Estimation of
High-
Dimensional
Models

Paulo Guimarães

Outline

Introductio

LRM - 1FE

LRM - 2FE

LRM - 3FE

Degrees of Freedom

Nonlineaı Models

Estimation of High-Dimensional Models

Paulo Guimarães

Portuguese Stata Users Group University of Minho, Braga 2010

Outline

Estimation of High-Dimensional Models

Paulo Guimarães

Outline

- Introduction
- LRM 1FE
- LRM 2FE
- LRM 3FE
- Degrees of Freedom
- Nonlinear Models

Introduction

- What do I mean by "high-dimensional models"?
- How can we estimate "high-dimensional models"?
- The Linear Regression Model
 - 1 fixed effect
 - 2 fixed effects
 - 3 fixed effects
- Identification of the fixed effects
- Non-linear regression models with fixed effects

Introduction

Estimation of High-Dimensional Models

Paulo Guimarães

- Outline
- Introduction
- LRM 1FE
- LRM 2FE
- LRM 3FE
- Degrees of Freedom
- Nonlinear Models

- Estimation of models with many observations and variables poses new challenges.
- Conventional estimation methods will not work.
- A case in point is estimation of models with high-dimensional fixed effects.
- With high-dimensional models explicit introduction of dummy variables to account for fixed effects is not an option.
- With one fixed effect there are other solutions:
 - Condition out the fixed effects (eg: linear regression, poisson, logistic regression)
 - use a modified iterative algorithm for maximization (see Greene(2004))

Introduction

Estimation of High-Dimensional Models

Paulo Guimarães

Outline

Introduction

LRM - 1FE

LRM - 2FI

LRM - 3FE

Degrees of Freedom

Nonlinear Models What happens if:

- We can not condition out the fixed effect?
- We have two or more fixed effects?
- We have too many variables?

Guimaraes and Portugal (2010).

In this presentation we present a technique proposed in Carneiro, Guimaraes and Portugal (2010) to estimate a model with 3 high-dimensional fixed effects. This estimation strategy is discussed in more detail in

The Linear Regression Model

Estimation of High-Dimensional Models

Paulo Guimarães

Outline

LRM - 1FE

LRM - 2FE

LRM - 3FE

Degrees of Freedom

Nonlinear Models

- Consider the linear model $\mathbf{Y} = \mathbf{X}\beta + \epsilon$
- Minimization of the sum of squares (SS) results in a set of equations:

$$\begin{bmatrix} \frac{\partial SS}{\partial \beta_1} = \sum_i x_{1i}(y_i - \beta_1 x_{1i} - \beta_2 x_{2i} - \dots - \beta_k x_{ki}) = 0\\ \frac{\partial SS}{\partial \beta_2} = \sum_i x_{2i}(y_i - \beta_1 x_{1i} - \beta_2 x_{2i} - \dots - \beta_k x_{ki}) = 0\\ \dots\\ \frac{\partial SS}{\partial \beta_k} = \sum_i x_{ki}(y_i - \beta_1 x_{1i} - \beta_2 x_{2i} - \dots - \beta_k x_{ki}) = 0 \end{bmatrix}$$

These equations can easily be solved using

$$\widehat{\boldsymbol{\beta}} = \left(\mathbf{X}' \mathbf{X} \right)^{-1} \mathbf{X}' \mathbf{Y}$$

The Linear Regression Model

Estimation of High-Dimensional Models

Paulo Guimarães

Outline

Introduction

- LRM 1FE
- LRM 2FE
- LRM 3FE

Degrees of Freedom

- An alternative approach: the partitioned ("cyclic-ascent" or "zigzag") algorithm:
 - 1. Initialize $\beta_1^{(0)}, \beta_2^{(0)}, ..., \beta_k^{(0)}$
 - **2**. Solve for $\beta_1^{(1)}$ as the solution to $\frac{\partial SS}{\partial \beta_1} = \sum_i x_{1i} (y_i \beta_1 x_{1i} \beta_2^{(0)} x_{2i} \dots \beta_k^{(0)} x_{ki}) = 0$ **2**. Solve for $\beta_2^{(1)}$ as the solution to $\frac{\partial SS}{\partial \beta_2} = \sum_i x_{2i} (y_i \beta_1^{(1)} x_{1i} \beta_2 x_{2i} \dots \beta_k^{(0)} x_{ki}) = 0$ **3**. and so on...
 - 4. Repeat until convergence.

