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Abstract

Previous literature has examined the impact of a single regulatory constraint on the final
product. However, an industry such as electricity requires two network inputs from naturally
monopolistic industries i.e. gas transmission and electricity transmission. This paper models the
impact of such dual regulation schemes finding: Firstly, the result of previous literature that
tightening regulation increases prices to higher cost consumers may be reversed.  Secondly,
dual input regulation creates distortions if regulators do not explicitl y co-operate. Where
regulators place some weight on their respective sector’s consumer surplus, these differing
agendas lead to competition in regulatory strictness resulting in a significant sub optimal
welfare outcome relative to a joint regulatory body.
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During the last decade the UK ex-nationalised utiliti es have increasingly been opened to competition.
However, the natural monopolistic character of the network has limited the abilit y to introduce full
competition to the industries. In general (with telecoms as the notable exception) the solution has
been to separate the networks into their competiti ve and non-competiti ve elements, with the final
consumer product generally requiring some elements of both. Some industries such as electricity,
require two regulated inputs (gas and electricity transmission) from naturally monopolistic networks.
It is the impact of electricity dual regulation in particular and more generally the case of overlapping
regulatory schemes (i.e. international telecommunications with national regulatory bodies), that this
paper analyses.

This paper builds on the small but significant literature on whether revenue regulation creates
incentives for firms to manipulate prices across markets as well as the wider literature on distortions
over time. The literature raises the important question of whether welfare is actually enhanced under
price caps even within a static model. Bradley and Price (1988) first analysed the case of a regulated
monopolist under an average revenue constraint, a constraint typical across many U.K. utiliti es.
Under such a constraint, current demand, rather than previous consumption or revenue levels, weight
prices. The firm is induced to manipulate these weights by restricting supply to the higher cost
markets (through raising price) and expanding supply in the lower cost markets (through lowering
price). They showed that for high cost markets, the constraint may increase prices above the
unconstrained level. Crew and Kleindorfer (1996) using a similar model analyse a total revenue
constraint. They show that a total revenue cap has a much larger potential than an average revenue
constraint to distort output incentives, producing prices above the monopoly level in some markets.
Armstrong and Vickers (1991) compare the welfare results of price discrimination with a uniform
pricing scheme, both facing an average revenue constraint. They find the welfare result depends upon
the tightness of the price constraint, with some degree of price discrimination increasing welfare as
the constraint is relaxed.

Sappington and Sibley (1992) show that for an average revenue lagged tariff , the strategic incentive
to manipulate prices through a non-linear tariff may result in a loss of welfare even though the linear
tariff may enhance welfare. Armstrong, Cowan and Vickers (1995) strengthen this result by showing
that the optimal non-linear tariff is distorted and other types of regulatory constraint may be
preferable to a tight average revenue constraint. Law (1995) returns to the Bradley and Price
framework t show that tightening a price cap can lower aggregate consumer surplus, confirming their
result that tighter regulation induces the firm to reduce the number of high cost consumers by raising
the price in this market and lowering the price in the low cost market. Cowan (1997a) developed this
showing that not only consumer welfare but total welfare may fall as a result of an average revenue
cap that is “ too tight” , a result that this paper shows may be reversed for certain consumers under
dual regulation. Cowan (1997b) compares the dynamic case for three different types of regulatory
constraints: average revenue, Laspeyres base weighted tariff basket constraint and the average
revenue lagged regulation first studied by Sappington and Sibley (1992).  He confirms that the
average revenue lagged constraint and average revenue may not only be ineff icient but are li kely to
reduce overall l evels of welfare, while a Laspeyres index based constraint can induce eff icient prices
even when the firm is not myopic.

The paper is structured as follows; the first section develops a simple model of a vertically structured
market in which two firms, a downstream (electricity) and upstream (gas), provide inputs to the final
product. Each firm is regulated with the regulator’s remit extending as far as its respective industry.
Section two examines comparative statics for optimal prices, finding that tightening the downstream
(electricity) regulatory constraint increases electricity prices to high cost consumers confirming
previous literature. However, tightening the upstream  industry constraint (gas transmission) allows a
relaxation in the downstream regulatory constraint. For some consumers this effect dominates and
reverses the previous process, causing lower prices contrary to the findings in previous literature. The
final section analyses the welfare impact of tighter constraints and compares them to a market where
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the two regulators are integrated.2 It shows that dual regulation drives a more interesting result than
simply an example of the theory of the second best. Unlike the standard theory that assumes
exogenous distortions, the two regulators may compete strategically and consciously introduce sub-
optimal distortions in the other market to maximise their own consumer’s welfare. As such, this
problem is a special case of the theory of the second best where agents choose the level of distortion.
Welfare in the two industries may only be maximised under joint regulation providing economic
justification beyond simple cost savings into regulatory mergers.

Section 1: A Model of Dual Vertical Regulation in Electricity
This paper analyses generation of electricity using gas rather than other fuels such as oil or coal for
two main reasons: First and primarily, the latter two inputs do not involve transmission regulatory
constraints, secondly, new gas powered generation plants are rising in incidence relative to other
technologies.3 Given gas generation, electricity delivered to consumers requires inputs from both the
gas network (for generation) and the electricity network which we consider in turn.

