
Just tired of endless loops!
or parallel: Stata module for parallel computing

George G. Vega
gvega@spensiones.cl

Chilean Pension Supervisor

Stata Conference New Orleans
July 18-19, 2013

Thanks to Damian C. Clarke, Félix Villatoro and Eduardo Fajnzylber, Tomás Rau, Eric Melse, Valentina Moscoso, the

Research team of the Chilean Pension Supervisor and several Stata users worldwide for their valuable contributions. The

usual disclaimers applies.

GGV — parallel 1/19

Agenda

1 Motivation

2 What is and how does it work

3 Benchmarks

4 Syntax and Usage

5 Concluding Remarks

GGV — parallel 2/19

Motivation

• Despite the availability of administrative data, its exploitation is still a novel
issue.

• At the same time, currently home computers are arriving with extremely high
computational capabilities.

• Given its nature, matching both (big data problems and HPA) sounds
strightforward.

• But, implementing parallel computing for the social scientiest is not easy, most
of this due to lack of (user-friendly) statistical computing tools.

• parallel aims to make a contribution to these issues.

GGV — parallel 3/19

Motivation

• Despite the availability of administrative data, its exploitation is still a novel
issue.

• At the same time, currently home computers are arriving with extremely high
computational capabilities.

• Given its nature, matching both (big data problems and HPA) sounds
strightforward.

• But, implementing parallel computing for the social scientiest is not easy, most
of this due to lack of (user-friendly) statistical computing tools.

• parallel aims to make a contribution to these issues.

GGV — parallel 3/19

Motivation

• Despite the availability of administrative data, its exploitation is still a novel
issue.

• At the same time, currently home computers are arriving with extremely high
computational capabilities.

• Given its nature, matching both (big data problems and HPA) sounds
strightforward.

• But, implementing parallel computing for the social scientiest is not easy, most
of this due to lack of (user-friendly) statistical computing tools.

• parallel aims to make a contribution to these issues.

GGV — parallel 3/19

Motivation

• Despite the availability of administrative data, its exploitation is still a novel
issue.

• At the same time, currently home computers are arriving with extremely high
computational capabilities.

• Given its nature, matching both (big data problems and HPA) sounds
strightforward.

• But, implementing parallel computing for the social scientiest is not easy,

most
of this due to lack of (user-friendly) statistical computing tools.

• parallel aims to make a contribution to these issues.

GGV — parallel 3/19

Motivation

• Despite the availability of administrative data, its exploitation is still a novel
issue.

• At the same time, currently home computers are arriving with extremely high
computational capabilities.

• Given its nature, matching both (big data problems and HPA) sounds
strightforward.

• But, implementing parallel computing for the social scientiest is not easy, most
of this due to lack of (user-friendly) statistical computing tools.

• parallel aims to make a contribution to these issues.

GGV — parallel 3/19

Motivation

• Despite the availability of administrative data, its exploitation is still a novel
issue.

• At the same time, currently home computers are arriving with extremely high
computational capabilities.

• Given its nature, matching both (big data problems and HPA) sounds
strightforward.

• But, implementing parallel computing for the social scientiest is not easy, most
of this due to lack of (user-friendly) statistical computing tools.

• parallel aims to make a contribution to these issues.

GGV — parallel 3/19

1 Motivation

2 What is and how does it work

3 Benchmarks

4 Syntax and Usage

5 Concluding Remarks

GGV — parallel 4/19

What is and how does it work
What is?

• Inspired in the R package “snow”

(several other examples exists: StataMP,
Condor HTC, C’s Ox library, Matlab’s Parallel Toolbox, etc.)

• Is designed to be used in multicore CPUs (dualcore, quadcore, etc.).

• It implements parallel computing methods through an OS’s shell scripting
(using Stata in batch mode) to accelerate computations.

• Depending on the task, can reach near to (or over) linear speedups proportional
to the number of physical cores of the computer.

• Thus having a quad-core computer can lead to a 400% speedup.

GGV — parallel 5/19

What is and how does it work
What is?

• Inspired in the R package “snow”(several other examples exists: StataMP,
Condor HTC, C’s Ox library, Matlab’s Parallel Toolbox, etc.)

• Is designed to be used in multicore CPUs (dualcore, quadcore, etc.).