The Linear Regression Model - One Fixed Effect

Estimation of High-Dimensional Models

Paulo Guimarães

Outline

Introduction

LRM - 1FE

LRM - 2FE

LRM - 3FE

Degrees of Freedom

- \blacksquare Suppose we have a fixed effect: $\mathbf{Y}=\mathbf{X}\boldsymbol{\beta}+\mathbf{D}\boldsymbol{\alpha}+\boldsymbol{\epsilon}$
- where X is n × k and D is a n × G₁ matrix of "dummies" and G₁ is a large number.
- The normal equations are:

$$\begin{bmatrix} \mathbf{X}'\mathbf{X} & \mathbf{X}'\mathbf{D} \\ \mathbf{D}'\mathbf{X} & \mathbf{D}'\mathbf{D} \end{bmatrix} \begin{bmatrix} \beta \\ \alpha \end{bmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{Y} \\ \mathbf{D}'\mathbf{Y} \end{bmatrix}$$
$$\begin{bmatrix} \mathbf{X}'\mathbf{X}\beta + \mathbf{X}'\mathbf{D}\alpha = \mathbf{X}'\mathbf{Y} \\ \mathbf{D}'\mathbf{X}\beta + \mathbf{D}'\mathbf{D}\alpha = \mathbf{D}'\mathbf{Y} \end{bmatrix}$$
$$\begin{bmatrix} \beta = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'(\mathbf{Y} - \mathbf{D}\alpha) \\ \alpha = (\mathbf{D}'\mathbf{D})^{-1}\mathbf{D}'(\mathbf{Y} - \mathbf{X}\beta) \end{bmatrix}$$

The Linear Regression Model - One Fixed Effect

Estimation of High-Dimensional Models

Paulo Guimarães

Outline

Introduction

LRM - 1FE

LRM - 2F

LRM - 3F

Degrees of Freedom

Nonlinear Models • This suggests the following "zigzag" estimation procedure:

$$\begin{bmatrix} \beta^{(j+1)} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'(\mathbf{Y} - \mathbf{D}\alpha^{(j)}) \\ \alpha^{(j)} = (\mathbf{D}'\mathbf{D})^{-1}\mathbf{D}'(\mathbf{Y} - \mathbf{X}\beta^{(j)}) \end{bmatrix}$$

- **D** α has dimension $n \times 1$.
- $(\mathbf{D}'\mathbf{D})^{-1}\mathbf{D}'$ are group means.
- The "zigzag" approach involves running several regressions with k explanatory variables (1st equation) and repeatedly computing means of residuals (2nd equation).
- The vector Dα contains the estimated fixed effects and if added as a regressor will give the same SS as in a model with the fixed-effects.

Examples

Estimation of High-Dimensional Models

Paulo Guimarães

Outline

Introduction

LRM - 1FE

LRM - 2F

LRM - 3FE

Degrees of Freedom

- Estimation of linear regression model with one fixed effect EXAMPLE1
- Estimation of linear regression model with one fixed effect (faster approach)
 EXAMPLE2

The Linear Regression Model - Two Fixed Effects

Estimation of High-Dimensional Models

Paulo Guimarães

- Outline
- Introduction
- LRM 1FE
- LRM 2FE
- LRM 3FI
- Degrees of Freedom
- Nonlinear Models

Suppose we have two fixed effects:

$$\mathbf{Y} = \mathbf{X}\beta + \mathbf{D}_1\alpha + \mathbf{D}_2\gamma + \epsilon$$

- **D**₁ is *n* × *G*₁ and **D**₂ is *n* × *G*₂ and both *G*₁ and *G*₂ are large numbers.
- Estimation of this model is complicated. See Abowd, Kramarz and Margolis (Ectrca 1999).
- But a "zigzag" approach is simple to implement:

$$\begin{bmatrix} \beta^{(j+1)} = (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}' (\mathbf{Y} - \mathbf{D}_1 \alpha^{(j)} - \mathbf{D}_2 \gamma^{(j)}) \\ \alpha^{(j)} = (\mathbf{D}'_1 \mathbf{D}_1)^{-1} \mathbf{D}'_1 (\mathbf{Y} - \mathbf{X} \beta^{(j)} - \mathbf{D}_2 \gamma^{(j)}) \\ \gamma^{(j)} = (\mathbf{D}'_2 \mathbf{D}_2)^{-1} \mathbf{D}'_2 (\mathbf{Y} - \mathbf{X} \beta^{(j)} - \mathbf{D}_1 \alpha^{(j)}) \end{bmatrix}$$