The gas market is modelled as two groups of users with independent demands; those using gas for
electricity generation and those using gas for all other purposes (gas consumers). The segmentation of
the market into direct consumers and generators precisely defines the gas regulator’s remit; welfare
of all firms or consumers connected to the gas transmission network. The gas transmission agent
supplies gas to both direct consumers and generators in the proportion 1-θ and θ respectively. The
network is modelled by a continuum of supply points (generators and consumers) distributed
uniformly on a straight line of distance G ∈ [0, ∞).4 The gas supply origin (the beachhead) is situated
at G = 0. The gas transmission agent charges an identical price structure for both direct consumers
and generators that increases with distance from the supply origin. The total distance served by the
gas transmission agent is denoted σg. At the point G = σg the transmission price is equal to the
maximum price any consumer is willi ng to pay, resulting in a demand for gas equal to 0.

The second network transmits the generated electricity from the generator (G) to electricity suppliers
located some geographic distance (x) from the generator. These suppliers are again distributed
continuously and uniformly across the electricity network represented by a line of distance x ∈ [G,
∞). As gas transmission, the electricity transmission agent’s market distance is defined by the point
σe. At this point the price of transmission is suff iciently high enough to reduce consumer demand for
electricity to 0 thus qs(σe) = 0. The framework of both these networks and their interactions is
ill ustrated in figure 1.1. In this simple model, locations are taken to focus on the choices of prices and
distance served. The vertical model is solved using backward induction. First the downstream
consumer market demand is solved in terms of the endogenous upstream parameters and then each
upstream element electricity, generation and gas respectively are solved taking all preceding prices,
distances and quantities demanded as given.

Figure 1.1
Spatial Set-up of Model.

                                                     
2 This scenario is particularly relevant in the context of the UK when Ofgas and Offer were combined to create a
single regulatory body Ofgem in 1999.
3 The oil or coal problem may be thought of as a more specific case where the input is no longer regulated and
competition exists within the transmission (i.e. freight transport).
4 Whilst in reality supply points are discretely distributed across distance, a continuous distribution simpli fies the
problem, retaining the key element of an increasing transmission costs with distance.
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Looking first at the consumer electricity markets. The supplier points are uniformly distributed and
serve identical aggregate consumer demands qs(ps) over distance x. This assumes that aggregate
consumer demand is the same regardless of its location. For simplicity demand is modelled by a
simple linear function for electricity consumers within each supplier market in the form of qs = a - ps.
For each supplier point it is assumed there are at least two or more firms competing for aggregate
consumer demand. Under the beliefs that; supplier fixed costs are small , electricity is homogeneous,
firms compete in price and there are no capacity constraints within a given supply market, it is
consistent with theory to use Bertrand competition.5 Supplier’s price per unit of electricity to
consumers is ps = pG + pe (x-G). Where; pG is the cost of generated electricity per unit of electricity,
pe is the cost of transporting one unit of electricity one unit of distance,  x is the location of the
supplier (assumed to be to the right of the generator) and G is the distance from the generator to the
source of gas (G-0).

The generator market is characterised by a number of generation nodes each containing one generator
producing electricity at cost for a range of suppliers. This is comparable with reality in which the
electricity national grid is arranged into a number of generation nodes each bidding generation
capacity into a pool. Currently England and Wales use a pool system to price generator’s output,
where generators compete by bidding supply prices for different times of the day. Like the supplier
element the generation element of the model is simpli fied assuming small costs of starting up or
shutting down generation capacity, no capacity constraints, identical cost structures and no
collusion.6 The additional but non-essential simpli fying assumptions of constant one for one
production function gas to electricity and a gas unit cost of 0 are made. Under such assumptions
generators bid the electricity supply price down to a marginal cost equal to the cost of gas
transmission to the generator, pG = Gpg.

As in reality the electricity transmission agent carrying the electricity from generator to suppliers is a
monopoly. It charges a price of pe per unit per distance of electricity transmitted and incurs a cost of
Te per unit per distance. Total profit for the electricity transmission agent is thus equal to total
revenue pe qs (x-G) minus costs Te qs (x-G) in each generation node between G and σe.
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e

G
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σ
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5 This simpli fication can be relaxed still l eaving the paper’s main findings unchanged. Assuming Cournot or
differentiated price competition merely adds another layer of marginalisation to the problem, reducing total
welfare but leaving the direction of the main findings unchanged. The model concentrates on the impact of the
two regulatory constraints rather than supply competition and for this reason Bertrand competition is assumed.
6 Whilst these assumptions are perhaps unrealistic, the additional complication of different forms of competition
does not change the main results of this paper (see previous footnote).
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As in the UK firms monopoly electricity transmission is regulated via an average revenue constraint.
Thus total revenue over total output (average revenue), must be less than or equal to some
exogenously determined electricity average revenue constraint ARe.
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Solving for the optimal pe and σe in terms of the unsolved gas parameters and exogenous parameters
is a relatively straightforward problem and relegated to appendix 1. Using these solutions the
upstream gas variables can be solved for in terms of only the exogenous parameters. For gas
consumer demand we assume a similar linear form to consumer electricity demand incorporating the
fact there is no gas supply cost. Thus the quantity demanded is simply the intercept minus the
delivered price of gas; qg = a – Gpg. Total demand for gas transmission is thus the weighted
summation of gas consumer demand and total generator demand Qs (as determined in appendix 1)
over all gas nodes. Gas transmission agents total profit function over all gas supply points is thus;
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Like the electricity transmission agent the gas transmission firm is subject to an average revenue
constraint made up of the two revenue sources;
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The solution methodology is identical to that of the electricity transmission agent; first solve for
optimal price in terms of distance, under the knowledge that 

�
L/

�
pg must be equal to 0 for all

generators supplied. Use this to substitute into the gas regulatory constraint and solve for the
lagrangian λ2. Once again the workings are relegated to appendix 2 with the final solutions shown
and analysed in the next section.