• It implements parallel computing methods through an OS’s shell scripting
(using Stata in batch mode) to accelerate computations.

• Depending on the task, can reach near to (or over) linear speedups proportional
to the number of physical cores of the computer.

• Thus having a quad-core computer can lead to a 400% speedup.

GGV — parallel 5/19

What is and how does it work
What is?

• Inspired in the R package “snow”(several other examples exists: StataMP,
Condor HTC, C’s Ox library, Matlab’s Parallel Toolbox, etc.)

• Is designed to be used in multicore CPUs (dualcore, quadcore, etc.).

• It implements parallel computing methods through an OS’s shell scripting
(using Stata in batch mode) to accelerate computations.

• Depending on the task, can reach near to (or over) linear speedups proportional
to the number of physical cores of the computer.

• Thus having a quad-core computer can lead to a 400% speedup.

GGV — parallel 5/19

What is and how does it work
What is?

• Inspired in the R package “snow”(several other examples exists: StataMP,
Condor HTC, C’s Ox library, Matlab’s Parallel Toolbox, etc.)

• Is designed to be used in multicore CPUs (dualcore, quadcore, etc.).

• It implements parallel computing methods through an OS’s shell scripting
(using Stata in batch mode) to accelerate computations.

• Depending on the task, can reach near to (or over) linear speedups proportional
to the number of physical cores of the computer.

• Thus having a quad-core computer can lead to a 400% speedup.

GGV — parallel 5/19

What is and how does it work
What is?

• Inspired in the R package “snow”(several other examples exists: StataMP,
Condor HTC, C’s Ox library, Matlab’s Parallel Toolbox, etc.)

• Is designed to be used in multicore CPUs (dualcore, quadcore, etc.).

• It implements parallel computing methods through an OS’s shell scripting
(using Stata in batch mode) to accelerate computations.

• Depending on the task, can reach near to (or over) linear speedups proportional
to the number of physical cores of the computer.

• Thus having a quad-core computer can lead to a 400% speedup.

GGV — parallel 5/19

What is and how does it work
What is?

• Inspired in the R package “snow”(several other examples exists: StataMP,
Condor HTC, C’s Ox library, Matlab’s Parallel Toolbox, etc.)

• Is designed to be used in multicore CPUs (dualcore, quadcore, etc.).

• It implements parallel computing methods through an OS’s shell scripting
(using Stata in batch mode) to accelerate computations.

• Depending on the task, can reach near to (or over) linear speedups proportional
to the number of physical cores of the computer.

• Thus having a quad-core computer can lead to a 400% speedup.

GGV — parallel 5/19

What is and how does it work
How does it work?

Data

globals programs

mata
objects

mata
programs

Cluster 3Cluster 2Cluster 1 ... Cluster n

Splitting the data set

Passing
objects

Cluster
3’

Cluster
2’

Cluster
1’

... Cluster
n’

Task (stata batch-mode)

Data’

globals programs

mata
objects

mata
programs

Appending the data set

GGV — parallel 6/19

What is and how does it work

Sounds “pretty” but...

is this for real!?

GGV — parallel 7/19

What is and how does it work

Sounds “pretty” but...is this for real!?

GGV — parallel 7/19

What is and how does it work
Parallel’s backend

When the user enters

parallel: gen n = N

parallel takes the command and writes something like this

cap clear all

cd ~

1 set seed 34815
set memory 16777216b

cap set maxvar 5000

cap set matsize 400

2 local pll instance 1
local pll_id efcql2tspr

capture {

noisily {

3 use pllefcql2tsprdataset if efcql2tsprcut == 1
gen n = N
}

}

4 save pllefcql2tsprdta1, replace
local result = _rc

cd ~

5 mata: write diagnosis(st local(”result”),
>” pllefcql2tsprfinito1”)

cap clear all

cd ~

1 set seed 98327
set memory 16777216b

cap set maxvar 5000

cap set matsize 400

2 local pll instance 2
local pll_id efcql2tspr

capture {

noisily {

3 use pllefcql2tsprdataset if efcql2tsprcut == 2
gen n = N
}

}

4 save pllefcql2tsprdta2, replace
local result = _rc

cd ~

5 mata: write diagnosis(st local(”result”),
>” pllefcql2tsprfinito2”)