	Examples
Estimation of High- Dimensional Models Paulo Guimarães Outline	
Introduction	 Estimation of Linear Regression with two fixed effects See EXAMPLE3
LRM - 1FE	
LRM - 3FE	
Degrees of Freedom	
Nonlinear Models	

The Linear Regression Model - Two Fixed Effects

Estimation of High-Dimensional Models

Paulo Guimarães

- Outline
- Introduction
- LRM 1FE
- LRM 2FE
- LRM 3FE
- Degrees of Freedom

- In practical applications it may make more sense to estimate in steps using the Frisch-Waugh-Lovell theorem.
 - First remove the effects of D_1 and D_2 from **Y** and **X**.
 - Then regress the transformed Y on the transformed X to obtain the estimates for β.
 - Then (if needed) recover the estimates of the fixed effects by regressing u = Y - Xβ on D₁ and D₂.
- Regressions on D₁ and D₂ are fast because they only require computation of means.
- We can sweep out one of the fixed effects by demeaning the variables.

	Examples
Estimation of High- Dimensional Models Paulo Guimarães	
Outline	
Introduction	Estimation of Linear Regression with two fixed effects
LRM - 1FE	(faster approach)
LRM - 2FE	See EXAMPLE4
LRM - 3FE	
Degrees of Freedom	
Nonlinear Models	

Estimation of the Standard Errors

Estimation of High-Dimensional Models

Paulo Guimarães

Outline

Introduction

LRM - 1FE

LRM - 2FE

LRM - 3F

Degrees of Freedom

Nonlinear Models The conventional OLS formula

$$V(\widehat{\beta}) = \sigma^2 \left(\mathbf{X}' \mathbf{X} \right)^{-1}$$

poses 2 problems:

- How to avoid calculation of $(\mathbf{X}'\mathbf{X})^{-1}$
- How to estimate σ^2 (the problem are the degrees of freedom!)
- The first problem can be solved using

$$V(\widehat{\beta}_j) = \frac{\sigma^2}{Ns_j^2(1 - R_{j.123...}^2)}$$

 A easier solution is to estimate in two steps. Standard errors (whether or not clustered) of the second equation are correct provided we adjust the degrees of freedom.

	Examples
Estimation of High- Dimensional Models Paulo Guimarães	
Outline	
Introduction	Estimation of standard errors in the Linear Regression with
LRM - 1FE	two fixed effects
LRM - 2FE	See EXAMPLE5
LRM - 3FE	
Degrees of Freedom	
Nonlinear Models	

Stata Commands for LRM with 2 fixed effects

Estimation of High-Dimensional Models

Paulo Guimarães

- Outline
- Introductio
- LRM 1FE
- LRM 2FE
- LRM 3FE
- Degrees of Freedom
- Nonlinear Models

There are 4 user written commands

- areg programmed by Amine Ouazad. Implements the exact least squares solution proposed by Abowd, Creecy and Kramarz (2002). Does not compute standard errors.
- felsdvreg programmed by Thomas Cornelissen. Uses a "memory-saving" approach.
- gpreg programmed by Johannes F. Schmieder. Implements the two-step approach of Guimaraes and Portugal (2009). Some options implemented in Mata. Does not compute clustered standard errors.
- reg2hdfe programmed by Paulo Guimaraes. Implements the two-step approach of Guimaraes and Portugal (2009). Recommended for very large data sets.

reg2hdfe

Estimation of High-Dimensional Models Paulo Guimarães

Command Syntax:

reg2hdfe depvar indepvars [if] [in], id1(varname) id2(varname) [options]

where options are:

fe1(new varname) fe2(new varname)

cluster(varname)

groupid(new varname)

```
outdata(string)
maxiter(integer)
```

Degrees of Freedom

LRM - 2FE

Nonlinear Models tolerance(float)
indata(string) To be used after outdata(string)
improve(string) To be used after outdata(string)
simple check nodots verbose

	Examples
Estimation of High- Dimensional Models Paulo Guimarães	
Outline	
Introduction	Estimation of Linear Regression with two fixed effects
LRM - 1FE	using reg2hdfe
LRM - 2FE	See EXAMPLE6
LRM - 3FE	
Degrees of Freedom	
Nonlinear Models	