Section 2: Analysis of Regulatory Constraints on Prices
This section examines comparative statics for the optimal prices solved previously. As solved for in
appendix 2, optimal distance served by the gas transmission agent is σg = 3ARg/2Tg and price of gas in
terms of distance is;
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Note as long as the gas constraint is not ‘ too tight’ optimal price is non-linear and declining in
distance from the generator (G).7 This contrasts with previously mentioned literature by Bradley and
Price (1988), Law (1995), and Cowan (1997a), all of which derive a linear price of the finished good
in the form of p = α + βG. The contrast derives from the fact that pg is the transmission price per unit
distance whilst the fore mentioned authors examine a final delivered price to consumers. At small
distances from the beach head, it is optimal for the transmission agent to charge a relatively high

                                                     
7 Too tight is defined as ARg < a/3 at which point the differential � pg/ � ARe becomes positive. This point is where
the regulatory constraint is so restrictive that it forces the transmission agent to adopt negative prices for some
markets in order to reduce the average revenue to below the constrained level.
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price per unit distance as total distance is very low and hence the total cost to consumers is also
small. At distances further from G it is optimal to reduce the price per unit distance as the total cost
for consumers will be much higher. (see figure 2.1a) This ability to price discriminate means the firm
is able to sell, albeit at a much lower margin, to consumer markets at larger distances than under a
uniform price. Note, the firm never sells below Te(a-ARe-Gpg)/ARg but becomes tangentially close to
this as distance tends to σg.

8

Looking at the generator weightings shows that as the proportion of gas transmission dedicated to
generators (θ) increases, the price of gas decreases at all distances. This is intuitive as gas
transmission is only a part of the costs of consumers (the other part being electricity transmission).
Hence a greater proportion of the gas transmission agents demand is derived from the lower
reservation price downstream industry. One way of thinking of this, is as if the residual demand for
gas transmission becomes smaller as the number of generators increase.

Proposition 1:
For the upstream industry tightening either the upstream or downstream regulatory constraint
results in higher prices to ‘high’ cost generators/consumers, lower prices to ‘ low’ cost
generators/consumers and a fall i n the market distance served.

Proposition one is proved simply through the use of comparative statics. Setting 
�
pg/

�
ARe = 0 and

�
pg/

�
ARg = 0 and solving for distance G provides the point at which the new and old gas prices

intercept, and hence the point at which the impact of a change in the constraint reverses. These points
for gas and electricity respectively are;
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)1(8)(9

)1(89

θθ
θθσ

−+−
−+
aTARaAR

aTAR
AR

eee

ee
gg

 and G = 
g

g

g

T

AR
σ

3

1

2
=

The two points are denoted τg,g and τg,e respectively for use in later analysis.9 Whilst these two points
are different, for the purpose of referral and proposition one, generators/consumers at distances
greater (smaller) than τg,g and τg,e are termed as ‘high’ (‘ low’) cost generators/consumers. For ‘high’
cost generators/consumers both 

�
pg/

�
ARg <0 and 

�
pg/

�
ARe < 0, hence tightening the respective

constraint increases prices. The opposite is true for ‘ low’ cost generators/consumers. Finally it is
straightforward to show that both differentials 

�
σg /

�
ARg and 

�
σg /

�
ARg are negative and tightening

either constraint reduces the market supplied, proving proposition one.

The intuition behind this result is similar to previous literature; as the average revenue constraint on
gas or electricity tightens, it restricts (either directly via the gas constraint or indirectly via the
electricity transmission constraint) the total revenue the gas transmission agent can make. Given this
restriction on average revenue, the gas transmission agent increases the amount sold to low cost/low
revenue supply nodes close to the gas origin by lowering their price. Those supply points further
away face an increasing price for two reasons, firstly to restrict the quantity sold to high revenue and
low profit generation nodes, and secondly to maintain the average profitabilit y of these further
generation nodes. It is worth briefly examining the generator price as, being a delivered price per unit
(rather than a unit per distance price) linearises it to a similar form as existing literature.
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Note that tightening the constraints on this linearised price has of course the same impact as that of

                                                     
8 In the unconstrained case (which is left for the reader to verify), this ‘price floor’ is simply the cost Te.
9 It is useful to note for later analysis that  τg,g < σg ∀ θ < 1 using the fact that (a – ARe - ARg) > 0.
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the non linear price and tightening the constraint increases price for high cost generation points and
reduces price low cost. The impacts of tightening the constraint on the non-linear transmission and
linear generation price are ill ustrated in figure 2.1a,b.