GGV — parallel 8/19

What is and how does it work
Parallel’s backend

When the user enters

parallel: gen n = N

parallel takes the command and writes something like this

cap clear all

cd ~

1 set seed 34815
set memory 16777216b

cap set maxvar 5000

cap set matsize 400

2 local pll instance 1
local pll_id efcql2tspr

capture {

noisily {

3 use pllefcql2tsprdataset if efcql2tsprcut == 1
gen n = N
}

}

4 save pllefcql2tsprdta1, replace
local result = _rc

cd ~

5 mata: write diagnosis(st local(”result”),
>” pllefcql2tsprfinito1”)

cap clear all

cd ~

1 set seed 98327
set memory 16777216b

cap set maxvar 5000

cap set matsize 400

2 local pll instance 2
local pll_id efcql2tspr

capture {

noisily {

3 use pllefcql2tsprdataset if efcql2tsprcut == 2
gen n = N
}

}

4 save pllefcql2tsprdta2, replace
local result = _rc

cd ~

5 mata: write diagnosis(st local(”result”),
>” pllefcql2tsprfinito2”)

GGV — parallel 8/19

What is and how does it work
Parallel’s backend

When the user enters

parallel: gen n = N

parallel takes the command and writes something like this

cap clear all

cd ~

1 set seed 34815
set memory 16777216b

cap set maxvar 5000

cap set matsize 400

2 local pll instance 1
local pll_id efcql2tspr

capture {

noisily {

3 use pllefcql2tsprdataset if efcql2tsprcut == 1
gen n = N
}

}

4 save pllefcql2tsprdta1, replace
local result = _rc

cd ~

5 mata: write diagnosis(st local(”result”),
>” pllefcql2tsprfinito1”)

cap clear all

cd ~

1 set seed 98327
set memory 16777216b

cap set maxvar 5000

cap set matsize 400

2 local pll instance 2
local pll_id efcql2tspr

capture {

noisily {

3 use pllefcql2tsprdataset if efcql2tsprcut == 2
gen n = N
}

}

4 save pllefcql2tsprdta2, replace
local result = _rc

cd ~

5 mata: write diagnosis(st local(”result”),
>” pllefcql2tsprfinito2”)

GGV — parallel 8/19

What is and how does it work

Ok, it works but...

it must be really hard to use!

GGV — parallel 9/19

What is and how does it work

Ok, it works but...

it must be really hard to use!

GGV — parallel 9/19

1 Motivation

2 What is and how does it work

3 Benchmarks

4 Syntax and Usage

5 Concluding Remarks

GGV — parallel 10/19

Benchmarks
Simple example: Serial replace

Serial fashion

do mydofile.do

Parallel fashion

parallel do mydofile.do

Figure: mydofile.do

local size = N

forval i=1/‘size’ {

qui replace x = ///

1/sqrt(2*‘c(pi)’)*exp(-(x^2/2)) in ‘i’

}

Table: Serial replacing using a loop on a Linux Server (16 clusters)

100.000 1.000.000 10.000.000
CPU 1.43 16.94 144.68
Total 0.34 3.20 12.49

Setup 0.00 0.00 0.00
Compute 0.32 3.07 11.54
Finish 0.02 0.12 0.95

Ratio (compute) 4.50 5.51 12.53
Ratio (total) 4.22 (26%) 5.30 (30%) 11.58 (72%)
Tested on a Intel Xeon X470 (hexadeca-core) machine

GGV — parallel 11/19

Benchmarks
Monte Carlo simulation (Windows Machine)

Serial fashion

do myexperiment.do

Parallel fashion

parallel do myexperiment.do, nodata

Figure: myexperiment.do

local num of intervals = 50

if length("‘pll id’") == 0 {

local start = 1

local end = ‘num of intervals’

}

else {

local ntot = floor(‘num of intervals’/$PLL CLUSTERS)

local start = (‘pll instance’ - 1)*‘ntot’ + 1

local end = (‘pll instance’)*‘ntot’

if ‘pll instance’ == $PLL CLUSTERS local end = 10

}

local reps 10000

forval i=‘start’/‘end’ {

qui use census2, clear

gen true y = age

gen z factor = region

sum z factor, meanonly

scalar zmu = r(mean)

qui {

gen y1 = .

