

Fitting Complex Mixed Logit Models with Particular Focus on Labor Supply Estimation

Max Löffler

IZA and University of Cologne

New Orleans — July 18, 2013

Introduction

Motivation

- Logit models estimate discrete choice situations (e.g., yes/no)
- Discrete choice models are used in many fields of (economic) research
 - Consumer demand literature, transport economics, . . .
 - ► Labor supply estimation (Aaberge et al., 1995, van Soest, 1995, Hoynes, 1996)

Motivation

- Logit models estimate discrete choice situations (e.g., yes/no)
- Discrete choice models are used in many fields of (economic) research
 - Consumer demand literature, transport economics, . . .
 - ▶ Labor supply estimation (Aaberge et al., 1995, van Soest, 1995, Hoynes, 1996)
- Simple logit models are very easy to fit, but estimation of more complex logit models can become quite cumbersome
- In labor supply context: Used models often chosen because of computational convenience instead of theoretical considerations
 - ► New command lslogit to estimate complex mixed logit models in a common framework, focus on labor supply estimation

Agenda

- Introduction
- 2 Logit Models
 - (Some) Theory
 - Estimation
 - More Complex Models
- Command lslogit
- Conclusion

Conditional or multinomial logit

- Basic setup
 - ▶ Individual n faces J_n alternatives and chooses alternative i_n (observed)
 - Utility of individual n when choosing i_n : $U_{ni_n} = v(x_{ni_n}|\beta) + \epsilon_{ni_n}$
 - Random error terms ϵ_{nj} are independently and identically distributed according to extreme value type I distribution: $\epsilon_{nj} \sim \text{GEV}(0, 1, 0)$

Conditional or multinomial logit

- Basic setup
 - ▶ Individual n faces J_n alternatives and chooses alternative i_n (observed)
 - Utility of individual n when choosing i_n : $U_{ni_n} = v(x_{ni_n}|\pmb{\beta}) + \epsilon_{ni_n}$
 - ▶ Random error terms ϵ_{nj} are independently and identically distributed according to extreme value type I distribution: $\epsilon_{nj} \sim \text{GEV}(0, 1, 0)$
- Likelihood function can be solved analytically (McFadden, 1974)

$$L = \prod_{n=1}^{N} P(U_{ni_n} > U_{nj}, \forall j \neq i_n) = \prod_{n=1}^{N} \frac{\exp(v(x_{ni_n}|\beta))}{\sum_{j=1}^{J_n} \exp(v(x_{nj}|\beta))}$$
(1)

Conditional logit models are very convenient and easy to estimate

IIA assumption

- Conditional logit setup exhibits assumption on independence from irrelevant alternatives (IIA) (Luce, 1959)
 - ▶ Implies: ratio of choice probabilities, i.e., preference between two alternatives is independent of the presence of a third alternative
 - ▶ Working fulltime compared to non-participation/unemployment:

$$\frac{P(U_{n,h=40} > U_{n,h\neq 40})}{P(U_{n,h=0} > U_{n,h\neq 0})} = \frac{\exp\left(v(x_{n,h=40}|\beta)\right)}{\exp\left(v(x_{n,h=0}|\beta)\right)}$$
(2)

- ▶ Independent from existence and characteristics of other alternatives
- Sometimes justified but unrealistic and restrictive in many cases

Mixed logit I

- Mixed logit models allow to introduce unobserved error components in preferences, variables, alternative or individual specific taste shifters
- Heavily used in practice: unobserved heterogeneity in preferences
 - lacktriangle Assume distribution for eta (e.g., normal, log-normal or uniform, ...)
 - Integrate over conditional choice probabilities
- Likelihood given by

$$L = \prod_{n=1}^{N} P(U_{ni_n} > U_{nj}, \forall j \neq i_n) = \prod_{n=1}^{N} \int_{-\infty}^{+\infty} \frac{\exp(v(x_{ni_n}|\beta))}{\sum_{j=1}^{J_n} \exp(v(x_{nj}|\beta))} f(\beta) d\beta$$
 (3)