Figure 2.1a,b
Change in Non-Linear Gas and Linear Generation Price with Tightening of ARg or ARe Constraint

Looking at a tightening of the downstream (electricity) constraint on the electricity transmission
industry; solving for the electricity transmission price yields intercept and slope terms both dependent
and independent on the number of generators θ;
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The optimal market size (σe) for the electricity transmission agent to supply is (2GTe + 3ARe)/2Te.
Like Bradley and Price (1988), the optimal size of the market is not a function of the level of demand
(a) nor (specific to this paper), the price of gas transmission pg. Intuiti vely one would expect that as
the gas price increases, so will generation price and hence supplier costs. For this reason it might be
expected that the size of the market supplied would be a function of pg as well as the exogenous cost
of transmission. The explanation to this counter intuition lies in the price of gas as a function of the
binding ARe (see equation x.x). As the price of gas increases over time, so must the level of ARe, else
at some future point the constraint no longer binds, this causes σe to fall i n line with intuition.

Like the transmission price for gas the electricity transmission price is non-linear in distance from
generator to supplier (x-G). Again it is instructive to rearrange the electricity price into a linear form
for analysis. This is most eff iciently done by reinsertion back into the equation for ps and rearranging
to yield the delivered consumer price per electricity unit at each distance (x-G). Again the equation is
arranged in terms of an intercept term (αs) and slope coeff icient (βs).
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proposition one, thus raising prices to ‘high’ cost customers and lowering prices to ‘ low’ cost
consumers and a fall i n the market distance served.

Proposition 2 is proved using comparative statics. Analysing changes in the electricity transmission
constraint shows; 

�
αs/

�
ARe > 0 ∀ G < σg, thus the intercept supply price is decreasing as the

constraint (ARe) becomes tighter. Differentiating the third term of ps with respect to ARe, 
�
βs/

�
ARe <

0 ∀ G < σg. In this case tightening the ARe constraint increases the supply price slope coeff icient.
Like gas transmission, the counteracting effects of the change in slope coeff icient and intercept point
causes an anticlockwise rotation in the price line about the point where 

�
ps/

�
ARe = 0 denoted τe,e. As

in proposition 1 those consumers to the left of this point are denoted ‘ low’ cost consumers whilst
those to the right are denoted ‘high’ cost consumers. This proves proposition 2.

The intuition behind the impact of a tightening average revenue constraint for electricity transmission
is the same as the previously discussed gas constraint. As the electricity constraint becomes tighter,
the transmission agent is forced to reduce its average revenue, raising the price of those consumers
furthest away which generate the lease amount of profit as a ratio of revenue, and lowering the price
of the lower revenue suppliers closest.

Proposition 3
For the downstream industry tightening the upstream industry constraint results in:
(i) All consumers in ‘Low’ cost generation nodes (those to the left of τg,g) face lower prices.
(ii ) All consumers in ‘High’ cost generators nodes (those to the right of τg,g) face higher  prices.

The proof of proposition 3 is again simple and demonstrated via use of comparative statics on the
consumer price. Differentiating the intersection terms (the first two terms) and the slope term of ps

with respect to ARg shows (after some manipulation) � αs/ � ARg > 0 and � βs/ � ARg < 0, ∀ G < τg,g.
These counteracting impacts create a anti-clockwise movement around the point where � ps/ � ARg = 0
denoted τs,g. Solving for this point yields the total market distance for consumers served σe. This
movement around σe reduces prices for all consumers and proves part (i). Returning to the
comparative statics, � αs/ � ARg < 0 and � βs/ � ARg > 0, ∀ G > τg,g. These counteracting effects create a
clockwise movement around τs,g which again when solved for yields σe. This movement increases
prices to all consumers within the generation node and proves part (ii ). Figure 2.2 ill ustrates this.

Figure 2.2
The Effect of Generator Location on the Impact of Tightening ARg on Consumer Prices

0 x-G 0 x-G
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The reason for this relates to propositions 1 and 2. For generation nodes to the left of τg,g, the gas
transmission price is falli ng, thus generation price is falli ng for all distances. As supplier demand is
an inverse function of generation price, consumer aggregate demand rises. The higher demand at all
consumer nodes pushes average revenue past the electricity regulatory constrained level. From
proposition two, the optimal response to come back within the constraint is to raise the price of
distant ‘costly’ consumers, and reduce price to near ‘ low’ cost suppliers. Given optimal market
distance σe is fixed this means consumers prices can only fall , reducing average revenue to move
back within the constraint (see left hand side of f ig 2.2). For generation nodes to the right of τg,g gas
transmission price is increasing, thus reduce aggregate consumer demand. This demand reduction
shifts the electricity transmission agent well within the transmission regulatory constraint. This shift
permits a move back towards the constraint by raising prices to those closest and reducing prices to
those furthest away. Again as σe is fixed, all prices increase to takes the firm closer to the
unconstrained optimum.

Concluding, this section has established that where a dual regulatory regime exists, the downstream
(electricity) regulatory regime impacts consumer prices in a similar fashion to previous literature (ie
Bradley and Price (1990), Law (1996) and Cowan (1997)). The impact of upstream product
regulation on consumer prices depends on the location of the final consumers. In all cases prices for
high ‘cost’ consumers are relatively constant, gaining neither the benefits nor the costs of an
upstream regulatory change.