gen y2 = .

local c = ‘i’

set seed ‘c’

simulate c=r(c) mu1=r(mu1) se mu1 = r(se mu1) ///

mu2=r(mu2) se mu2 = r(se mu2), ///

saving(cc‘i’, replace) nodots reps(‘reps’): ///

mcsimul1, c(‘c’)

}

}

Table: Monte Carlo Experiment on a Windows Machine (4 clusters)

2 4
CPU 111.49 114.13
Total 58.02 37.48

Setup 0.00 0.00
Compute 58.02 37.48
Finish 0.00 0.00

Ratio (compute) 1.92 3.04
Ratio (total) 1.92 (96%) 3.04 (76%)
Tested on a Intel i3 2120 (dual-core) machine

GGV — parallel 12/19

Benchmarks
Monte Carlo simulation (Unix Machine)

Serial fashion

do myexperiment.do

Parallel fashion

parallel do myexperiment.do, nodata

Table: Monte Carlo Experiment on a Linux Server (16 clusters)

2 4 8 16
CPU 164.79 164.04 162.84 163.89
Total 69.85 34.28 19.00 10.78

Setup 0.00 0.00 0.00 0.00
Compute 69.85 34.28 19.00 10.78
Finish 0.00 0.00 0.00 0.00

Ratio (compute) 2.36 4.78 8.57 15.21
Ratio (total) 2.36 (118%) 4.78 (120%) 8.57 (107%) 15.21 (95%)
Tested on a Intel Xeon X470 (hexadeca-core) machine

GGV — parallel 13/19

Benchmarks
Reshaping Administrative Data

Serial fashion

reshape wide tipsolic rutemp opta derecho ngiros, ///

i(id) j(time)

Parallel fashion

parallel, by(id) :reshape wide tipsolic rutemp opta derecho ngiros, ///

i(id) j(time)

Table: Reshaping wide a large database on a Linux Server (8 clusters)

100.000 1.000.000 5.000.000
CPU 5.51 72.70 392.97
Total 2.33 17.46 86.44

Setup 0.00 0.00 0.00
Compute 1.83 12.42 57.93
Finish 0.50 5.04 28.51

Ratio (compute) 3.01 5.85 6.78
Ratio (total) 2.37 (29%) 4.16 (52%) 4.55 (57%)
Tested on a Intel Xeon X470 (hexadeca-core) machine

GGV — parallel 14/19

1 Motivation

2 What is and how does it work

3 Benchmarks

4 Syntax and Usage

5 Concluding Remarks

GGV — parallel 15/19

Syntax and Usage

Setup

parallel setclusters # [, force]

By syntax

parallel [, by(varlist) programs mata seeds(string) randtype(random.org|datetime)
processors(integer) nodata]: stata cmd

Do syntax

parallel do filename
[, by(varlist) programs mata seeds(string) randtype(random.org|datetime)
processors(integer) nodata]

GGV — parallel 16/19

Syntax and Usage

Setup

parallel setclusters # [, force]

By syntax

parallel [, by(varlist) programs mata seeds(string) randtype(random.org|datetime)
processors(integer) nodata]: stata cmd

Do syntax

parallel do filename
[, by(varlist) programs mata seeds(string) randtype(random.org|datetime)
processors(integer) nodata]

GGV — parallel 16/19

Syntax and Usage

Setup

parallel setclusters # [, force]

By syntax

parallel [, by(varlist) programs mata seeds(string) randtype(random.org|datetime)
processors(integer) nodata]: stata cmd

Do syntax

parallel do filename
[, by(varlist) programs mata seeds(string) randtype(random.org|datetime)
processors(integer) nodata]

GGV — parallel 16/19

Syntax and Usage
Recomendations on its usage

parallel suit ...

• Montecarlo simulation.

• Extensive nested control flow (loops,
while, ifs, etc.).

• Bootstraping/Jacknife.

• Simulations in general.

parallel doesn’t suit ...

• (already) fast commands.

• Regressions, ARIMA, etc.

• Linear Algebra.

• Whatever StataMP does better.

GGV — parallel 17/19

Syntax and Usage
Recomendations on its usage

parallel suit ...

• Montecarlo simulation.

• Extensive nested control flow (loops,
while, ifs, etc.).

