
Staggered Price and Trend In‡ation:
Some Nuisances¤

Guido Ascariy

Department of Economics and Quantitative Methods, University of Pavia

June 2000

Abstract

Most of the papers in the sticky-price literature are based on a log-linearisation

around the zero in‡ation steady state, a simplifying but counterfactual assumption.

This paper shows that when trend in‡ation is considered, both the long-run and the
short run properties of time dependent staggered price models change dramatically. It

follows that the results obtained by models log-linearised around a zero in‡ation steady

state might be misleading.

JEL classi…cation : E24, E32.

Keywords: in‡ation, staggered price/wages.

¤I thank Roger Farmer, Jordi Gali, Berthold Herrendorf, Tommaso Monacelli, Neil Rankin and semi-

nar participants at the 2001 SED Conference in Stockholm, Universidad Carlos III de Madrid, Catholic

University of Milan and University of Milan Bicocca. Usual disclaimer applies.
yAddress : Department of Economis and Quantitative Methods, University of Pavia, Via San Felice 5,

27100 ITALY; E-mail : gascari@eco.unipv.it.



1 Introduction

“Macroeconomics is moving toward a New Neoclassical Synthesis” (Goodfriend and King
(1998), p. 231). “Building on new classical macroeconomics and RBC analysis, it incorpo-

rates intertemporal optimization and rational expectations [...]. Building on New Keynesian
economics, it incorporates imperfect competition and costly price adjustment [...]” (Good-

friend and King (1998), p. 255). Judging from the amount of recent paper on dynamic
general equilibrium models of sticky prices, mainly time dependent staggered prices, the

moving seems to be completed.1 Given the aim to build quantitative models of economic
‡uctuations, the models are simulated and then, following the RBC tradition, compared

with actual data.
The vast majority of the works in the literature log-linearise their model around a

particular steady state: the zero in‡ation steady state.2 This is due to reasons of simplicity,

given that in actual data trend in‡ation in the developed world in the last forty/thirty years
have been quite far from zero. The average in‡ation rates from the seventies onwards in

major European countries range from approximately the 3% of Germany to the almost
10% of Spain with the U.S. around 5%. It is obvious that a time-dependent sticky-price

framework is ill suited for describing economies with high rates of in‡ation, because in such
an environment the sticky price assumption is unreasonable.3 On the contrary, post world

war data in developed economies show positive, but low levels of average in‡ation and thus
the New Neoclassical Synthesis framework is applied to describe those data. The implicit

assumption then must be that taking into account low levels of trend in‡ation would not
matter anyway, because it would have a negligible e¤ect both on the steady state (around

which the model is log-linearised) and on the dynamic properties of the model.
This paper investigates this implicit assumption. It shows that is actually substantially

faulty. It does that by analysing a standard sticky price dynamic general equilibrium
model with the Calvo (1983)-Rotemberg (1982) sticky price speci…cation, which is the

most commonly employed in the literature. The structure is otherwise taken by the well-
known paper of Chari et al. (2000b). It also analyses the case in which capital is treated as

…xed (another common assumption in this literature, following an argument put forward by
McCallum and Nelson (1999)). It turns out that when trend in‡ation is considered, both the

long-run (i.e., steady state) and the short run (i.e., dynamics) properties of time dependent
staggered price models change dramatically. First, using standard calibration values from

1 This new workhorse model has been extensively used to investigate various issues: persistence (e.g.,

Jeanne (1998), Chari et al. (2000b), Ascari (2000)), monetary policy rule (e.g., Rotemberg and Woodford

(1997), Clarida et al. (1999)), in‡ation dynamics (e.g., Gali and Gertler (1999)) and open economy (e.g.,

Chari et al. (2000a), Gali and Monacelli (1999)).
2 Exceptions are King and Wolman (1996), Dotsey et al. (1999), Ascari (2000) and Chari et al. (2000a).
3 Therefore, it would be pointless to show that for high average in‡ation rates time-dependent sticky price

models deliver counterfactual results.
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the literature, it is shown that the steady state output level is very much sensitive to the
steady state rate of growth of money. Very mild level of trend in‡ation implies large, and

unrealistic, changes in the steady state output level. Second, consequently, trend in‡ation
matters for the dynamic properties of the log-linearised model. Indeed, the dynamics of

the log-linearised model depends on the particular steady state around which it has been
log-linearised. Since steady state di¤ers a lot depending on the level of trend in‡ation,

it comes as no surprise the fact that trend in‡ation matters for the dynamics of the log-
linearised model. Finally, early old-fashioned sticky-price models has been extensively used

to address a very important topic: disin‡ation (see, e.g., Blanchard and Fischer (1989), chp.
10). Again, the level of trend in‡ation from which the disin‡ation policy starts is extremely

important for the dynamic behaviour of the model following a disin‡ation. In short, this
paper shows that disregarding trend in‡ation is quite far away from being an innocuous

assumption. As a consequence, the results obtained by models log-linearised around a zero
in‡ation steady state might be misleading.

The issue of trend in‡ation has not been so far really tackled in the literature. Only
very few papers mention it, namely King and Wolman (1996) and Ascari (1997). Both the

papers, however, look only at the e¤ects of trend in‡ation on the steady state, and this
paper will consider their results in what follows. Sticky price models are certainly a very
fruitful area of research, as witnessed by the great number of papers they have recently

generated. They provide a framework that has very much increased our understanding
of monetary policy and its trasmission mechanism. They have also revealed, however,

potential problems, especially in explaining the dynamics of output both at business cycle
frequencies (Chari et al. (2000b)) and at higher frequencies (Ellison and Scott (2000)).