Section 3: The Optimal Welfare Levels of Dual Regulation:
Section two showed the finding of previous literature; tightening the price constraint reduces the
‘near’ consumer price and increases ‘f ar’ consumer prices, is not generally true. In this section the
welfare effects of constraint changes are analysed to determine who benefits from a tightening
constraint. Secondly it analyses the more important question of whether independent regulators
maximise welfare, or whether independent regulatory regimes leads them to compete for consumer
welfare resulting in lower overall welfare relative to a co-operative regime. To solve these questions
this section is structured as follows; first consumer and producer gas welfare are determined and
differentiated to yield the gas regulator’s reaction function to changes in the electricity constraint. A
similar reaction function for the gas consumer industry is constructed to determine how the optimum
gas constraint changes with the electricity constraint. These two functions are treated as Cournot
response functions and solved for the Nash equili brium regulatory solution. Numerical simulations
are used to examine the welfare levels under this Nash solution. This is then compared to welfare in
the case where a single regulator maximises both gas and electricity constraints over total welfare
within the network.10

Determination of Separate Regulators Nash Solution
As in reality regulators generally look to maximise welfare within their own industry. Thus the gas
regulator maximises welfare only within the gas network, whilst the electricity regulator maximises
within the electricity network. Both regulators are aware of the impact that changing their respective
average revenue constraints have upon each other and for this reason their interaction may be thought
of in terms of Nash reaction functions. The gas regulator’s reaction function depends upon the
measure of economic welfare the regulator chooses to optimise the regulatory constraint to. This
paper uses a standard total welfare function of the form TWg = CSg + φπg, where φ  is the weighting
given to transmission profits. Gas consumer surplus across all gas markets (CSg) is;

11

                                                     
10 It is important to note that combining these two constraints into a single constraint and maximising welfare
would ignore the industry structure. As the two transmission companies are separate agents even under a single
regulatory authority, they require separate constraints.
11 Although generators are ‘consumers’ of gas, under the assumption of bertrand competition they make 0 profits
and thus are not included within the gas consumer surplus. The electricity consumers which they sell onto are
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When θ = 1 (no gas consumers), gas consumer welfare to 0. At the other extreme, setting θ to 0
equates market of only consumers and drops the second term with the brackets.

Proposition 4.
An ‘Overly’ tight gas regulatory constraint reduces gas consumer welfare.

Proof of proposition four is again through simple comparative statics. Differentiating gas consumer
surplus firstly with respect to its own gas constraint shows that CSg is increasing as ARg becomes
tighter. Solving for 

�
CSg /

�
ARg = 0 yields two roots the first of which is a maximum the second a

minimum. To the left of the maximum point, which is defined as ‘overly’ tight for the purpose of
proposition 4, 

�
CSg /

�
ARg > 0 and hence further decreases in the gas constraint reduces welfare.12

The intuition of proposition 4 can be seen through proposition 1. Tightening ARg increases prices to
the highest cost customers and reduces prices for low cost consumers. Secondly the total distance
served falls, effectively removing some consumers from the market. Moving from low levels of
constraint, the gains from the low cost consumers outweigh the losses, however at a certain point
(past which the constraint is ‘overly’ tight) these losses outweigh the benefits. This result verifies that
shown in Law 1995 and Cowan 1997a. Gas transmission agent’s profits are derived from both the
generator and consumer sectors in the ratios of θ and (1-θ) respectively.
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Whilst gas transmission profit looks messy, taking either of the extremes of θ = 1 or 0 removes two
out of the three terms. Under the assumption that the gas constraint is binding, gas profits are always
decreasing with the average revenue gas constraint, thus 

�
πg/

�
ARg > 0. Note that as the optimal prices

are functions of both the constraints, so the level of profit will also be related to the level of both
constraints. Both consumer and producer welfare levels are graphically ill ustrated in Appendix 3
Combining these consumer and producer welfare elements into a weighted average allows the
derivation of the best response function for total gas welfare. This is done through solving the
differential 

�
TWg/

�
ARg is for ARg. Unfortunately, the complexity of the best response is such that an

analytical solution is not possible, however it is suff icient to not that such a solution exists and denote
it as ARgas

*(ARt), returning to it to solve for numerical solutions later.

Now a best response has been found for the gas regulator, it remain to solve for the best response
function for the electricity regulator to find the Nash equili brium regulatory solution. Looking first at
electricity consumer surplus, within each generation node this is:

                                                                                                                                                                    
included in the electricity consumer surplus.
12 This point is ])1(89[3/]9)1(89][9)1(89[3/2 22 θθθθθθθθ −+−−+−−++ tttttttt TARARTARARTAR  simpli fying to a/3 for θ = 1.
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Proposition 5
For a given downstream node tightening the upstream industry constraint results in:
(i) ‘Low’ cost generators (those to the left of τg,g) see welfare strictly increasing.
(ii )‘High’ cost generators (those to the right of τg,g) see welfare strictly falli ng.

Proof of proposition 5 can be done in either of two ways. The simplest is to recall proposition three in
that for generation nodes to the left (right) of τg,g prices are declining (increasing) for all  consumers.
This simple proof can be verified by checking the differential 

�
CSe/

�
ARg and solving it equal to 0 for

distance G. The result is G = τg,g further manipulation of the differential verifies that if G < τg,g

welfare is increasing and vice versa. Total electricity consumer welfare is consumer welfare in a
single generation market integrated across all generation markets served.
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Similar to proposition 4, differentiating CSe with respect to ARe provides a condition that depends
upon the relative levels of the two constraints rather than the distance of the generation node from the
gas supply. Up to the optimum point consumer welfare is increasing with the tightening of ARe and
after this point decreasing (see fig A3.3 in Appendix 3). Unfortunately analytical solutions for the
electricity regulator’s best response with a polynomial of this magnitude are again not possible and
numerical simulations are run only on the weighted regulatory reaction function. The electricity
transmission agent’s profits are;
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Similar to gas, when the electricity constraint is binding electricity profits are declining with tighter
gas constraints, 