• Bootstraping/Jacknife.

• Simulations in general.

parallel doesn’t suit ...

• (already) fast commands.

• Regressions, ARIMA, etc.

• Linear Algebra.

• Whatever StataMP does better.

GGV — parallel 17/19

Syntax and Usage
Recomendations on its usage

parallel suit ...

• Montecarlo simulation.

• Extensive nested control flow (loops,
while, ifs, etc.).

• Bootstraping/Jacknife.

• Simulations in general.

parallel doesn’t suit ...

• (already) fast commands.

• Regressions, ARIMA, etc.

• Linear Algebra.

• Whatever StataMP does better.

GGV — parallel 17/19

Syntax and Usage
Recomendations on its usage

parallel suit ...

• Montecarlo simulation.

• Extensive nested control flow (loops,
while, ifs, etc.).

• Bootstraping/Jacknife.

• Simulations in general.

parallel doesn’t suit ...

• (already) fast commands.

• Regressions, ARIMA, etc.

• Linear Algebra.

• Whatever StataMP does better.

GGV — parallel 17/19

Syntax and Usage
Recomendations on its usage

parallel suit ...

• Montecarlo simulation.

• Extensive nested control flow (loops,
while, ifs, etc.).

• Bootstraping/Jacknife.

• Simulations in general.

parallel doesn’t suit ...

• (already) fast commands.

• Regressions, ARIMA, etc.

• Linear Algebra.

• Whatever StataMP does better.

GGV — parallel 17/19

Syntax and Usage
Recomendations on its usage

parallel suit ...

• Montecarlo simulation.

• Extensive nested control flow (loops,
while, ifs, etc.).

• Bootstraping/Jacknife.

• Simulations in general.

parallel doesn’t suit ...

• (already) fast commands.

• Regressions, ARIMA, etc.

• Linear Algebra.

• Whatever StataMP does better.

GGV — parallel 17/19

Syntax and Usage
Recomendations on its usage

parallel suit ...

• Montecarlo simulation.

• Extensive nested control flow (loops,
while, ifs, etc.).

• Bootstraping/Jacknife.

• Simulations in general.

parallel doesn’t suit ...

• (already) fast commands.

• Regressions, ARIMA, etc.

• Linear Algebra.

• Whatever StataMP does better.

GGV — parallel 17/19

Syntax and Usage
Recomendations on its usage

parallel suit ...

• Montecarlo simulation.

• Extensive nested control flow (loops,
while, ifs, etc.).

• Bootstraping/Jacknife.

• Simulations in general.

parallel doesn’t suit ...

• (already) fast commands.

• Regressions, ARIMA, etc.

• Linear Algebra.

• Whatever StataMP does better.

GGV — parallel 17/19

Concluding Remarks

• In the case of Stata, parallel is, to the authors knowledge, the first public
user-contribution to parallel computing

• its major strengths/advantages are in simulation models and non-vectorized
operations such as control-flow statements.

• Depending on the proportion of the algorithm that can be de-serialized, it is
possible to reach near to constant scale speedups.

• parallel establishes a new basis for parallel computing in Stata, thus an all
new set of algorithms can be implemented:
• parsimulate
• parfor
• parbootstrap
• parnnmatch
• ... You name it!

GGV — parallel 18/19

Concluding Remarks

• In the case of Stata, parallel is, to the authors knowledge, the first public
user-contribution to parallel computing

• its major strengths/advantages are in simulation models and non-vectorized
operations such as control-flow statements.

• Depending on the proportion of the algorithm that can be de-serialized, it is
possible to reach near to constant scale speedups.

• parallel establishes a new basis for parallel computing in Stata, thus an all
new set of algorithms can be implemented:
• parsimulate
• parfor
• parbootstrap
• parnnmatch
• ... You name it!

GGV — parallel 18/19

Concluding Remarks

• In the case of Stata, parallel is, to the authors knowledge, the first public
user-contribution to parallel computing

• its major strengths/advantages are in simulation models and non-vectorized
operations such as control-flow statements.

• Depending on the proportion of the algorithm that can be de-serialized, it is
possible to reach near to constant scale speedups.