This paper points to a further nuisance challenging sticky price practitioners: the e¤ect of
trend in‡ation on the model long-run and short-run properties.

2 The model

The model is meant to be the most standard sticky price dynamic general equilibrium

model. Thus we will use the Calvo (1983)-Rotemberg (1982) sticky price speci…cation,
which is the most commonly employed in the literature. The structure is otherwise taken

by the well-known paper of Chari et al. (2000b), which is taken as the benchmark model.
The model economy is therefore composed of a continuum of in…nitely-lived consumers,

producers of …nal and intermediate goods. The …nal good market is competitive, while
the intermediate goods producers enjoy market power. The model is so familiar by now

that does not need any detailed explanation4. The functional forms we use are also quite
standard:

4 The equations of the model are provided in Appendix 1.
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where C = consumption, M = money, P = price of the …nal good, Yi = output of the
intermediate good producer i; Ki;Li = capital and labour employed by the intermediate

good producer i; Y = …nal good output. The utility function is chosen because both is
the same as Chari et al. (2000b) and it is quite general, encompassing most of the utility

functions employed in the literature on sticky price models.
Moreover: (i) intermediate goods producers behave as Dixit-Stiglitz monopolistic com-

petitors because they are facing a downward sloping factor demand from …nal good pro-
ducers, with elasticity equal to µ; (ii) they can change their price only in speci…c states of

nature, and have to satisfy demand at the quoted price. The state of nature in which the
…rm can change its price will occur with probability 1 ¡ ®; while with probability ® the

…rm is stuck with the same price of the previous period. The problem of the intermediate
goods producers can be de…ned as
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where ¢t;t+j represents the real discount factor from t to t + j applied by the …rm to the
stream of future real pro…ts; z = real pro…ts, Pi = price set by the …rm, TCi = real

total costs: Given the demand function, Yi;t+j =
³
Pi;t
Pt+j

´¡µ
Yt+j , the optimal price …xed by

re-setting …rms in period t is given by
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(2)

where MCi = real marginal cost of producer i: This equation represents the core of sticky
price models, as thoroughly explained by King and Wolman (1996).

Finally, following an argument put forward by McCallum and Nelson (1999), it is also
considered the case where capital is a …xed factor in the production function of intermediate

goods producers (e.g., Rotemberg and Woodford (1997)).

3 Trend In‡ation and Steady State

In this section we perform an exercise similar to that of King and Wolman (1996), that

is, we look at the e¤ects of trend in‡ation on the steady state. While King and Wolman
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(1996) concentrated on the mark-up, we will focus on the e¤ects on steady state output.
Assume that ° is the gross rate of growth of the money in steady state that is, ° = Mt

Mt¡1
;

8t: The steady state is then characterised by the constancy of the real variables and by a rate
of growth of the nominal variables equal to °: There is broad agreement in the literature on

the calibration values of most of the parameters. Calibrating a period as a quarter, then ®
is set to 0.75, which implies that prices are on average …xed for one year. µ is in most papers

set to 10 (implying a mark-up of 1.1, in a zero-in‡ation steady state). The parameter for
the money demand equation are taken from Chari et al. (2000b)5, so ´ = 0:39 and b is

set so that the ratio (M=PC) = 1:2: Then: ¯ = (0:965)1=4; ¾ = 0:67 and the depreciation
rate ± = 1 ¡ (0:92)1=4. The value of e; instead, varies across papers, ranging from a value

of 1 to values more in line with the microeconomic estimates as 6. e is put equal to 1.5,
again as Chari et al. (2000b).6 With these numbers, in a zero-in‡ation steady state (ZISS

henceforth) the model presents an annualised capital-output ratio of 2.5 and an investment-
output ratio of 0.2, while households enjoy two thirds of their total endowment of time as

leisure.
The steady state value of the optimal price set each period by the re-setting …rms is

Pi;t
Pt

=
µ

µ
µ ¡ 1

¶µ
1 ¡®¯°µ¡1

1 ¡ ®¯°µ

¶
MC (3)

Two remarks follow. First, there is a maximum rate of growth of money supported

by the steady state, because to get (3) the summations in (2) need to converge.7 Hence
it must be that ®¯°µ < 1, that is, trend in‡ation should be less than 12,6% annually.

Unfortunately, this threshold number is not too far from the level of average in‡ation in
the developed countries in the last thirty or forty years. Therefore, this …rst remark gives

a …rst warning nuisance, since one wants to use these models to describe the behaviour of
in‡ation in post-war data.

Second, a maximum level of sustainable trend in‡ation would not be worrying on the
model performance, if trend in‡ation does not matter, that is, if it has only negligible e¤ects.