�
πg/

�
ARg > 0. (see fig A3.4 in Appendix 3). Total welfare in the electricity industry is

a weighted combination of consumer surplus and profits. TWe = CSe + φπe. Taking the differential
�
TWe/

�
ARe and solving for ARe yields the electricity regulator’s best response function for any given

level of gas constraint. Again the solution to the derivative of total welfare with respect to ARe is a
higher order polynomial in ARe and analytical solutions are not possible. However to determine the
relative eff iciency of the two regulatory structures it is suff icient to note that a best response function
ARe

*(ARg) exists and can be solved via numerical solutions. Appendix 4 uses the simpli fication θ = 1
to obtain analytical answers and give some intuition behind the results.

Nash Regulatory Solution

With both regulator’s reaction functions identified, the mathematical packages Maple has been used
to solve them simultaneously for numerical solutions and derive the optimal constraints for both
regulators using the parameters discussed in appendix 3. These are shown in table 3.1
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Table 3.1 Optimal Regulation for Separate Regulatory Regimes

Welfare Weight (φ)13 ARg ARt TWg TWe TWg + TWg

0 0.34 0.22 0.58 0.93 1.51
1/20 0.46 0.19 0.72 0.72 1.44
1/10 0.59 0.14 0.93 0.40 1.33
For a = 1, Tt = 2/45, Tgas = 4/45 θ = 4/10

When φ increases, the electricity constraint becomes tighter. Here there are two effects working, the
first is the same as the gas constraint; the constraint loosens as firm’s profits are included into
welfare. However the it is second indirect effect via the loosening gas constraint that is dominant.
This is ill ustrated by plotting the iso-welfare curves for the relationship between the two constraints
in figure 3.1.

Figure 3.1 Figure 3.2
Electricity Iso-Total Welfare Curves Total Weighted Welfare with Constraints

             

Joining the tangency points to the gas iso-welfare curves ill ustrates the best response line denoted by
ARe

*(ARg). Unlike normal reaction functions, the optimum movement along the line depends upon
whether the movement is to the left or right of the electricity regulators optimum point. When looking
at table 3.1 the gas constraint is slackening, and translates to a movement to the right of the optimum.
The best response is then to tighten the electricity constraint to move to the highest possible iso-
welfare curve, however both from the diagram and table we note that the new iso-welfare curve is
lower than the previous. This interaction shows why relaxing the gas constraint causes a tightening of
the electricity constraint and lowering of electricity welfare.

Joint Optimum
Now the Nash optimum solution is established, it can be compared with a co-operative equili brium.
The co-operative equili brium is the equivalent of having the two regulators joining and maximising
joint welfare across both industries rather than simply maximising their own consumer’s welfare as
previously. In this case total joint welfare is simply; TW = CSe + CSg + φ(πe +πg). Maximising total
welfare is no longer a strategic game as there is only one player who simultaneously maximises both
the constraints across the two transmission industries. The joint regulatory optimum is determined
where 

�����
/
�
ARe = 

�����
/
�
ARg = 0. Again, as the solutions are higher order polynomials and

analytical solutions are not possible, numerical solutions are used for illustration and comparison.
Using the previous parameters, fig 3.2 illustrates how the two constraints interact to determine the
total welfare within the system.
                                                     
13 For levels of φ >1/10, the gas regulatory constraint is no longer binding and thus such values are not
considered.
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The optimal constraints and welfare are sensiti ve to the two industry infrastructure parameters θ and
φ. As the number of generators (θ) increase, the optimal joint constraints converge as the two
industries become increasingly integrated. As φ tends towards 0, the relationship between constraints
and welfare will t end away from the consumer welfare figures and towards the produce welfare
figures ill ustrated in appendix 3. Like previously, total weighted welfare is subject to the binding
condition for gas (equation x) ruling out the tail as a feasible solution. Numerical solutions using the
same parameters in the previous sections are ill ustrated in Table 3.2. This shows that when the two
constraints are determined simultaneously by a single regulatory body, the levels of constraints are
much closer to each other than in the separate regimes.

Table 3.2 Optimal Regulation for Joint Regimes

Weight (φ) ARg ARe TWg TWe TWg + TWg Relative Gain
0 0.27 0.25 0.56 1.00 1.56 4%
1/20 0.30 0.25 0.67 1.01 1.68 16%
1/10 0.32 0.25 0.81 1.00 1.81 35%
For a = 1, Tt = 2/45, Tgas = 4/45 θ = 4/10

Proposition 6
Integrating the two regulators with overlapping vertical markets, creates welfare efficiency gains
relative to two independent regulators.

The last column of table 3.2 shows the welfare gain in changing the regulatory system from a
separate regime to an integrated regime. Perhaps the 4% figure is the most realistic under the
assumption that regulators generally concern themselves with consumer welfare and not profit.
However, this 4% increase in welfare should be taken as a lower estimate for the following reason. It
li kely that the ratio of transmission costs of gas and electricity to reservation price chosen is an upper
bound, lower ratios generate higher welfare gains in switching regulatory regimes regardless of the
level of φ. This is because lower costs tighten the gas constraint under a joint regime but relax it to a
sub-optimal level under the separate regime.

