. (We were in ado mode before this command.)

1. The “dta module” is actually called stata_dta. This line brings Dta, the dataset constructor,
into the interactive session.

2. This line creates an array of arrays of values called v.

3. This is just to show the value of v. Think of the outer array of v as the dataset, and think of each
inner array as a row within the dataset.

4. Another way of looking at what’s in v. This stacks the inner arrays to make it easier to visualize
v asrows within a dataset.

File Edit Dats Graphics Statistics User Window Help =

=4 B R E N RS AN e R e

Variable Label

make Make and Model
price Price

mpg Mileage (mpg)

. rep7s Repair Record 1978
. data = Dta(v) headroom Headroom (in.)
trunk Trunk space (cu. ft.)
. . weight Weight (bs.)
. data.list() length Length (n.)
turn Turn Cirde (ft.)

displacement Displacement (cu. in.)
gear_ratio Gear Ratio
foreign Car type

C:\Usersljfiedler\Documents\StataFiles\stata_plugins MNUM

A dataset is created from v just by calling Dta with v as argument. To see the values in a dataset, the
Dta class hasa 1ist() method.

File Edit Dats Graphics Statistics User Window Help =

el =i] - - l#HBIE

Variable Label
make Make and Model
price Price
mpg Mileage (mpg)
. rep7s Repair Record 1978
data.summ) headroom Headroom (in.)
. trunk Trunk space (cu. ft.)
i abl . i . » weight Weight (bs.)
lable Viee S>ta. ev. Viax length Length (in.)
turn Turn Cirde (ft.)
2! . 7083 displacement Displacement {cu. in.)
2 7083 gear_ratio Gear Ratio
foreign Car type
2 .7083
28 .7083
29 .7083
. data.save("temp.dta", replace=True)
& -
. exit() .
=
C:\Usersljfiedler\Documents\StataFiles\stata_plugins MNUM

We can also summarize the data with the Dta class’s summ method, and once we’re satisfied with the
dataset, we can save it asa dta file. Above, the optional replace argument is used because there’s
already a temp.dta file in this directory. In the last line above, exit() is used to return to Stata’s
default mode.

File Edit Dats Graphics Statistics User Window Help

el =i] - - l#HBIE

Variable Label
var(
. clear varl
warl

. use temp var3
vard

. list

vari var2 var3 var4
1. 2
2. 12
3. 22
4 32
5 42
.
C:\Usersljfiedler\Documents\StataFiles\stata_plugins MNUM

Now in ado mode, the inputs above clear the existing dataset (a copy of the auto dataset was loaded),
loads temp.dta, and lists the values.

File Edit Dats Graphics Statistics User Window Help =
=l | - .l EHBIE
Variable Label

var(

. python . varl
D A) warl

. data.noteAdd("_dta", "some note for the dataset") var3
wvard

. data.save("temp.dta", replace=True)

. exit()

. clear
. use temp

. note list

_dta:

C:\Usersljfiedler\Documents\StataFiles\stata_plugins MNUM

Python Dta objects can contain anything that a dta file can. The commands above show that notes can

be added in Python. We see that when the dataset is saved (in Python) and opened in Stata, the note is
there.

Resources

Stata plugins www.stata.com/plugins/
Python www.python.org

Python C API docs.python.org/3/extending/
docs.python.org/3/c-api/
Sympy sympy.org/en/index.html

Contact jrfiedler@gmail.com

The end.