Mixed logit setup overcomes IIA assumption

Mixed logit II

- Likelihood function (3) cannot be solved analytically anymore
- Approximate by maximum simulated likelihood methods (Train, 2009)
 - ightharpoonup Draw randomly R times from distribution of $oldsymbol{eta}$
 - lacktriangle Average choice probabilities $p^r_{ni_n}|eta^r$ over set of draws

$$\ln(SL) = \sum_{n=1}^{N} \ln\left(\frac{1}{R} \sum_{r=1}^{R} \frac{\exp\left(v(x_{ni_n}|\beta^r)\right)}{\sum_{j=1}^{J_n} \exp\left(v(x_{nj}|\beta^r)\right)}\right)$$
(4)

Mixed logit II

- Likelihood function (3) cannot be solved analytically anymore
- Approximate by maximum simulated likelihood methods (Train, 2009)
 - ightharpoonup Draw randomly R times from distribution of $oldsymbol{eta}$
 - lacktriangle Average choice probabilities $p^r_{ni_n}|oldsymbol{eta}^r$ over set of draws

$$\ln(SL) = \sum_{n=1}^{N} \ln\left(\frac{1}{R} \sum_{r=1}^{R} \frac{\exp\left(v(x_{ni_n}|\boldsymbol{\beta}^r)\right)}{\sum_{j=1}^{J_n} \exp\left(v(x_{nj}|\boldsymbol{\beta}^r)\right)}\right) \tag{4}$$

- Various more general mixed logit setups (Keane and Wasi, 2012)
- Any discrete choice model can be approximated by mixed logit (McFadden and Train, 2000)

Logit models in Stata

- Flexible framework to estimate maximum likelihood models in Stata (ml), extensive documentation (Gould et al., 2010, Haan and Uhlendorff, 2006)
- Conditional logit can be estimated via built-in command clogit
- User-written command mixlogit to fit mixed logit models (Hole, 2007), more general models can be estimated via gmnl (Gu et al., 2013)

Logit models in Stata

- Flexible framework to estimate maximum likelihood models in Stata (ml), extensive documentation (Gould et al., 2010, Haan and Uhlendorff, 2006)
- Conditional logit can be estimated via built-in command clogit
- User-written command mixlogit to fit mixed logit models (Hole, 2007), more general models can be estimated via gmnl (Gu et al., 2013)
- Awesome tools, but two drawbacks
 - ① mixlogit: so-called d1 evaluator, gradient $\partial \ln L/\partial \beta$ derived analytically, Hessian matrix $\partial^2 \ln L/\partial \beta^2$ numerically approximated gmn1: both derivates have to be approximated numerically
 - **②** Both assume linear utility specification: $v(x_{nj}|\beta) = x_{nj}\beta'$

Gradient and Hessian Matrix of equation (4)

$$\frac{\partial \ln(SL)}{\partial \beta_k} = \sum_{n=1}^{N} \underbrace{\frac{1}{\sum_{r=1}^{R} p_{ni_n}^r}}_{=1/L_{sum,n}} \underbrace{\sum_{r=1}^{R} p_{ni_n}^r \sum_{j=1}^{J_n} \left(d_{nj} - p_{nj}^r \right) \frac{\partial v_{nj}^r}{\partial \beta_k}}_{=G_{sum,n}} = \sum_{n=1}^{N} \underbrace{\frac{G_{sum,n}}{L_{sum,n}}}_{(5)}$$

$$\frac{\partial^{2} \ln(SL)}{\partial \beta_{k} \partial \beta'_{m}} = \sum_{n=1}^{N} \left(\frac{1}{L_{sum,n}} \frac{\partial G_{sum,n}}{\partial \beta'_{m}} - \frac{\partial L_{sum,n}}{\partial \beta'_{m}} \frac{G_{sum,n}}{L_{sum,n}^{2}} \right)$$

$$\frac{\partial G_{sum,n}}{\partial \beta'_{m}} = \sum_{r=1}^{R} \left(p_{ni_{n}}^{r} \left\{ \frac{\partial v_{ni_{n}}^{r}}{\partial \beta'_{m}} - \sum_{j=1}^{J_{n}} p_{nj}^{r} \frac{\partial v_{nj}^{r}}{\partial \beta'_{m}} \right\} \sum_{j=1}^{J_{n}} \left(d_{nj} - p_{nj}^{r} \right) \frac{\partial v_{nj}^{r}}{\partial \beta_{k}} \right)$$