Unfortunately this does not seem to be the case. Figure 1 plots the percentage deviation
of steady state output from output in a ZISS, as a function of the rate of growth of money
(annualised in the graph). Steady state output decreases strongly with in‡ation. A steady

state annual rate of in‡ation of 10% leads to a steady state output level 26% lower than in
a ZISS. 8% trend in‡ation lowers output of 10% (with respect to ZISS) and 5% (= average

in‡ation in the U.S. in the last forty years) of almost 3%. It is important to underline that
5 Given that I employ the same utility function as Chari et al. (2000b), then I have the same money

demand function.
6 In any case, surprisingly enough, given the attention devoted to the parameter governing the elasticity

of labour supply in the literature, all the presented results are very little sensitive to changes in the value of

e:
7 This point has already been acknowledged by King and Wolman (1996): see footnote 12 at p. 96.
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instead, the capital/output ratio, the investment/output ratio and the steady state fraction
of time devoted to work do not change very much with trend in‡ation.8 Hence, calibrating

the model one would not change the parameters value.
Third, as said above, following McCallum and Nelson (1999), capital is often treated as

…xed (e.g., Rotemberg and Woodford (1997)). In this case, the steady state properties of
such a model are even more disturbing. First, the maximum sustainable level of steady state

in‡ation is now only 8% (because the marginal costs are now increasing depending on ¾,
see Appendix 1B). Second, again the steady state output level seems to be very sensitive to

steady state in‡ation, as shown by Figure 2. In particular, for example, 5% trend in‡ation
lowers output of 11.5% with respect to the ZISS, while 7% trend in‡ation cause output

to be 39% lower than in a ZISS. There is, actually, a sort of ‘continuity’ between the two
Figures, in the sense that as the value of ¾ increases Figure 2 ‘tends’ to Figure 1, as shown

in Figure 3. If ¾ = 1, the behaviour of steady state output as a function of trend in‡ation
is then similar to the case with capital. In other words, increasing ¾ stretches out Figure 2,

by pulling the asymptote (i.e., maximum level of sustainable trend in‡ation) to the right.
Admittedly, the results are somewhat sensitive to the value of µ. Similarly to the increase

in ¾ in the previous Figure, a lower value of µ implies an higher value of sustanaible trend
in‡ation; which in turn basically stretches out Figure 1 and 2, by shifting the vertical
asymptot to the right (see Figure 4). For example, if µ = 4:3; as in King and Wolman

(1996), the maximum level of sustainable trend in‡ation is 32% and 19% in the model with
capital and in the model with …xed capital respectively. In this case, 10% trend in‡ation

would lower steady state output of 4% and 8% with respect to the ZISS, in the two di¤erent
models respectively. In any case, most of the papers in the literature use µ = 10, because

µ = 4:3 seems to result in an implausible high level of mark-up in a ZISS (i.e., 30%).9

To conclude, trend in‡ation has huge e¤ects on the steady state properties of the model.

The numbers above would imply enourmous costs of in‡ation in terms of loss in output.
Moreover, the steady state properties of a sticky price model are also di¤erent depending on

whether capital is treated as …xed or not. In any case, these properties are particularly em-
barrassing for anyone willing to use these models to analyse important facts as disin‡ations

(see 4.2).10

8 Except when trend in‡ation gets very close to its limiting upper value.
9 Also the behaviour of the mark-up, on which King and Wolman (1996) focuses the analysis, is similarly

very sensitive to trend in‡ation when µ = 10: The steady state formula for marginal and average mark up

are the same as in King and Wolman (1996) (in particular, see equations (18) at p. 92 and (19) at p. 93

therein), because of the same Calvo pricing framework. By considering only values of µ · 4:3; King and

Wolman (1996) overlooks the e¤ect of trend in‡ation on the model when µ assumes higher values.
10 This might be the reason why virtually no sticky price model has been devoted to such an issue, with

the exception of some stilised models (i.e., Dazinger (1988), Ireland (1995), Ascari and Rankin (1997)).
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4 Trend In‡ation and Dynamics

4.1 Log-linearisation

Usually dynamic general equilibrium models are solved by log-linearising the models around

a steady state. However, we saw in the previous section that di¤erent levels of trend in‡ation
lead to very di¤erent steady states. In general, then, also the coe¢cients of the log-linearised

equations would depend on the steady state level of in‡ation. Thus, an immediate and
uncomfortable implication of the previous section is that the steady state around which one

log-linearises should matter. Indeed it does.
To analyse how the dynamics of the model depend on trend in‡ation, the case with

…xed capital and ¾ = 1 is examined: Figure 5 plots the impulse response of the model to a
1% rate of money growth shock, at di¤erent levels of trend in‡ation. When trend in‡ation

is zero (see upper panel of Figure 5), the model has only real roots. Moreover, the response
of output shows the known lack of persistence typical in the standard model.11 Turning

the steady state rate of growth of money to positive values very soon results in complex
roots. As shown in Figure 5, the oscillation in the impulse responses typically induced

by complex roots become more and more pronounced as trend in‡ation increases. As a
result, persistence seems to increase. Moreover, as the value of trend in‡ation gets closer
to the upper limit some puzzling features occur: (i) the size of the short-run e¤ect becomes

substantially larger; (ii) the impact e¤ect of a positive money shock becomes negative
(see the bottom panel in Figure 5); (ii) the model does not satisfy the Blanchard-Kahn

conditions anymore and starts to produce explosive behaviour, by generating a number of
explosive roots bigger than the number of non-predetermine variables. Therefore, it seems

that not only the steady state, but also the dynamic properties of the standard model are
very sensitive to the value of trend in‡ation.12

Analytical investigation sheds some light on this high sensistivity of the dynamic be-
haviour to trend in‡ation. Start with the well-known case where the log-linearisation is

taken around the steady state with zero in‡ation (i.e., ° = 1). De…ne ¦t = (Pt=Pt¡1) =
gross in‡ation rate and use lower-case letters for the log-deviation of variables from their

steady state values. The log-linearised version of (2) is

pit ¡ pt = (1 ¡ ®¯)Et
1X

j=0
(®¯)j [¼t;t+j +mct+j ] (4)