The gains in welfare by moving to a joint regulatory regime is not just a nice example of Lipsey and
Lancaster’s theory of the second best applying to regulation, although clearly this is the reason why a
change in one industry effects the other. Where regulators regimes overlap as in the electricity
industry, the overlap may drive regulators towards indirectly competing with each other to ensure
maximisation of their own consumer’s welfare. The regulators have confli cting aims. Without
explicitl y taking account of the impact they have on each other’s markets, overall welfare is
decreased. Only through explicitl y looking at both own consumer welfare, and the impact that a
change in the constraint has on the other sector, will regulators be able to obtain the higher levels of
joint welfare maximisation. This reasons provide strong economic justification for the joining of the
UK gas and electricity regulatory bodies OFGAS and OFFER under a single regulator OFGEM
beyond simple bureaucracy cost reduction. Even when strong politi cal or institutional reasons for
separate regulators to exist, the result lends significant impetus for the two departments to work
closely together, possibly bringing in other regulatory regimes when their regulatory remits overlap.

Conclusion
The model of dual input regulation for a final product presented within this paper provides some
interesting results. In section two it established two main results. Firstly, changing the upstream
(electricity) regulatory regime impacts upstream prices in an similar fashion to past literature with a
single regulatory institution. Tightening the upstream average revenue constraint forces the
transmission firm to restrict sales to high cost and hence high revenue consumer markets far from the
generator by raising their price of transmission, and lowering demand. Secondly, the downstream
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product regulation has an impact on consumer prices different to previous literature such as Bradley
and Price, Law and Cowan. Tightening the downstream constraint (gas transmission) increases the
price of gas transmission for all ‘distant’ high cost generators. This causes a fall i n generator demand
which reduces the average revenue for the electricity transmission agent. The fall i n average revenue
allows the electricity transmission agent to bring its price structure closer to the unconstrained profit
maximum thus increasing prices for all consumers. Thus tighter upstream regulation raises all
downstream consumer prices for ‘distant’ generators. The opposite effect occurs for near generators.

Section three has two main results. At a basic level, the result that the regulatory regimes are closely
interrelated is a nice ill ustration of Lipsey and Lancaster’s theory of the second best in regulation. It
is not optimal for a regulator to merely maximise consumer welfare looking at the single transmission
market it governs. It must look at both transmission markets and co-operate with the other regulator
to ensure at best a joint maximum welfare, and at second best a minimisation of the other regimes
distortion. Secondly, merely taking account of the other regulator’s impact on the own market
optimal constraint does not ensure maximisation of welfare. This paper shows overlapping regulatory
regimes provides a framework in which regulators reduce overall welfare for society in order to
compete for own consumer’s welfare. Only when regulators explicitl y look to maximise joint welfare
will t he optimum solution for the combined markets be reached. Numerical solutions showed that
simply maximising own consumer welfare results in a 4% lower welfare relative to a joint regime.
This figure increases as the level of overlap between regimes increases and as some degree of
producer welfare is taken into account. Whilst 4% does not sound li ke a large welfare increase, it is a
lower bound. More importantly when it is realised that the UK market for gas and electricity is
measure in the tens of billi ons of pounds, even a figure of 4% becomes very substantial indeed.
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Appendix 1
Combining electricity profit and constraint into a lagrangian enables first order conditions for σe, pe

and λ1 to be derived.
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Noting qs = f(ps,pG(pg)), that is aggregate consumer demand is a function of supplier and generation
(in turn a function of gas) prices, Supply demand can be rewritten in terms of generation and
electricity price as qs = a - Gpg + pe(x-G). At the profit maximising level of price, a global maximum
(

�
L/

�
pe = 0) across all supplier markets exists only where every individual supplier market is at a

local maximum. The electricity transmission agent’s local maxima for each market is derived through
differentiating with respect to pe, at a given x, (thus dropping the integrals) and solving for pe;
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The range of the market the electricity transmission agent is derived via the first order condition for
σe using the integrated lagrangian (equation 1). This yields:
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Solving the first order conditions for σe and pe (σe), where at the optimal distance served pe(x) =
pe(σe), yields results for the optimal σe, and price at this point, pe(σe);
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Finally deriving the first order condition � L/ � λ1, and substituting for the optimal price as a function
of distance (2), the optimal distance served (3a) in terms of λ1, setting equal to 0 and solving for λ1

yields two distinct roots. The first is identified as a minimum through re-insertion into the lagrangian
function, whilst the second, identified as a maximum in the same manner, is;
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Given a > ARe +Gpg for all positi ve qs, λ1 is constrained to be less than 1 (similar to Waterson’s
(1992) result). At the optimum, a small change in ARe results in a change of λ1 to profit. Solving for
ARe when λ1=0, derives the value for which the electricity average revenue constraint is binding at
ARe = 2/3(a - Gpg). Where ARe is greater, the unconstrained monopoly price is lower than the
constrained monopoly price and it is both optimal and feasible for the transmission firm to charge the
unconstrained monopoly price. Substituting for the solved λ1 and rearranging determines the optimal
pe with distance and total distance served σe;
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As electricity transmission cost (Te) rise, the optimal distance served (σe) fall s and the final price
pe(σe) rises, in line with intuition. Substituting pe back into the equation for final price yields;
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Finally total generation demand in each node, denoted Qs, is simply the summation of demand in all
generation nodes thus;
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Appendix 2.
The gas Lagrangian is a weighted proportion of generators and consumers within the gas market;
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Substituting for Qs, (6) differentiating the electricity Lagrangian without the integrals with respect to
pg and solving for pg in terms of G and λ2 yields;
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To solve for the optimal distance that is supplied by the gas transmission agent set 
�
L/