$$- p_{ni_{n}}^{r} \sum_{j=1}^{J_{n}} p_{nj}^{r} \left\{ \frac{\partial v_{nj}^{r}}{\partial \beta'_{m}} - \sum_{s=1}^{J_{n}} p_{ns}^{r} \frac{\partial v_{ns}^{r}}{\partial \beta'_{m}} \right\} \frac{\partial v_{nj}^{r}}{\partial \beta_{k}}$$

$$+ p_{ni_{n}}^{r} \sum_{j=1}^{J_{n}} \left(d_{nj} - p_{nj}^{r} \right) \frac{\partial^{2} v_{nj}^{r}}{\partial \beta_{k} \partial \beta'_{m}} \right)$$
(7)

$$\frac{\partial L_{sum,n}}{\partial \beta_{m}''} = \sum_{r=1}^{R} p_{ni_n}^r \left(\frac{\partial v_{ni_n}'}{\partial \beta_{m}'} - \sum_{j=1}^{J_n} p_{nj}^r \frac{\partial v_{nj}'}{\partial \beta_{m}'} \right) \tag{8}$$

Yet another logit?

- Choice of ML evaluator is a matter of time (and precision)
- Linear utility specification not necessarily a problem, x_{nj} may include interaction terms, squares and terms of higher order

Yet another logit?

- Choice of ML evaluator is a matter of time (and precision)
- Linear utility specification not necessarily a problem, x_{nj} may include interaction terms, squares and terms of higher order
- But more complex models cause problems, e.g., labor supply context
 - ► Error components in variables like measurement errors in wages
 - Simultaneous estimation of labor supply and wages
 - Box-Cox models where power parameters have to be estimated

Estimating labor supply

Most generally, discrete choice labor supply models can be written as

$$L = \prod_{n=1}^{N} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{\exp\left(v(C_{ni_n}, L_{ni_n}, x_{ni_n} | \hat{w}_{ni_n}, \beta)\right)}{\sum_{j=1}^{J_n} \exp\left(v(C_{nj}, L_{nj}, x_{nj} | \hat{w}_{nj}, \beta)\right)} f(\hat{w}_n, \beta) d\hat{w}_n d\beta$$

$$\times \left(\frac{1}{\sigma} \phi \left\{ \frac{\ln w_{ni_n} - x_{ni_n} \beta'_w}{\sigma} \right\} \right)^{1(h_{ni_n} > 0)}$$
(9)

where, e.g.,

$$v(C_{nj},L_{nj},x_{nj}|\hat{w}_{nj},\beta) = x_{C,nj}\beta_1'C_{nj}^{(\beta_2)} + \beta_3C_{nj}^{(\beta_2)}L_{nj}^{(\beta_5)} + x_{L,nj}\beta_4'L_{nj}^{(\beta_5)} + x_{I,nj}\beta_6'$$
(10)

$$C_{nj}^{(\beta_2)} = \begin{cases} \frac{(C_{nj}^*/\bar{C})^{\beta_2} - 1}{\beta_2} & \text{if } \beta_2 \neq 0 \\ \ln(C_{nj}^*/\bar{C}) & \text{if } \beta_2 = 0 \end{cases}, \quad L_{nj}^{(\beta_5)} = \begin{cases} \frac{(L_{nj}^*/\bar{L})^{\beta_5} - 1}{\beta_5} & \text{if } \beta_5 \neq 0 \\ \ln(L_{nj}^*/\bar{L}) & \text{if } \beta_5 = 0 \end{cases}$$
(11)

$$c_{nj}^* = \hat{w}_{nj}h_j + I_n + T_{nj} - \tau(\hat{w}_{nj}h_j, I_n, T_{nj})$$
 (12)

Command 1slogit

New estimation routine

- Estimates complex mixed logit models
 - where households have preferences with regard to two or three goods
 - ▶ Built-in utility functions (quadratic, log-quadratic/translog, Box-Cox)
 - Allows to specify observed and unobserved heterogeneity in preferences and across alternatives

Command lslogit

New estimation routine

- Estimates complex mixed logit models
 - where households have preferences with regard to two or three goods
 - Built-in utility functions (quadratic, log-quadratic/translog, Box-Cox)
 - Allows to specify observed and unobserved heterogeneity in preferences and across alternatives
- Main focus on labor supply estimation, therefore additional options
 - Simultaneous estimation of preferences and wage equation
 - Integrates wage prediction error out during estimation process
 - Calculates marginal utility of consumption (and allows constraints)