11 The process for the rate of growth of money supply used in this simulations is again mutuated from

Chari et al. (2000b). Its autocorrelation term is 0:57: Hence, some persistence in the impulse response of

output is due to the exogenous autocorrelation in the money supply process.
12 Both the cases with varying capital and with …xed capital and ¾ = 0:67 present similar qualitative

features, thus they are not reported. In the case with ¾ = 0:67; the puzzling features begin to appear at

very low levels of in‡ation, because the upper bound is only 8%.
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where ¼t;t+j = (¼t+1 + ¼t+2 + ::: + ¼t+j) and ¼t;t = 0: This equation is usually combined
with the log-linearised version of the general price level equation13

pit ¡ pt =
®

1 ¡®
¼t (5)

in order to get the dynamics of in‡ation

¼t = ¸mct +¯Et¼t+1 (6)

where ¸ = (1¡®)(1¡®¯)
® : As explained by Gali and Gertler (1999), among others, this is

the so-called ‘New Keynesian Phillips Curve’.14 In other words, the in‡ation rate today

depends just on the discounted sum of the future expected marginal costs, as can be easily
found by iterating (6) forward

¼t = ¸
1X

j=0
¯jEtmct+j (7)

From a theoretical perspective, for a given expected future path of the marginal costs, the
key parameter in the dynamics of in‡ation is therefore ¸:

Again things are a bit di¤erent, however, when the log-linearisation is taken around a
steady state with trend in‡ation (i.e., ° > 1); since it yields

pit ¡ pt = Et
1X

j=0

(®¯°µ)j(1 ¡®¯°µ) [µ¼t;t+j + yt+j +mct+j ] (8)

¡Et
1X

j=0
(®¯°(µ¡1))j(1 ¡ ®¯°(µ¡1)) [(µ ¡ 1)¼t;t+j + yt+j ]

Combining this last equation with the log-linearised formula for the general price level,
that is,

pit ¡ pt =
®°µ¡1

1 ¡ ®°µ¡1
¼t (9)

13 The equation for the general price level in a standard Dixit-Stiglitz-monopolistic- competition framework

is

Pt =
·Z 1

0
P 1¡µ
zt dz

¸ 1
1¡µ

=
h
®P 1¡µ
t¡1 + (1¡ ®)P1¡µit

i 1
1¡µ

where we use Pit and Pzt to distinguish between respectively the new price set by the i re-setting …rms and

the price of all the …rms indexed by z:
14 In fact just assuming that the real marginal costs depend on output (mct = 1

Á yt) and substituing, one

gets

yt =
®Á

(1¡ ®)(1¡ ®¯) [¼t ¡ ¯Et¼t+1]
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yields the generalised version of (6), which can be written as

¼t =
µ

1 ¡®°µ¡1

®°µ¡1

¶
(1 ¡ ®¯°µ)mct +¯Et¼t+1 + (10)

+(1 ¡ °)¯(1 ¡ ®°µ¡1)
·
yt ¡

µ
µ +

®°µ¡1

1 ¡ ®°µ¡1

¶
Et¼t+1+

+(1 ¡®¯°(µ¡1))Et
1X

j=0

(®¯°µ)j [(µ ¡ 1)¼t+1;t+1+j + yt+1+j]

3
5

Setting ° = 1; yields (6). Since ° (gross trend in‡ation rate) is actually very close to

one, one may approximate (??) by not considering the last additive term which is multiplied
by (° ¡ 1). In that case, an analytical expression very close to (6) is obtained

¼t = ¸(°)mct +¯Et¼t+1 or ¼t = ¸(°)
1X

j=0
¯jEtmct+j (11)

where ¸(°) =
³
1¡®°µ¡1
®°µ¡1

´
(1 ¡ ®¯°µ): It is evident that trend in‡ation in‡uences the be-

haviour of in‡ation, as shown in the following table.

¸ = 0:086 ° = (1:02)
1
4 ° = (1:05)

1
4 ° = (1:08)

1
4 ° = (1:1)

1
4

¸(°) 0.06 0.031 0.012 0.0043

(¸ ¡¸(°))=¸ 30% 64% 86% 95%

Table 1. Values of ¸ as a function of trend in‡ation

The value of ¸ is very much sensitive to the values trend in‡ation: Even for a small
level of trend in‡ation, i.e., 2% annually, the value of ¸ is reduced of 30% with respect to a

log-linearisation around ZISS. This means that, for any given future expected path of the
marginal costs, the dynamic response of in‡ation to marginal costs are overestimated, if

trend in‡ation is not taken into account. Moreover, the higher the level of in‡ation, the
further apart are the values of ¸ and ¸(°). The model predicts that the dynamic response of

in‡ation to marginal costs should be reduced of 64% if annualised trend in‡ation is 5%, up
to 86% for 8% trend in‡ation and virtually zero for 10% trend in‡ation. Figure 6 visualises

this e¤ect.15

From the analysis above some important points follow. First, themodel therefore implies

that the log-linear approximation (7) which expresses the dynamics of in‡ation as a function
of the future expected path of marginal costs in a ZISS gets substantially worse as trend

in‡ation increases. It comes thus as no surprise that this fact is going to a¤ect the dynamics
of the model. Second, it does not seem to be appropriate to compare simulation data

15 If µ = 4.3, ¸ is reduced of 30% if trend in‡ation is 5% and of 60% at 10% trend in‡ation, so the argument

still holds.
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obtained from a model with a ZISS with actual data (from VAR analysis, for example),
where trend in‡ation is above zero. While the ZISS assumption tends to simplify the

analysis giving neat results, the analysis above shows that disregarding the e¤ects of trend
in‡ation may lead to misleading results. Finally, in a quite in‡uential paper Gali and

Gertler (1999) propose an empirical formulation based on (6) to explain the dynamics of
in‡ation.16 Gali and Gertler (1999) argue that such a model could account for the behaviour

of in‡ation in the last thirty years, and estimate the structural parameters of the model
(i.e., ®; ¯). From what has just been said above, a model based on (6) is questionable when

values of trend in‡ation are not only of two-digits, as in the pre-Volcker period, but just
slightly above zero.