�
σg = 0,

yielding first order condition for σg in terms of λ2 and pg:
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Setting G = σg and solving equations 8 and 9 simultaneously yields weighted expressions for total
distance served σg in terms of λ2 and the optimal price of gas at the furthest point served;
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Finally to solve for λ2 in terms of the exogenous parameters substitute the optimal σg and pg in terms
of distance (8) into the gas regulatory constraint, to derive the first order condition for λ2. Solving for
λ2  yields a weighted result very similar (as expected) to the electricity regulation, where:
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Solving the above yields the condition that must hold for the gas average revenue constraint to bind:
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Substituting λ2 back into the equations for prices, and distances we can now derive solutions for all
prices and quantities in terms of exogenous cost, demand and market parameters. After some
manipulation into simpler forms, these are displayed in the main text of section two.

Appendix 3
To graphically ill ustrate the relationship between the welfare and the different constraints, values for
the demand, cost and network gas/generator parameters are required. As relative eff iciency rather
than the absolute level of eff iciency is of most interest the demand parameter a is simply normalised
1. Determining what the costs should be relative to a is more diff icult and is facilit ated through the
use of previous studies. Green (1999) looks at numerical solutions for a simple model of the UK
electricity contract market using a ratio of 2/45 for the ratio of costs to the demand parameter thus Te

= 2/45.14 To determine the relative cost for transmission of gas, Waterson (1999) reports the cost of
gas transmission as approximately twice that of electricity for a single unit of electricity supplied to
the consumers thus Tg = 4/45. Lastly, the ratio of gas generators to total consumption of gas (θ) was
approximately 40% in 1999.15 This ratio can be thought of as a measure of the overlap between the
gas and electricity industry, as the overlap increases the welfare gains from integrating the regulatory
regimes also increase.

                                                     
14 Whilst Green’s paper looks at generator’s costs, because a proportion of transmission costs are borne by the
generators and hence is incorporated into this ratio, it is used to approximate the electricity transmission cost
parameter.
15 As supplied by the Transco Transportation 10 Year Statement 2000 pg11
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Figure A3.1 Figure A3.2
Gas Consumer Welfare with Constraints Gas Transmission Profit with Constraints

    

Looking at the graphical solutions to the numerical solutions in figures A3.1 and A3.2, the gas
transmission agent makes far higher surplus (approximately 10 times) than gas consumers even at the
consumer optimal level of constraint. The reason behind this is two fold, firstly there are only (1-θ)
gas consumers being served, whilst the gas company serves both gas consumers and the entire
generator market. Secondly, electricity transmission is half the gas transport cost, consequently σe is
greater than σg and generator demand is larger than gas consumers. Both of these effects mean the
firm is able to make substantial profits on sales. Because this unbalance in surplus exists, any simple
combinations without weights on consumer surplus results in the gas producer’s welfare strongly
dominating consumer’s. As will be shown in the later numerical simulations, φ must be in the order
of 10/100 or less to prevent this domination occurring.

Using the same parameters the relationship between the two constraints and gas market welfare can
also be ill ustrated.

Figure A3.3 Figure A3.4
Elec. Consumer Welfare with Constraints Elec. Transmission Welfare with Constraints

     

Both figures 3.3 and 3.4 are subject to the binding electricity constraint condition (equation 1.20)
ruling out the tail as a feasible solution in Figure 3.3.16

                                                     
16 Naturally the transmission firm’s optimal regulatory point (Figure 3.4) is non binding. Consequently the
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Appendix 4
Weighted electricity industry welfare at θ = 1 (only generators) simpli fies total electricity welfare to;
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Differentiating with respect to, and solving for ARe and yields the electricity regulators best response
function as;
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By differentiating only the second (φ) term of TWe and setting φ = 1, the first order condition for a
regulator only concerned with firms profit is derived. Setting this first order condition equal to 0 and
solving for ARe yields the best response for regulators unconcerned with consumers as; ARe = 2/3(a-
ARg). Although this is unrealistic as regulatory bodies do not optimise only according to firm profits,
it does help in ill ustrating the two extremes of the firms and consumers optimal level of regulation.
More specifically it ill ustrates the impact that the weighting variable φ has on the optimal level of
electricity regulation. We ill ustrate the two extremes of optimising solely with respect to consumer
welfare φ = 0, and solely with respect to producer profits in figure A.41

Figure A4.1
Optimal Electricity Welfares with Regulatory Constraint

This result is similar to Cowan’s (1997) where an optimal point for consumer welfare maximisation
exists and contrary to intuition tightening the average revenue constraint further may actually reduce
consumer welfare as well as producer welfare. Secondly it shows that the impact of φ > 0, is to shift
the optimal best response to the right of 1/3(a-ARg) until when φ = 1, the optimal response is simply
an average of the two extremes at 1/2(a-ARg).

                                                                                                                                                                    
simple maximising of joint welfare using identical weights (φ =1) results in non-binding regulatory constraints.
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