More than two fixed-effects

Estimation of High-Dimensional Models

Paulo Guimarães

Outline Introduct

- LRM 1FE
- LRM 2FE
- LRM 3FE

Degrees of Freedom

- Extensions to 3 or more FEs are straightforward
- The normal equations suggest the algorithm

$$\begin{bmatrix} \beta = (\mathbf{Z}'\mathbf{Z})^{-1} \mathbf{Z}' (\mathbf{Y} - \mathbf{D}_1 \alpha - \mathbf{D}_2 \gamma - \mathbf{D}_3 \eta) \\ \alpha = (\mathbf{D}'_1 \mathbf{D}_1)^{-1} \mathbf{D}'_1 (\mathbf{Y} - \mathbf{Z}\beta - \mathbf{D}_2 \gamma - \mathbf{D}_3 \eta) \\ \gamma = (\mathbf{D}'_2 \mathbf{D}_2)^{-1} \mathbf{D}'_2 (\mathbf{Y} - \mathbf{Z}\beta - \mathbf{D}_1 \alpha - \mathbf{D}_3 \eta) \\ \eta = (\mathbf{D}'_3 \mathbf{D}_3)^{-1} \mathbf{D}'_3 (\mathbf{Y} - \mathbf{Z}\beta - \mathbf{D}_1 \alpha - \mathbf{D}_2 \gamma) \end{bmatrix}$$

- Since we can sweep one fixed effect the algorithm should work for 4 FE!
- The only problem is the calculation of degrees of freedom
- In Carneiro et al (2010) we estimate a wage equation with 3 FEs (aprox. 6.4 million workers, 620,000 firms and 115,000 jobs)

	Examples
Estimation of High- Dimensional Models Paulo Guimarães	
Outline	
Introduction	Estimation of Linear Regression with 3 fixed effects
LRM - 1FE	Soo EXAMPLE7
LRM - 2FE	
LRM - 3FE	
Degrees of Freedom	
Nonlinear Models	

Identification of the fixed effects

Estimation of High-Dimensional Models

Paulo Guimarães

Outline

Introductio

LRM - 1FI

LRM - 2FE

LRM - 3FE

Degrees of Freedom

Nonlinear Models Consider a regression model with N observations and a single fixed effect with G₁ levels (one-way ANOVA model):

$$E(y_{it}) = \mu + \alpha_i$$

- If we replace *E*(*y_{it}*) by the data cell-means we have a system of *G*₁ equations on *G*₁ + 1 unknowns
- To solve this model we need to impose one restriction (typically $\mu = 0$ or $\alpha_1 = 0$)
- With this restriction we are able to estimate *G*₁ coefficients of the model
- This means that SSR has N G₁ degrees of freedom (or N - k - G₁ if there are an additional k non-collinear explanatory variables in the model)

Identification of the fixed effects

Estimation of High-Dimensional Models

Paulo Guimarães

- Outline
- Introduction
- LRM 1FE
- LRM 2FI
- LRM 3FE

Degrees of Freedom

Nonlinear Models Consider now a regression model with two fixed effects with G₁ and G₂ levels respectively,

$$E(y_{it}) = \mu + \alpha_i + \eta_j$$

- Unique combinations of α_i and η_j define a set of equations. We need at least two restrictions to identify the coefficients.
 - Consider an example with $G_1 = G_2 = 3$

$$\begin{array}{l} \mu + \alpha_{1} + \eta_{1} \\ \mu + \alpha_{1} + \eta_{2} \\ \mu + \alpha_{2} + \eta_{1} \\ \mu + \alpha_{2} + \eta_{3} \\ \mu + \alpha_{3} + \eta_{2} \\ \mu + \alpha_{3} + \eta_{3} \end{array}$$