4.2 Disin‡ation

Not surprisingly, also the e¤ect of a disin‡ationary policy would depend on the rate of
steady state in‡ation. A log-linearised model is not suited to solve for the path of output
following a sizeable disin‡ation, because a disin‡ation involves a move from one steady

state to another. Hence we use the package for non-linear simulations DYNARE.17 Figure
7 shows the path of output following a 4% disin‡ation, again in the model with …xed capital

and constant return to scale. The upper panel shows the path of output after a disin‡ation
from 4% to 0. At the beginning output decreases by more than 10% and so disin‡ation

causes a substantial slump on impact. Then output starts increasing monotonically, untill
it reaches its new, slighlty higher steady state level (recall Figure 3). In all the panels of

Figure 7 the …nal steady state level is normalised to 1.18 The second panel shows a 4%
disin‡ation, from 6% to 2%. Qualitatively the path is very similar, but the impact e¤ect

is smaller while the steady state e¤ect is bigger. And this features swiftly intensify as the
starting rate of growth of money increases. As shown in the next panels, for a given size

of the disin‡ationary policy (i.e., 4%), the higher the rate of growth of money, the smaller
the negative impact e¤ect and the bigger the positive steady state e¤ect. Disin‡ating from

10% to 6% does not cause any decrease in output level, which is always above the starting
steady state level. The long-run e¤ect of the policy has taken over the short-run dynamics.

As a conclusion, trend in‡ation is found to matter a lot, not only for the steady state
properties of the model but also, if not even more, for the e¤ects on its dynamic properties.

16 Gali and Gertler (1999) model is slightly di¤erent since it includes also a fraction of backward-looking

price setters.
17 This package has been elaborated by Michel Juillard at CEPREMAP (see Juillard (1996)) based on the

algorithm in Boucekkine (1995).
18 So one can easily read on the vertical axis scale on the left the di¤erence between the starting and the

…nal steady state.
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5 Ways out

It has been shown above that trend in‡ation has some disturbing e¤ects both on the steady
state and on the dynamics of a standard staggered price model, with Calvo-Rotemberg

pricing. Is there a possible way out?
First, one may think that most of the nuisances come from the particular price contract

structure has been analysed in this paper, and that most of these problems would not be
present in a Taylor (1980) type of model. For example, a Taylor (1980) contract structure

would not impose any upper bound on the steady state rate of money growth. In this case,
in fact, the …rst order condition for price re-setting …rms would present a ratio between

…nite summations, and so there would be no issues of convergence of in…nite sums. This is
certainly true, but that seems the only real di¤erence. As shown in Ascari (1997), one can
get similar steady state e¤ects also in a simple Taylor (1980) type of model, and hence one

would expect the dynamic properties of the model to be a¤ected.19

There are however two possible ways out. The …rst one is to use a sort of Calvo-Fischer

type of rigidity (see, e.g, Yun (1996) and Jeanne (1998)). To get rid of the trend in‡ation
e¤ects, one can incorporate it in the prices which cannot be reset, that is to use the so-called

Fischer (1977) or ‘predetermined’ contracts, within the Calvo setup. This can be shown
(see Appendix 2) to cancel the e¤ects of trend in‡ation: both the steady state and the

dynamic equations of the optimal reset price are the same with positive or with zero money
growth.20

However, there are some di¢culties in assuming this kind of automatic adjustment to
trend in‡ation. The …rst obvious one is that in reality we do not observe such contracts,

because most prices and wages are …xed within a year (see Taylor (1998)). What we observe
sometimes are multiperiod indexed contracts, which are actually quite di¤erent. Indexed

contracts are: (i) adjusted to in‡ation ex-post and not ex-ante; (ii) adjusted not to trend
in‡ation but to actual in‡ation in the previous period.21 Second, in terms of microfounda-

tions, one of the rationales given for the directly postulated Calvo contract structure is that
it is analytically equivalent to the Rotemberg (1982) model of quadratic cost of changing

price (e.g., Ireland (1997)). This would imply, however, that the microeconomic rationale
19 See Ascari (2000). However, quite interstingly, in Ascari (2000) trend in‡ation has a de…nite negative

impact on the persistence of the e¤ects of money shocks on output. As shown above, this does not seem

to be the case in a Calvo type of model, because the roots become complex, and this appears to increase

persistence (see Figure 5).
20 Obviously here we are just referring to the equations regarding the behaviour of in‡ation (pricing rule

and price index). In general, other equations as well would depend on steady state in‡ation (e.g., money

demand, possibly leisure decisions etc.)
21 Moreover, it would be easier to defend indexed contracts in a staggered wage model rather than a

staggered price one, since indexed wage contracts are indeed observed in reality, and they can be easily

justi…ed by the willingness of the workers to defend their real income.
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for keeping the price …xed for a certain amount of time is a quadratic ‘menu cost’ of chang-
ing price, and it would be di¢cult then to justify a costless automatic ‘menu’ adjustment

to trend in‡ation. As a conclusion, the idea to use Fischer (1977) contracts to get around
the problem does not seem a winner.