• parallel establishes a new basis for parallel computing in Stata, thus an all
new set of algorithms can be implemented:
• parsimulate
• parfor
• parbootstrap
• parnnmatch
• ... You name it!

GGV — parallel 18/19

Concluding Remarks

• In the case of Stata, parallel is, to the authors knowledge, the first public
user-contribution to parallel computing

• its major strengths/advantages are in simulation models and non-vectorized
operations such as control-flow statements.

• Depending on the proportion of the algorithm that can be de-serialized, it is
possible to reach near to constant scale speedups.

• parallel establishes a new basis for parallel computing in Stata,

thus an all
new set of algorithms can be implemented:
• parsimulate
• parfor
• parbootstrap
• parnnmatch
• ... You name it!

GGV — parallel 18/19

Concluding Remarks

• In the case of Stata, parallel is, to the authors knowledge, the first public
user-contribution to parallel computing

• its major strengths/advantages are in simulation models and non-vectorized
operations such as control-flow statements.

• Depending on the proportion of the algorithm that can be de-serialized, it is
possible to reach near to constant scale speedups.

• parallel establishes a new basis for parallel computing in Stata, thus an all
new set of algorithms can be implemented:

• parsimulate
• parfor
• parbootstrap
• parnnmatch
• ... You name it!

GGV — parallel 18/19

Concluding Remarks

• In the case of Stata, parallel is, to the authors knowledge, the first public
user-contribution to parallel computing

• its major strengths/advantages are in simulation models and non-vectorized
operations such as control-flow statements.

• Depending on the proportion of the algorithm that can be de-serialized, it is
possible to reach near to constant scale speedups.

• parallel establishes a new basis for parallel computing in Stata, thus an all
new set of algorithms can be implemented:
• parsimulate

• parfor
• parbootstrap
• parnnmatch
• ... You name it!

GGV — parallel 18/19

Concluding Remarks

• In the case of Stata, parallel is, to the authors knowledge, the first public
user-contribution to parallel computing

• its major strengths/advantages are in simulation models and non-vectorized
operations such as control-flow statements.

• Depending on the proportion of the algorithm that can be de-serialized, it is
possible to reach near to constant scale speedups.

• parallel establishes a new basis for parallel computing in Stata, thus an all
new set of algorithms can be implemented:
• parsimulate
• parfor

• parbootstrap
• parnnmatch
• ... You name it!

GGV — parallel 18/19

Concluding Remarks

• In the case of Stata, parallel is, to the authors knowledge, the first public
user-contribution to parallel computing

• its major strengths/advantages are in simulation models and non-vectorized
operations such as control-flow statements.

• Depending on the proportion of the algorithm that can be de-serialized, it is
possible to reach near to constant scale speedups.

• parallel establishes a new basis for parallel computing in Stata, thus an all
new set of algorithms can be implemented:
• parsimulate
• parfor
• parbootstrap

• parnnmatch
• ... You name it!

GGV — parallel 18/19

Concluding Remarks

• In the case of Stata, parallel is, to the authors knowledge, the first public
user-contribution to parallel computing

• its major strengths/advantages are in simulation models and non-vectorized
operations such as control-flow statements.

• Depending on the proportion of the algorithm that can be de-serialized, it is
possible to reach near to constant scale speedups.

• parallel establishes a new basis for parallel computing in Stata, thus an all
new set of algorithms can be implemented:
• parsimulate
• parfor
• parbootstrap
• parnnmatch

• ... You name it!

GGV — parallel 18/19

Concluding Remarks

• In the case of Stata, parallel is, to the authors knowledge, the first public
user-contribution to parallel computing

• its major strengths/advantages are in simulation models and non-vectorized
operations such as control-flow statements.

• Depending on the proportion of the algorithm that can be de-serialized, it is
possible to reach near to constant scale speedups.

• parallel establishes a new basis for parallel computing in Stata, thus an all
new set of algorithms can be implemented:
• parsimulate
• parfor
• parbootstrap
• parnnmatch
• ... You name it!

GGV — parallel 18/19

Thank you very much!

George G. Vega
gvega@spensiones.cl

Chilean Pension Supervisor

Stata Conference New Orleans
July 18-19, 2013

GGV — Thank you very much! 19/19

	Motivation
	What is and how does it work
	Benchmarks
	Syntax and Usage
	Concluding Remarks