Command lslogit

New estimation routine

- Estimates complex mixed logit models
 - where households have preferences with regard to two or three goods
 - ▶ Built-in utility functions (quadratic, log-quadratic/translog, Box-Cox)
 - Allows to specify observed and unobserved heterogeneity in preferences and across alternatives
- Main focus on labor supply estimation, therefore additional options
 - Simultaneous estimation of preferences and wage equation
 - Integrates wage prediction error out during estimation process
 - Calculates marginal utility of consumption (and allows constraints)
- Technically: derivative2-evaluator, written in Mata
 - ▶ Rather quick, but more flexible and thus also slower than clogit
 - ▶ By now: beta version available on request

Command Islogit

How to use it

Use of clogit

- . clogit depvar varlist, group(varname)
- clogit depvar consumption#(varlist) leisure#(varlist)
 alternatives#(varlist), group(varname)

How to use it

Use of clogit

- . clogit depvar varlist, group(varname)

Use of lslogit

Output

. lslogit choice, group(id) c(dpi) l(freiz) boxcox cx(lage*_m) lx1(lage*_m)

Mixed Logit Labor Supply Model Number of obs = 5761 LR chi2(2) = 171.99 Prob > chi2 = 0.0000 Log likelihood = -1368.2779 Pseudo R2 = 0.1456

(Std. Err. adjusted for clustering on hhnrakt)

	choice	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
Cx	lage_m lage2_m _cons	63.48062 -8.688809 -112.7283	10.78075 1.483041 19.40653	5.89 -5.86 -5.81	0.000 0.000 0.000	42.35074 -11.59552 -150.7644	84.6105 -5.782102 -74.69218
CxL1	_cons	.0862592	.0578086	1.49	0.136	0270435	.1995619
L1x	lage_m lage2_m _cons	1.314325 1787296 -2.32873	1.334258 .1835297 2.38518	0.99 -0.97 -0.98	0.325 0.330 0.329	-1.300773 5384413 -7.003596	3.929424 .1809821 2.346136
	/1_C /1_L1	.593499 -2.624566	.0875811	6.78 -5.02	0.000	.4218433 -3.649429	.7651548 -1.599704
	[dudes]	.0341955					

Model: - Box-Cox utility function

Thank you for your attention!

Comments or questions? — loeffler@iza.org

Appendix

References I

- Aaberge, R., Dagsvik, J. K. and Strøm, S. (1995). Labor supply responses and welfare effects of tax reforms, *The Scandinavian Journal of Economics* **97**(4): 635–659.
- Gould, W., Pitblado, J. and Poi, B. (2010). Maxiumum Likelihood Estimation with Stata, fourth edn, Stata Press.
- Gu, Y., Hole, A. R. and Knox, S. (2013). Fitting the generalized multinomial logit model in stata, *Stata Journal* 13(2): 382–397.
- Haan, P. and Uhlendorff, A. (2006). Estimation of multinomial logit models with unobserved heterogeneity using maximum simulated likelihood, *Stata Journal* **6**(2): 229–245.
- Hole, A. R. (2007). Fitting mixed logit models by using maximum simulated likelihood, *Stata Journal* **7**(3): 388–401.
- Hoynes, H. W. (1996). Welfare Transfers in Two-Parent Families: Labor Supply and Welfare Participation Under AFDC-UP, *Econometrica* **64**(2): 295–332.
- Keane, M. P. and Wasi, N. (2012). Comparing alternative models of heterogeneity in consumer choice behavior, *Journal of Applied Econometrics*. DOI: 10.1002/jae.2304.
- Luce, R. D. (1959). Individual Choice Behavior: A Theoretical Analysis, Wiley, New York.
- McFadden, D. (1974). Conditional logit analysis of qualitative choice behavior, *in P. Zarembka* (ed.), *Frontiers in Econometrics*, Academic Press, New York.

References

References II

- McFadden, D. and Train, K. E. (2000). Mixed mnl models for discrete response, *Journal of Applied Econometrics* **15**(5): 447–470.
- Train, K. E. (2009). Discrete Choice Methods with Simulation, second edn, Cambridge University Press.
- van Soest, A. (1995). Structural models of family labor supply a discrete choice approach, Journal of Human Resources 30(1): 63–88.