Yet, this is the solution actually employed, somewhat ‘by accident’, in most of the
literature, in the following sense. A ZISS is the same whatever kind of rigidity is assumed

(‡ex price, …xed or predetermined contracts). As we saw above, in a Calvo-Taylor type of
setup, the steady state would depend on trend in‡ation and so would also the coe¢cients of

the log-linearised dynamic equations. Thus, trend in‡ation, which in actual data is di¤erent
from zero, should be taken into account and this would a¤ect the results. In a Calvo-Fischer

setup, instead, the steady state and the log-linearised dynamic equations would be the same
as in the ZISS, whatever the level of trend in‡ation. Hence, focusing only on ZISS, it is as

if this type of price rigidity has been employed.
As well known, the only alternative is state-dependent models. A remarkable example

is the model in Dotsey et al. (1999). In a state-dependent model, in fact, the duration of
contracts depends on the state of the economy and should respond to trend in‡ation. In

other words, ® should decrease with ° counteracting the e¤ect of trend in‡ation, as it does
in Dotsey et al. (1999). Indeed, suppose that at 10% trend in‡ation ® were equal to 0.5,
implying that prices are …xed for one semester on average. Then the percentage deviation

of steady state output from ZISS in a model with capital would be 2.1%, which may be
considered high or low, but surely more reasonable than 26%, as before.22 If prices are

…xed only for 4 months (i.e., ® = 0:25), then the deviation would be 1%. Figure 8 shows
the deviation of steady state output from ZISS as a function of trend in‡ation and of ®:23

It is evident then the changes in ® would mitigate the steady state e¤ects of trend in‡ation
and presumably, also the e¤ects on the dynamics. Figure 9 shows the contour levels which

gives an idea about how ® should vary with trend in‡ation in order to keep output at the
same level (that is, in order to deliver superneutrality24). It is then evident that changes

in ® can alleviate the nuisances. In other words, and as a bottom line, the Lucas critique
seems to be really biting in these models.

22 It is worth noting however that the changes in ® reported here are very much bigger than the one

predicted by the Dotsey et al. (1999) model.
23 Note that in the white parts of Figure 8 and 9, the model is not de…ned, because the level of trend

in‡ation is higher than its upper value.
24 As said above, however, it is good to keep in mind that in this microfounded model non-superneutrality

is induced also by some other well known e¤ects of trend in‡ation on money demand, capital and leisure

choices.
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6 Conclusion

To conclude, one of the most fruitful recent area of research in macroeconomics is certainly
the so-called New Neoclassical Synthesis. Our understanding of monetary policy and its

e¤ects on the macroeconomy has greatly improved thanks to the numerous contributions in
this literature. Most of the papers in this literature, however, use time-dependent staggered

price models and assume zero trend in‡ation. It can hardly be justi…ed to assume zero trend
in‡ation to describe and model the data of post-war in‡ation.

This paper shows that unfortunately in these models trend in‡ation matters. If it is
considered, then time dependent staggered price models demonstrate some limits: several

nuisances appear both regarding their long-run (i.e., steady state) and the short run (i.e.,
dynamics) properties. Indeed, this paper shows that: (i) very mild level of trend in‡ation
implies huge, and unrealistic, changes in the steady state output level; (ii) trend in‡ation

changes the dynamic properties of the log-linearised model; (iii) the level of trend in‡ation
is also extremely important for the dynamic behaviour of the model following a disin‡ation.

In short, this paper shows that disregarding trend in‡ation is very far away from being an
innocuous assumption. The results obtained by models log-linearised around a zero in‡ation

steady state might therefore be misleading.
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Appendix 1. The Model
(A) The Model with variable capital

1) Household
Given the utility function

U =

8
<
:

"
bC
´¡1
´ +(1 ¡ b)

µ
M
P

¶´¡1
´

# ´
´¡1

(1 ¡L)e

9
=
;

1¡Â

=(1 ¡ Â) (12)

the …rst order condition for the representative households are the following:

Wt
Pt

=
eCt

·
1 + b

³
mt
Ct

´ ´¡1
´

¸

1 ¡ Lt
(13)

Um(t)
UC(t)

= b
µ

Ct
mt

¶1
´

=
it

1+it
(14)

Et
µ

UC(t)
UC(t + 1)

¯(1 + rt)
¶

= Et

"µ
Ct

Ct+1

¶¡1
´

µ
cmt

cmt+1

¶ 1
´¡Âµ

1 ¡Lt
1 ¡ Lt+1

¶e(1¡Â)
¯(1 + rt)

#
= 1

(15)

where Wt = nominal wage; Pt = general price level; Ct = consumption; mt =
³
Mt
Pt

´
= real

money balances; b = 1¡b
b ; cmt =

·
bC
´¡1
´
t +(1 ¡ b)m

´¡1
´
t

¸ ´
´¡1

; Lt = labour supply; UX(t) =

marginal utility with respect to the argument X ( for X = C; m;L); it = nominal interest
rate; rt = real interest rate.