	Identification of the fixed effects					
Estimation of High- Dimensional Models Paulo Guimarães	Impose the restriction	s $\mu=$ 0 and $lpha_1$	= 0			
Outline Introduction LRM - 1FE LRM - 2FE LRM - 3FE Degrees of Freedom	$\begin{array}{c} \boxed{11}\\ \boxed{12}\\ \alpha_2+\boxed{11}\\ \alpha_2+\eta_3\\ \alpha_3+\boxed{12}\\ \alpha_3+\eta_3\end{array}$	$\begin{array}{c} \overbrace{\raiselinetic}{\raiselinetic} & \overbrace{\raiselinetic}{\raiselinetic} \\ \rightarrow & \overbrace{\raiselinetic}{\raiselinetic} & \overbrace{\raiselinetic}{\raiselinetic} & \rightarrow \\ & \overbrace{\raiselinetic}{\raiselinetic} & \overbrace{\raiselinetic}{\raiselinetic} & \rightarrow \\ & \overbrace{\raiselinetic}{\raiselinetic} & \overbrace{\raiselinetic}{\raiselinetic} & \overbrace{\raiselinetic}{\raiselinetic} & \rightarrow \\ & \overbrace{\raiselinetic}{\raiselinetic} & \overbrace{\raiselinetic} &$	$\begin{array}{c} \hline T_{1} \\ \hline T_{2} \\ \hline \hline c c_{2} + \hline T_{1} \\ \hline c c_{2} + \hline T_{3} \\ \hline c c_{3} + \hline T_{2} \\ \hline c c_{3} + \hline T_{3} \end{array}$			
Nonlinear Models	 The SSR has N - (G₁ degrees of freedom 	$(+G_2-1)=N$	$I-G_1-G_2+1$			

Identification of the fixed effects

Estimation of High-Dimensional Models

Paulo Guimarães

Outline Introducti LRM - 1F

LRM - 2FI

LRM - 3FE

Degrees of Freedom

Nonlinear Models

	Impose	the	restrictions	$\mu = 0$	and	$\alpha_1 = 0$	
--	--------	-----	--------------	-----------	-----	----------------	--

$\mu + \alpha_1 + \eta_1$		η_1		η_{1}
$\mu + \alpha_1 + \eta_2$		η_2		η_2
$\mu + \alpha_2 + \eta_1$	\rightarrow	$\alpha_2 + \eta_1$	\rightarrow	$\alpha_2 + \eta_1$
$\mu + \alpha_2 + \eta_2$		$\alpha_2 + \eta_2$		$\alpha_2 + \eta_2$
$\mu + \alpha_3 + \eta_3$		$\alpha_3 + \eta_3$		$\alpha_3 + \eta_3$
$\mu + \alpha_3 + \eta_3$		$\alpha_3 + \eta_3$		$\alpha_3 + \eta_3$

• We would need an additional restriction ($\alpha_3 = 0$ or $\eta_3 = 0$)

- The SSR has $N (G_1 + G_2 2) = N G_1 G_2 + 2$ degrees of freedom
- According to Abowd et al 2002 there are now 2 "mobility groups"

Nonlinear models

Estimation of High-Dimensional Models

Paulo Guimarães

Outline

Introductio

LRM - 1FE

LRM - 2FE

LRM - 3FE

Degrees of Freedom

Nonlinear Models This approach can be extended to non-linear models.An example with Poisson regression:

$$E(y_i) = \lambda_i = \exp(\mathbf{x}'_i\beta + \alpha_1 d_{1i} + \alpha_2 d_{2i} + \dots + \alpha_J d_{Ji})$$

Using the first order conditions:

$$\exp(lpha_j) = \mathbf{d}_j' \mathbf{y} imes [\mathbf{d}_j' \exp(\mathbf{x}_i' eta)]^{-1}$$

- Optimization of the maximum-likelihood function requires recursive estimation of a Poisson regression with the x variables and an offset containing the estimates α obtained from the expression above.
- The algorithm should work well with models that have globally concave log-likelihood functions

Examples

Estimation of High-Dimensional Models

Paulo Guimarães

Outline

Introductio

LRM - 1FE

LRM - 2FE

LRM - 3FE

Degrees of Freedom

- A Poisson regression with one fixed effect see EXAMPLE8
- A Poisson regression with two fixed effects see EXAMPLE9
- A Negative Binomial regression with one fixed effect see EXAMPLE10
- A Negative Binomial regression with two fixed effects see EXAMPLE11

Final Remarks

Estimation of High-Dimensional Models

Paulo Guimarães

Outline

Introductio

LRM - 1FE

LRM - 2FI

LRM - 3FE

Degrees of Freedom

- This approach does not require much memory
- It may be extended to many different types of models
- The algorithm is slow but there is room for improvement
- The presentation is based on Guimaraes and Portugal (2010) "A simple feasible alternative procedure to estimate models with high-dimensional fixed-effects"