2) Pricing equations
Final good producers use the following technology

Yt =
·Z 1

0
Y
µ¡1
µ

i;t di
¸ µ
µ¡1

(16)

Their demand for intermediate inputs is therefore equal to

Yi;t+j =
µ

Pi;t
Pt+j

¶¡µ
Yt+j (17)

The problem of the representative intermediate goods producer …rms that reset the price
is

Max
fpitg

Et

0
@

1X

j=0
®j¢t;t+jzt+j

1
A = Et

0
@

1X

j=0
®j¢t;t+j

·µ
Pi;t
Pt+j

¶
Yi;t+j ¡ TCi;t+j(Yi;t+j)

¸1
A

(18)
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s:t: Yi;t+j =
µ

Pi;t
Pt+j

¶¡µ
Yt+j

where ¢t;t+j represents the real discount factor from t to t + j applied by the …rm to the

stream of future real pro…ts25 ; z = real pro…ts, Pi = price set by the …rm, TCi = real total
costs: The optimal price …xed by re-setting …rms in period t is

P ¤
i;t =

µ
µ

µ ¡ 1

¶ Et
P1
j=0 ®j¢t;t+jMCi;t+jPµt+jYt+j

Et
P1
j=0®j¢t;t+jPµ¡1t+j Yt+j

(19)

where MCi = real marginal cost of producer i: Note that (19) can be wriiten as P¤
i;t =³

µ
µ¡1

´
ª(t)
©(t) , where

ª(t) = MCi;tP µt Yt + ®¯Et [ª(t +1)] (20)

©(t) = Pµ¡1t Yt +®¯Et [©(t + 1)] (21)

The price of the …nal good is given by

Pt =
·Z 1

0
P1¡µ
i;t di

¸ 1
1¡µ

(22)

3) Technology
Denoting by qt the real user cost of capital, the cost minimisation problem of a repre-

sentative intermediate goods producer …rm i is

MIN
fKi;t¡1 ;Ltg

qtKi;t¡1 +
Wt=Ptz}|{
wt Li;t

s:t: Yi;t = At(Ki;t¡1)1¡¾(Li;t)¾

which gives the following usual …rst order conditions

qt = At(1 ¡¾)
µ

Li:t
Ki;t¡1

¶¾
MCi;t (23)

wt = At¾
µ

Ki;t¡1
Li:t

¶1¡¾
MCi;t (24)

Combining these two equations with the production function yields the equations for

the demand of labour and capital and for the marginal cost

Ldi;t =
Yi;t
At

·
¾

1 ¡ ¾
qt
wt

1̧¡¾
(25)

25 For simplicity, we will put that equal to ¯; the real discount factor in the utility function:
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Kdi;t¡1 =
Yi;t
At

·
1 ¡ ¾

¾
wt
qt

¸¾
(26)

MCi;t =
1
At

hwt
¾

i¾ ·
qt

1 ¡ ¾

¸1¡¾
(27)

4) Market clearing

The aggregate resource constraint is

Yt = Ct +Xt (28)

where Xt =
hR 1

0 Xz;tdz
i

and Xt = aggregate investment while Xi;t = investment of the
intermediate goods producer i: Xi;t is given by the following capital accumulation equation

for the single intermediate goods producer i

Ki;t = (1 ¡ ±)Ki;t¡1 +Xi;t (29)

where ± = depreciation rate. This linear equation can be aggregated over all the inter-
mediate goods producers and then substituted into the aggregate resource constraint to

get

Yt = Ct + Kt ¡ (1 ¡ ±)Kt¡1 (30)

Market clearing on the capital and labour markets require

Kt¡1 =
·Z 1

0
Kdi;t¡1di

¸
(31)

Ldt =
·Z 1

0
Ldi;tdi

¸
= Lst (32)

Following Yun (1996) the equation to link intermediate goods output and …nal good
output is given by

IOt =
·Z 1

0
Yi;tdi

¸
=

·
Pt
ePt

¸µ
Yt (33)

where ePt =
hR 1

0 P¡µ
i;t di

i¡1
µ and IOt = ‘aggregator’ of intermediate goods output.

Finally, exploiting the property that, given the Cobb-Douglas production function for

intermediate goods producer, the ratio
h
Ki;t¡1
Li;t

i
is the same across all …rm i; it is possible

to aggregate to obtain:
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IOt = AtK1¡¾
t¡1 L¾t (34)

Ldt =
IOt
At

·
¾

1 ¡ ¾
qt
wt

1̧¡¾
(35)

Kdt¡1 =
IOt
At

·
1 ¡ ¾

¾
wt
qt

¸¾
(36)

MCt =
1

At

hwt
¾

i¾ ·
qt

1 ¡¾

¸1¡¾
(37)

The model is closed by the equation r = q ¡ ±:

(B) The Model with …xed capital

Both the household problems and the pricing problem of the resetting …rms do not
change and so the …rst order conditions. The di¤erence is given by the technology of

intermediate goods producers, now given by

Yi;t = AtL¾i;t (38)

The labour demand and the real marginal cost of …rm i is therefore

Ldi;t =
·
Yi;t
At

¸ 1
¾

(39)

MCi;t =
1
¾

A¡ 1
¾
t wtY

1
¾¡1
i;t (40)

The aggregate resource constraint is now simply given by

Yt = Ct (41)

and the link between aggregate labour demand and aggregat output is provided by

Ldt =
·Z 1

0
Ldi;tdi

¸
=

·
Yt
At

¸1
¾

·
Pt
Pt

¸µ
¾

where Pt =
·R 1

0 P¡ µ¾
i;t di

¸¡ ¾µ
:

Note that now marginal costs depend upon the quantity produced by the single …rm,

given the decreasing returns to scale. In other words, di¤erent …rms charging di¤erent prices
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would produce di¤erent levels of output and hence have di¤erent marginal costs. Consider
the optimal reset price formula in a non-stochastic steady state. This is still described by

P ¤
i;t =

µ
µ

µ ¡ 1

¶
ª(t)
©(t)

(42)

©(t) = Pµ¡1t Yt +®¯Et [©(t + 1)]

ª(t) = MCi;tP µt Yt + ®¯Et [ª(t +1)]

The MCi;t in ª(t) is now increasing over time, since

MCi;t+j =
1
¾

A¡ 1
¾
t+jwt+j

µ P ¤
i;t

Pt+j

¶¡µ( 1¾¡1)
Y (1¾¡1)
t+j

and P¤
i;t is …xed untill the new resetting. The variable ª(t) needs therefore to be de‡ated

accordingly to make it stationary. In a non-stochastic environment,

©(t) =
1X

j=0
(®¯)jPµ¡1t+j Yt+j (43)

ª(t) =
1X

j=0
(®¯)jMCi;t+jP µt+jYt+j =

1X

j=0
(®¯)j

1
¾

A
¡ 1
¾
t+jwt+j

µ P ¤
i;t

Pt+j

¶¡µ(1¾¡1)
Y

(1
¾
¡1)

t+j Pµt+jYt+j

(44)

Substituing (43) and (44) in (42) yields a dynamic equation that links P ¤
i;t to aggregate

variables.

P¤1+¡µ(1¾¡1)
i;t =

µ
µ

µ ¡ 1

¶ P1
j=0(®¯)j 1¾A

¡ 1
¾
t+jwt+jY

1
¾
t+jP

µ
¾
t+jP1

j=0(®¯)jPµ¡1t+j Yt+j
(45)

In a non-stochastic steady state At; Yt and wt are constant over time, while Pt+1=Pt = °;

hence substituting it yields

©(t) = P µ¡1t Y
1X

j=0
(®¯°µ¡1)j (46)

ª(t) =
1
¾

A¡ 1
¾wY

1
¾Pµ=¾t P ¤¡µ(1¾¡1)

i;t

1X

j=0
(®¯°µ=¾)j (47)

Substituting the expression for ©(t) and ª(t) in (42) then one can obtain a formula
that links the reset price with the aggregate variables in the non-stochastic steady state

and then solve for Y: It is clear, however, that the two summations in (46) and (47) need
to converge. In particular, it needs to be: ®¯°µ=¾ < 1 ,i.e., ° < (®¯)¡¾=µ. Putting

® = 0:75;¯ = 0:99; ¾ = 0:67; µ = 10; it yields ° < 1:02, which means an annual rate of
grwoth of money lower than 8%.
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Appendix 2. The Calvo-Fischer Case
Yun (1996) and Jeanne (1998) assume that the new price set in a generic period t is

actually indexed to trend in‡ation. Hence, even if the …rm is not allowed to revise its price,

the latter grows at the same rate as trend in‡ation. Then the problem of the …rm is

Max
fpitg

Et

0
@

1X

j=0

®j¢t;t+jzt+j

1
A = Et

0
@

1X

j=0

®j¢t;t+j

"µ
Pi;t¦j

Pt+j

¶1¡µ
Yt+j ¡TCi;t+j(Yi;t+j)

#1
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(48)

where Yi;t+j =
³
Pi;t¦j
Pt+j

´¡µ
Yt+j and the optimal price is

P¤
it =

µ
µ

µ ¡ 1

¶ Et
P1
j=0 ®j¢t;t+jMCt+j

³
Pt+j
°j

µ́
Yt+j

Et
P1
j=0 ®j¢t;t+j

³
Pt+j
°j

´µ¡1
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(49)

The steady state value is

Pi;t
Pt

=
µ

µ
µ ¡ 1

¶
MC (50)

which coincides with the ‡exible price steady state. Moreover, note that there is not any

upper value for the steady state rate of growth of money.
The log-linearised optimal price setting rule equation coincides with the log-linearisation

of a typical Calvo framework around a zero money growth steady state

pit ¡ pt = (1 ¡ ®¯)Et
1X

j=0
(®¯)j [¼t;t+j +mct+j ] (51)

and so it is also for the log-linearised general price level equation

pit ¡ pt =
®

1 ¡®
¼t (52)

Putting them together one gets the usual New Keynesian Phillips Curve. Hence, a Calvo-
Fischer structure delivers exactly the kind of equations used in most models in the literature.

20



0.02 0.04 0.06 0.08 0.1
inf trend

-50

-40
-30

-20

-10

%devfromZISS

Figure 1. Percentage deviation from zero-in‡ation steady state output
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Figure 2. Percentage deviation from zero-in‡ation steady state output
in the …xed capital model
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Figure 3. Percentage deviation from zero-in‡ation steady state output,

as ¾ varies in the …xed capital model
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Figure 4. Percentage deviation from zero-in‡ation steady state output, as µ varies
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Fig. 5 Impulse response of output to a 1% money growth shock.
Trend in‡ation: (i) 0; (ii) 2.5%; (iii) 5%; (iv) 7.5%; (v) 10%

(…xed capital model and ¾ = 1)
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Fig. 7 Dynamics of output after a 4% disin‡ation, starting from:
(i) 4%; (ii) 6%; (iii) 8%; (iv) 10%; (v) 12%

(…xed capital model and ¾ = 1)
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Figure 8. Percentage deviation from ZISS as a function
of trend in‡ation and of ® (model with capital)
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Figure 9. Contour levels of the previous Figure
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